-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
121 lines (107 loc) · 4.63 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from main import *
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def calcCoordinatesNew(start_point, offsets):
next_point = start_point
coords = torch.zeros(offsets.shape[0]+1,offsets.shape[1],offsets.shape[2])
for t, offset in enumerate(offsets):
next_point += offset
coords[t] = next_point.clone()
coords = coords.reshape((40,2))
return coords
# %%
def ADE(X, Y):
result = 0.
for traj_idx in range(X.shape[1]):
dist = 0.
pos_X, pos_Y = torch.tensor([0.,0.], device=device), torch.tensor([0.,0.], device=device)
for t in range(X.shape[0]):
pos_X += X[t,traj_idx]
pos_Y += Y[t,traj_idx]
dist += torch.dist(pos_Y, pos_X)
dist /= X.shape[0]
result += dist
result /= X.shape[1]
#print(f"avg disp error {result}")
return result
def FDE(X, Y):
result = 0.
for traj_idx in range(X.shape[1]):
dist = 0.
pos_X, pos_Y = torch.tensor([0.,0.], device=device), torch.tensor([0.,0.], device=device)
for t in range(X.shape[0]):
pos_X += X[t,traj_idx]
pos_Y += Y[t,traj_idx]
dist += torch.dist(pos_Y, pos_X)
result += dist
result /= X.shape[1]
#print(f"final disp error {result}")
return result
# %%
def plotting_batch(batch_trajs_pred_gpu, input_seq, dataset, T_obs, is_total, batch_idx):
#reform the trajs tensor to a list of each traj's pos at each frame
batch_trajs_pred = batch_trajs_pred_gpu.cpu().data.numpy()
trajs_pred_list = [[] for _ in range(batch_trajs_pred.shape[1])]
part = []
for traj_idx in range(batch_trajs_pred.shape[1]):
if np.sum(batch_trajs_pred[:,traj_idx,:]) == 0.:
continue
trajs_pred_list[traj_idx] = batch_trajs_pred[:,traj_idx,:]
part.append(traj_idx)
trajs_coord_list = [[] for _ in range(batch_trajs_pred.shape[1])]
for traj_idx in part:
for t in range(input_seq.shape[0]):
if (input_seq[t,traj_idx,2:] == torch.tensor([0.,0.],device=device)).all():
trajs_coord_list[traj_idx].append((0.,0.))
continue
trajs_coord_list[traj_idx].append(dataset.getCoordinates(input_seq[t,traj_idx,0].item(),input_seq[t,traj_idx,1].item()))
trajs_coord_list[traj_idx].append(dataset.getCoordinates(input_seq[t,traj_idx,0].item()+dataset.time_step,input_seq[t,traj_idx,1].item()))
#calc the coords of each step
trajs_pred_coords = np.zeros((len(trajs_pred_list), input_seq.shape[0]-T_obs, 2))
for traj_idx, traj in enumerate(trajs_pred_list):
if traj_idx not in part:
continue
split_point = np.array(trajs_coord_list[traj_idx][T_obs+1])
trajs_pred_coords[traj_idx,0] += np.array(split_point)
next_point = split_point
for i, off in enumerate(traj):
next_point += np.array(off)
trajs_pred_coords[traj_idx,i+1] = next_point
# trajs_pred_coords = np.array(trajs_pred_coords)
#plot
plt.figure(figsize=(30,30))
plt.xlim([-15,15])
plt.ylim([-15,15])
plot_idx = 0
for traj_idx in part:
try:
pred_x = trajs_pred_coords[traj_idx][:,0]
except IndexError:
print("not enough appearance")
continue
pred_y = trajs_pred_coords[traj_idx][:,1]
plt.plot(pred_x, pred_y, label="pred"+str(traj_idx), marker='.')
for i, (x, y) in enumerate(zip(pred_x, pred_y)):
if i < len(pred_x)-1:
try:
plt.arrow(x, y, (pred_x[i+1] - x)/2, (pred_y[i+1] - y)/2, width=0.0001, head_width=0.001, head_length=0.001)
except IndexError:
print("plot error")
trajs_coord = np.array(trajs_coord_list[traj_idx])
total_x = trajs_coord[:,0]
total_x = total_x[np.where(total_x != 0.)]
total_y = trajs_coord[:,1]
total_y = total_y[np.where(total_y != 0.)]
try:
plt.plot(total_x, total_y, linestyle="dashed", label="total"+str(traj_idx), marker='1')
except ValueError:
print("plot error")
for i, (x, y) in enumerate(zip(total_x, total_y)):
if i < len(total_x)-1:
try:
plt.arrow(x, y, (total_x[i+1] - x)/2, (total_y[i+1] - y)/2, width=0.0001, head_width=0.001, head_length=0.001)
except IndexError:
print("plot error")
plot_idx += 1
plt.legend(loc="upper right")
plt.title(f"batch {batch_idx}")
plt.savefig("eth_plots/"+str(batch_idx)+str(is_total))