-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathblora_utils.py
1743 lines (1555 loc) · 75.2 KB
/
blora_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
from peft.utils.other import transpose
from torch.nn import functional as F
from typing import List, Optional, Tuple, Union, Callable
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
logging,
)
from transformers.models.llama.modeling_llama import (
LLAMA_INPUTS_DOCSTRING,
_CONFIG_FOR_DOC,
)
from peft import PeftModel
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.generation.streamers import BaseStreamer
import os
import copy
import inspect
import warnings
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from transformers.deepspeed import is_deepspeed_zero3_enabled
from transformers.generation.beam_constraints import (
DisjunctiveConstraint,
PhrasalConstraint,
)
from transformers.generation.beam_search import (
BeamSearchScorer,
ConstrainedBeamSearchScorer,
)
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.logits_process import (
LogitsProcessorList,
)
from transformers.generation.stopping_criteria import (
StoppingCriteriaList,
)
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from transformers.generation.streamers import BaseStreamer
from transformers.generation.utils import (
GreedySearchDecoderOnlyOutput,
GreedySearchEncoderDecoderOutput,
SampleEncoderDecoderOutput,
SampleDecoderOnlyOutput,
BeamSearchEncoderDecoderOutput,
BeamSearchDecoderOnlyOutput,
BeamSampleEncoderDecoderOutput,
BeamSampleDecoderOnlyOutput,
ContrastiveSearchEncoderDecoderOutput,
ContrastiveSearchDecoderOnlyOutput,
)
GreedySearchOutput = Union[
GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput
]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[
ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput
]
from typing import Union
from peft import PeftConfig
from accelerate.hooks import remove_hook_from_submodules
from peft.utils.config import PromptLearningConfig
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, hub_file_exists
from accelerate.big_modeling import (
dispatch_model,
get_balanced_memory,
infer_auto_device_map,
)
from huggingface_hub.file_download import hf_hub_download, EntryNotFoundError
from safetensors.torch import load_file as safe_load_file
from peft.utils import set_peft_model_state_dict
from accelerate.hooks import AlignDevicesHook, add_hook_to_module
from transformers.generation.stopping_criteria import validate_stopping_criteria
from transformers.utils.hub import PushToHubMixin
from peft.utils.config import PeftType
from peft.tuners import (
LoraModel,
PromptEmbedding,
PromptEncoder,
PrefixEncoder,
AdaLoraModel,
AdaptionPromptModel,
IA3Model,
)
from peft.tuners.lora import LoraLayer
from peft.tuners.lora import Linear4bit, Linear8bitLt, Embedding, Conv1D, Conv2d, Linear
from peft.import_utils import is_bnb_4bit_available
import bitsandbytes as bnb
from peft.tuners.lora import mark_only_lora_as_trainable
from peft.utils.other import _freeze_adapter, _get_submodules
GenerateOutput = Union[
GreedySearchOutput,
SampleOutput,
BeamSearchOutput,
BeamSampleOutput,
ContrastiveSearchOutput,
]
PEFT_TYPE_TO_MODEL_MAPPING = {
PeftType.LORA: LoraModel,
PeftType.PROMPT_TUNING: PromptEmbedding,
PeftType.P_TUNING: PromptEncoder,
PeftType.PREFIX_TUNING: PrefixEncoder,
PeftType.ADALORA: AdaLoraModel,
PeftType.ADAPTION_PROMPT: AdaptionPromptModel,
PeftType.IA3: IA3Model,
}
logger = logging.get_logger(__name__)
def load_loras(model, loras):
# torch.nn.module throws error if lora name contains a dot
adapters = [lora.replace(".", "_") for lora in loras]
lora_map = {lora: adapter for lora, adapter in zip(loras, adapters)}
model = StreamingPeftModel.from_pretrained(
model, loras[0], adapter_name=adapters[0]
)
for lora, adapter in zip(loras[1:], adapters[1:]):
model = StreamingPeftModel.from_pretrained(
model.base_model.model, lora, adapter_name=adapter
)
return model, lora_map
def prepare_batch(inputs, tokenizer, model, lora_map):
"""Tokenizes inputs and sets the batch_lora_ids for the model."""
