-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.yaml
112 lines (90 loc) · 2.88 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# project root working directory, automatically read by hydra (.../UNet3P)
WORK_DIR: ${hydra:runtime.cwd}
DATA_PREPARATION:
# unprocessed LiTS scan data paths, for custom data training skip this section details
SCANS_TRAIN_DATA_PATH: "/data/Training Batch 2/"
SCANS_VAL_DATA_PATH: "/data/Training Batch 1/"
# Resize scans to model input size
RESIZED_HEIGHT: ${INPUT.HEIGHT}
RESIZED_WIDTH: ${INPUT.WIDTH}
# Clip scans value in given range
SCAN_MIN_VALUE: -200
SCAN_MAX_VALUE: 250
DATASET:
# paths should be relative from project root path
TRAIN:
IMAGES_PATH: "/data/train/images"
MASK_PATH: "/data/train/mask"
VAL:
IMAGES_PATH: "/data/val/images"
MASK_PATH: "/data/val/mask"
TEST:
IMAGES_PATH: "/data/test/images"
MASK_PATH: None
MODEL:
# available variants are unet3plus, unet3plus_deepsup, unet3plus_deepsup_cgm
TYPE: "unet3plus_deepsup"
WEIGHTS_FILE_NAME: model_${MODEL.TYPE}
SEED: 5 # for result's reproducibility
VERBOSE: 1 # For logs printing details, available options are 0, 1, 2
DATALOADER_WORKERS: 3 # number of workers used for data loading
SHOW_CENTER_CHANNEL_IMAGE: True # only true for UNet3+ for custom dataset it should be False
# Model input shape
INPUT:
HEIGHT: 640
WIDTH: 640
CHANNELS: 3
# Model output classes
OUTPUT:
CLASSES: 1
HYPER_PARAMETERS:
EPOCHS: 500
BATCH_SIZE: 2 # specify per gpu batch size
LEARNING_RATE: 2e-5 # 1e-3
CALLBACKS:
# paths should be relative from project root path
LOGGING:
PATH: "/checkpoint/logs"
EARLY_STOPPING:
PATIENCE: 20
DELTA: 0.001
MODEL_CHECKPOINT:
PATH: "/checkpoint"
SAVE_WEIGHTS_ONLY: True
SAVE_BEST_ONLY: True
CSV_LOGGER:
PATH: "/checkpoint"
APPEND_LOGS: False
PREPROCESS_DATA:
RESIZE:
VALUE: True # if True, resize to input height and width
HEIGHT: ${INPUT.HEIGHT}
WIDTH: ${INPUT.WIDTH}
IMAGE_PREPROCESSING_TYPE: "normalize"
NORMALIZE_MASK:
VALUE: True # if True, divide mask by given value
NORMALIZE_VALUE: 255
SHUFFLE:
TRAIN:
VALUE: True
VAL:
VALUE: False
TEST:
VALUE: False
USE_MULTI_GPUS:
VALUE: False # If True use multiple gpus for training
# GPU_IDS: Could be integer or list of integers.
# In case Integer: if integer value is -1 then it uses all available gpus.
# otherwise if positive number, then use given number of gpus.
# In case list of Integers: each integer will be considered as gpu id
# e.g. [4, 5, 7] means use gpu 5,6 and 8 for training/evaluation
GPU_IDS: 3
GPU_ID: 1
RESULT_DIR: "/outputs"
# to stop hydra from storing logs files
defaults:
- _self_
- override hydra/hydra_logging: disabled
- override hydra/job_logging: disabled
hydra:
output_subdir: null