-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathpredict.py
95 lines (83 loc) · 4.32 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import shutil
import random
from typing import List
import torch
from cog import BasePredictor, Input, Path, BaseModel
from lorahub.algorithm import (
lorahub_learning,
default_get_loss,
default_l1_regularization,
)
from lorahub.constant import LORA_MODULE_NAMES
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
pass
def predict(
self,
example_inputs: str = Input(
description="List of input examples, one Line one input.",
default="Infer the date from context. Q: Today, 8/3/1997, is a day that we will never forget. What is the date one week ago from today in MM/DD/YYYY? Options: (A) 03/27/1998 (B) 09/02/1997 (C) 07/27/1997 (D) 06/29/1997 (E) 07/27/1973 (F) 12/27/1997 A:\nInfer the date from context. Q: May 6, 1992 is like yesterday to Jane, but that is actually ten years ago. What is the date tomorrow in MM/DD/YYYY? Options: (A) 04/16/2002 (B) 04/07/2003 (C) 05/07/2036 (D) 05/28/2002 (E) 05/07/2002 A:\nInfer the date from context. Q: Today is the second day of the third month of 1966. What is the date one week ago from today in MM/DD/YYYY? Options: (A) 02/26/1966 (B) 01/13/1966 (C) 02/02/1966 (D) 10/23/1966 (E) 02/23/1968 (F) 02/23/1966 A:",
),
example_outputs: str = Input(
description="List of output examples, one Line one output.",
default="(C)\n(E)\n(F)",
),
lora_modules_specified: str = Input(
description="Specify LoRA modules for the composition, options are from https://huggingface.co/models?search=lorahub, separated modules with comma, e.g. 'lorahub/flan_t5_large-quarel_logic_test, lorahub/flan_t5_large-coqa'",
default=None,
),
num_random_lora_modules: int = Input(
description="Set number of LoRA modules to use. Ignored if specified modules above.",
default=20,
ge=2,
le=196,
),
max_inference_step: int = Input(
description="Maximum iteration steps to maximise LoRA module composition. We suggest setting it to 40 steps if 20 modules were chosen, with more steps typically needed for more modules.",
default=40,
le=100,
ge=10,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed.", default=None
),
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
if lora_modules_specified:
lora_module_list = lora_modules_specified.split(",")
for lora_module in lora_module_list:
assert (
lora_module in LORA_MODULE_NAMES
), f"{lora_module} is not recognised."
else:
lora_module_list = random.sample(LORA_MODULE_NAMES, num_random_lora_modules)
example_inputs = example_inputs.splitlines()
example_outputs = example_outputs.splitlines()
assert len(example_inputs) == len(
example_outputs
), "Number of input and output do not match."
# perform LoRAHub learning
module_weights, model, tokenizer = lorahub_learning(
lora_module_list=lora_module_list,
example_inputs=example_inputs,
example_outputs=example_outputs,
max_inference_step=max_inference_step,
model_name_or_path=None, # if not given, we will use the model_name_or_path in lora config
batch_size=None,
get_loss=default_get_loss, # The function to get the objective for optimiztion, use loss as default (can be changed to something like acc. or similarity)
get_regular=default_l1_regularization, # The function to get regularization term for the weight, use 0.05*|w_i| as default
seed=seed,
)
print("The recommended weight set for the LoRA modules is:")
for module_weight, module in zip(module_weights, lora_module_list):
print(f"{module_weight:.4f}: {module}")
out = "/tmp/out.bin"
torch.save(model, out)
return Path(out)