-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp11to20.py
executable file
·225 lines (204 loc) · 7.98 KB
/
p11to20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from pdb import set_trace as db
def br():
print("-"*79)
# ----------------------------------------------------------------------------
def prod(lst):
ans = 1
for n in lst:
ans *= n
return ans
def get_surroundings(center, matrix):
ans = list()
x, y = center
x_lim, y_lim = len(matrix), len(matrix[0])
px_feasible = x + 3 < x_lim
nx_feasible = x - 3 >= 0
py_feasible = y + 3 < y_lim
ny_feasible = y - 3 >= 0
if px_feasible:
px = [matrix[x][y], matrix[x+1][y], matrix[x+2][y], matrix[x+3][y]]
ans.append(px)
if nx_feasible:
nx = [matrix[x][y], matrix[x-1][y], matrix[x-2][y], matrix[x-3][y]]
ans.append(nx)
if py_feasible:
py = [matrix[x][y], matrix[x][y+1], matrix[x][y+2], matrix[x][y+3]]
ans.append(py)
if ny_feasible:
ny = [matrix[x][y], matrix[x][y-1], matrix[x][y-2], matrix[x][y-3]]
ans.append(ny)
if px_feasible and py_feasible:
pxpy = [matrix[x][y], matrix[x+1][y+1], matrix[x+2][y+2], matrix[x+3][y+3]]
ans.append(pxpy)
if nx_feasible and py_feasible:
nxpy = [matrix[x][y], matrix[x-1][y+1], matrix[x-2][y+2], matrix[x-3][y+3]]
ans.append(nxpy)
if nx_feasible and ny_feasible:
nxny = [matrix[x][y], matrix[x-1][y-1], matrix[x-2][y-2], matrix[x-3][y-3]]
ans.append(nxny)
if px_feasible and ny_feasible:
pxny = [matrix[x][y], matrix[x+1][y-1], matrix[x+2][y-2], matrix[x+3][y-3]]
ans.append(pxny)
return ans
def prob11():
given = [
[ 8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8],
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0],
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65],
[52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91],
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
[24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
[67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21],
[24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
[21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95],
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92],
[16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57],
[86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
[19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40],
[ 4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
[88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
[ 4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36],
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16],
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
[ 1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]
]
known_max = 0
for i in range(len(given)):
for j in range(len(given[i])):
pos = (i, j)
nbrs = get_surroundings(pos, given)
this_max = max(map(prod, nbrs))
known_max = max(known_max, this_max)
return known_max
# print(prob11())
br()
# ----------------------------------------------------------------------------
def dirty_fast_prime_gen(seed=None):
if seed:
k = 1
while True:
yield 2
yield 3
k = 1
while True:
yield 6*k - 1
yield 6*k + 1
k += 1
return
def is_prime(num_to_check, known_primes):
# thanks to Py's call-by-*; the list known_primes is passed by reference
# assumes known_primes is sorted
for x in known_primes:
if num_to_check % x == 0:
return False
return True
def prime_gen(l):
p_gen = dirty_fast_prime_gen()
known_primes = list()
known_primes.append(next(p_gen))
known_primes.append(next(p_gen))
while len(known_primes) < l:
np = next(p_gen)
if is_prime(np, known_primes):
known_primes.append(np)
return known_primes
def num_is_triangle(num):
# k = num
# k = n*(n+1) // 2
# 0 = n^2 + n -2k
# n = (-1 +- (1 + 8k)**0.5)/2
k = num
n1 = (-1 + (1 + 8*k)**0.5)/2
# n2 = (-1 - (1 + 8*k)**0.5)/2 this will always be negative as k is always positive
if int(n1) == n1:
return int(n1)
return False
# def prob12():
# return 762409999177
# import itertools
# # 500 = 2*2 * 5*5*5
# # 500 = product of 5 distinct prime numbers - a, b, c, d, e
# # ans = a * b * c**4 * d**4 * e**4
# # && ans is a triangle number
# lim = 10
# while True:
# known_primes = prime_gen(lim)
# for g in itertools.permutations(known_primes, 5):
# a, b, c, d, e = g
# the_num = a * b * c**4 * d**4 * e**4
# check = num_is_triangle(the_num)
# if check:
# print(g)
# return check
# lim += 5
# return
# # print(prob12())
def prime_factorize(num, known_primes):
if num in [0, 1]:
return num
if known_primes[-1] < num:
ans = dict()
num_backup = num
for prime in known_primes:
num = num_backup
if prime > num: # don't scan known primes greater than num itself
break
ans[prime] = 0 # init ans dict with prime as key holding 0 as value
while True:
quot = num / prime
if int(quot) == quot:
ans[prime] += 1
num = int(quot)
else:
break
return ans
import pprint
ans = prime_factorize(76576500, prime_gen(100))
pprint.pprint({k:v for k, v in ans.items() if v != 0})
print(f"number of factors -- {prod([f+1 for f in ans.values()])}")
print(sum(ans.values()))
def prob12():
# return 762409999177
import itertools
# 504 = 2*2*2 * 3*3 * 7
# 504 = product of 6 distinct prime numbers - a, b, c, d, e, f
# ans = a * b * c * d**2 * e**2 * f**6
# && ans is a triangle number
lim = 10
while True:
known_primes = prime_gen(lim)
for g in itertools.permutations(known_primes, 6):
a, b, c, d, e, f = g
the_num = a * b * c * d**2 * e**2 * f**6
check = num_is_triangle(the_num)
if check:
print(g)
return check
lim += 5
return
# print(prob12())
http://code.jasonbhill.com/sage/project-euler-problem-12/
https://projecteuler.net/problem=12
https://github.com/nayuki/Project-Euler-solutions/blob/master/Answers.txt
# def prob12(lim):
# p_gen = dirty_fast_prime_gen()
# triangle_num = triangle_num_gen()
# known_primes = list()
# known_primes.append(next(p_gen))
# known_primes.append(next(p_gen))
# while True:
# __ol = len(known_primes)
# i = next(triangle_num)
# while known_primes[-1] < i: # before doing anything, make sure we know sufficient prime numbers
# np = next(p_gen)
# if is_prime(np, known_primes):
# known_primes.append(np)
# if __ol != len(known_primes):
# print(f"{len(known_primes)-__ol} primes found and added for i={i}")
# __factors_of_i = prime_factorize(i, known_primes)
# num_of_factors = prod([c+1 for c in __factors_of_i.values()])
# if num_of_factors >= lim:
# return i
# return
# print(prob12(500))