batch = tokenizer([inp[0] for inp in inputs], return_tensors="pt", padding=True)
inp_loras = [lora_map[inp[1]] for inp in inputs]
for _, module in model.named_modules():
module.batch_lora_ids = inp_loras
return batch
def forward(self, x: torch.Tensor):
previous_dtype = x.dtype
if self.active_adapter not in self.lora_A.keys():
return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
if self.disable_adapters:
if self.r[self.active_adapter] > 0 and self.merged:
self.unmerge()
result = F.linear(
x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias
)
elif self.r[self.active_adapter] > 0 and not self.merged:
result = F.linear(
x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias
)
x = x.to(self.lora_A[self.active_adapter].weight.dtype)
batch = list(zip(x, self.batch_lora_ids))
# rewrite as for loop
lora_out = torch.zeros_like(result)
for i, (x, lora_id) in enumerate(batch):
if lora_id in self.lora_A.keys():
lora_out[i] = self.scaling[lora_id] * self.lora_B[lora_id](
self.lora_A[lora_id](self.lora_dropout[lora_id](x))
)
result += lora_out
else:
result = F.linear(
x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias
)
result = result.to(previous_dtype)
return result
class StreamingPeftModel(PeftModel):
def __init__(
self,
model: PreTrainedModel,
peft_config: PeftConfig,
adapter_name: str = "default",
):
# call super init on both PushToHubMixin, torch.nn.Module
PushToHubMixin.__init__(self)
torch.nn.Module.__init__(self)
self.base_model = model
self.config = getattr(self.base_model, "config", {"model_type": "custom"})
self.modules_to_save = None
self.peft_config = {}
self.active_adapter = adapter_name
self.peft_type = peft_config.peft_type
if not isinstance(peft_config, PromptLearningConfig):
self.peft_config[adapter_name] = peft_config
self.base_model = BLoraModel(
self.base_model, self.peft_config, adapter_name
)
self.set_additional_trainable_modules(peft_config, adapter_name)
else:
self.add_adapter(adapter_name, peft_config)
if getattr(model, "is_gradient_checkpointing", True):
model = self._prepare_model_for_gradient_checkpointing(model)
@classmethod
def from_pretrained(
cls,
model: PreTrainedModel,
model_id: Union[str, os.PathLike],
adapter_name: str = "default",
is_trainable: bool = False,
config: Optional[PeftConfig] = None,
**kwargs: Any,
):
r"""
Instantiate a [`LoraModel`] from a pretrained Lora configuration and weights.
Args:
model ([`~transformers.PreTrainedModel`]):
The model to be adapted. The model should be initialized with the
[`~transformers.PreTrainedModel.from_pretrained`] method from the 🤗 Transformers library.
model_id (`str` or `os.PathLike`):
The name of the Lora configuration to use. Can be either:
- A string, the `model id` of a Lora configuration hosted inside a model repo on the Hugging Face
Hub.
- A path to a directory containing a Lora configuration file saved using the `save_pretrained`
method (`./my_lora_config_directory/`).
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter to be loaded. This is useful for loading multiple adapters.
is_trainable (`bool`, *optional*, defaults to `False`):
Whether the adapter should be trainable or not. If `False`, the adapter will be frozen and use for
inference
config ([`~peft.PeftConfig`], *optional*):
The configuration object to use instead of an automatically loaded configuation. This configuration
object is mutually exclusive with `model_id` and `kwargs`. This is useful when configuration is already
loaded before calling `from_pretrained`.
kwargs: (`optional`):
Additional keyword arguments passed along to the specific Lora configuration class.
"""
from peft.mapping import (
MODEL_TYPE_TO_PEFT_MODEL_MAPPING,
PEFT_TYPE_TO_CONFIG_MAPPING,
)
# load the config
if config is None:
config = PEFT_TYPE_TO_CONFIG_MAPPING[
PeftConfig._get_peft_type(
model_id,
subfolder=kwargs.get("subfolder", None),
revision=kwargs.get("revision", None),
cache_dir=kwargs.get("cache_dir", None),
use_auth_token=kwargs.get("use_auth_token", None),
)
].from_pretrained(model_id, **kwargs)
elif isinstance(config, PeftConfig):
config.inference_mode = not is_trainable
else:
raise ValueError(
f"The input config must be a PeftConfig, got {config.__class__}"
)
if (getattr(model, "hf_device_map", None) is not None) and len(
set(model.hf_device_map.values()).intersection({"cpu", "disk"})
) > 0:
remove_hook_from_submodules(model)
if isinstance(config, PromptLearningConfig) and is_trainable:
raise ValueError(
"Cannot set a prompt learning adapter to trainable when loading pretrained adapter."
)
else:
config.inference_mode = not is_trainable
if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys():
model = cls(model, config, adapter_name)
else:
model = StreamingPeftModel(model, config, adapter_name)
model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs)
return model
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[
Callable[[int, torch.Tensor], List[int]]
] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
stream_output: bool = False,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](../generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*):
Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
`True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
generating before other GPUs. Otherwise it'll be set to `False`.
assistant_model (`PreTrainedModel`, *optional*):
An assistant model that can be used to accelerate generation. The assistant model must have the exact
same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
is much faster than running generation with the model you're calling generate from. As such, the
assistant model should be much smaller.
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GreedySearchDecoderOnlyOutput`],
- [`~generation.SampleDecoderOnlyOutput`],
- [`~generation.BeamSearchDecoderOnlyOutput`],
- [`~generation.BeamSampleDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GreedySearchEncoderDecoderOutput`],
- [`~generation.SampleEncoderDecoderOutput`],
- [`~generation.BeamSearchEncoderDecoderOutput`],
- [`~generation.BeamSampleEncoderDecoderOutput`]
"""
if synced_gpus is None:
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
synced_gpus = True
else:
synced_gpus = False
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation -- update the generation config
# model attribute accordingly, if it was created from the model config
if self.generation_config._from_model_config:
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use a generation configuration file (see"
" https://huggingface.co/docs/transformers/main_classes/text_generation )"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(
**kwargs
) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = (
logits_processor if logits_processor is not None else LogitsProcessorList()
)
stopping_criteria = (
stopping_criteria
if stopping_criteria is not None
else StoppingCriteriaList()
)
if (
generation_config.pad_token_id is None
and generation_config.eos_token_id is not None
):
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(
f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation."
)
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
# generating the first new token or not, and we only want to use the embeddings for the first new token)
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
model_kwargs["use_cache"] = True
else:
model_kwargs["use_cache"] = generation_config.use_cache
accepts_attention_mask = "attention_mask" in set(
inspect.signature(self.forward).parameters.keys()
)
requires_attention_mask = "encoder_outputs" not in model_kwargs
if (
model_kwargs.get("attention_mask", None) is None
and requires_attention_mask
and accepts_attention_mask
):
model_kwargs[
"attention_mask"
] = self._prepare_attention_mask_for_generation(
inputs_tensor,
generation_config.pad_token_id,
generation_config.eos_token_id,
)
# decoder-only models should use left-padding for generation
if not self.config.is_encoder_decoder:
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
if (
generation_config.pad_token_id is not None
and len(inputs_tensor.shape) == 2
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id)
> 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created
# and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
device=inputs_tensor.device,
)
else:
input_ids = (
inputs_tensor
if model_input_name == "input_ids"
else model_kwargs.pop("input_ids")
)
if streamer is not None:
streamer.put(input_ids.cpu())
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = (
kwargs.get("max_length") is None
and generation_config.max_length is not None
)
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = (
generation_config.max_new_tokens + input_ids_seq_length
)
if (
generation_config.min_length is not None
and generation_config.min_length > generation_config.max_length
):
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = (
"decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
)
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 7. determine generation mode
is_constraint_gen_mode = (
generation_config.constraints is not None
or generation_config.force_words_ids is not None
)
is_contrastive_search_gen_mode = (
(generation_config.num_beams == 1)
and generation_config.top_k is not None
and generation_config.top_k > 1
and generation_config.do_sample is False
and generation_config.penalty_alpha is not None
and generation_config.penalty_alpha > 0
)
is_greedy_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_sample_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_beam_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_beam_sample_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_group_beam_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups > 1)
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_assisted_gen_mode = False
if assistant_model is not None:
if not (is_greedy_gen_mode or is_sample_gen_mode):
raise ValueError(
"You've set `assistant_model`, which triggers assisted generate. Currently, assisted generate "
"is only supported with Greedy Search and Sample."
)
is_assisted_gen_mode = True
if generation_config.num_beam_groups > generation_config.num_beams:
raise ValueError(
"`num_beam_groups` has to be smaller or equal to `num_beams`"
)
if is_group_beam_gen_mode and generation_config.do_sample is True:
raise ValueError(
"Diverse beam search cannot be used in sampling mode. Make sure that `do_sample` is set to `False`."
)
if streamer is not None and (generation_config.num_beams > 1):
raise ValueError(
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
)
if self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
# 8. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
# 9. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
# 10. go into different generation modes
if is_assisted_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing assisted generate, "
f"but is {generation_config.num_return_sequences}."
)
if batch_size > 1:
raise ValueError(
"assisted generate is only supported for batch_size = 1"
)
if not model_kwargs["use_cache"]:
raise ValueError("assisted generate requires `use_cache=True`")
# 11. If the assistant model is an encoder-decoder, prepare its encoder outputs
if assistant_model.config.is_encoder_decoder:
assistant_model_kwargs = copy.deepcopy(model_kwargs)
(
inputs_tensor,
model_input_name,
assistant_model_kwargs,
) = assistant_model._prepare_model_inputs(
inputs_tensor,
assistant_model.generation_config.bos_token_id,
assistant_model_kwargs,
)
assistant_model_kwargs = (
assistant_model._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, assistant_model_kwargs, model_input_name
)
)
model_kwargs["assistant_encoder_outputs"] = assistant_model_kwargs[
"encoder_outputs"
]
# 12. run assisted generate
return self.assisted_decoding(
input_ids,
assistant_model=assistant_model,
do_sample=generation_config.do_sample,
logits_processor=logits_processor,
logits_warper=self._get_logits_warper(generation_config)
if generation_config.do_sample
else None,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing greedy search, "
f"but is {generation_config.num_return_sequences}."
)
# 11. run greedy search
return self.greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
stream_output=stream_output,
**model_kwargs,
)
elif is_contrastive_search_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing contrastive search, "
f"but is {generation_config.num_return_sequences}."
)
if not model_kwargs["use_cache"]:
raise ValueError("Contrastive search requires `use_cache=True`")
return self.contrastive_search(
input_ids,
top_k=generation_config.top_k,
penalty_alpha=generation_config.penalty_alpha,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample
return self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif is_beam_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError(
"`num_return_sequences` has to be smaller or equal to `num_beams`."
)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
# 12. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size * generation_config.num_return_sequences,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
max_length=generation_config.max_length,
)
# 13. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams
* generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 14. run beam sample
return self.beam_sample(
input_ids,
beam_scorer,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_group_beam_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError(
"`num_return_sequences` has to be smaller or equal to `num_beams`."
)
if generation_config.num_beams % generation_config.num_beam_groups != 0:
raise ValueError(
"`num_beams` should be divisible by `num_beam_groups` for group beam search."
)
if generation_config.diversity_penalty == 0.0:
raise ValueError(
"`diversity_penalty` should be greater than `0.0`, otherwise your beam groups will be identical."
)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
has_default_typical_p = (
kwargs.get("typical_p") is None and generation_config.typical_p == 1.0
)
if not has_default_typical_p:
raise ValueError(
"Decoder argument `typical_p` is not supported with beam groups."
)
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
num_beam_groups=generation_config.num_beam_groups,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.group_beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_constraint_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError(
"`num_return_sequences` has to be smaller or equal to `num_beams`."
)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
if generation_config.num_beams <= 1:
raise ValueError(
"`num_beams` needs to be greater than 1 for constrained generation."
)
if generation_config.do_sample:
raise ValueError(
"`do_sample` needs to be false for constrained generation."
)
if (
generation_config.num_beam_groups is not None
and generation_config.num_beam_groups > 1
):
raise ValueError(
"`num_beam_groups` not supported yet for constrained generation."
)
final_constraints = []
if generation_config.constraints is not None:
final_constraints = generation_config.constraints
if generation_config.force_words_ids is not None:
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]`"
f"of positive integers, but is {generation_config.force_words_ids}."
)
if (
not isinstance(generation_config.force_words_ids, list)
or len(generation_config.force_words_ids) == 0