-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpunkt_tokenizer.py
executable file
·1503 lines (1246 loc) · 56.1 KB
/
punkt_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Natural Language Toolkit: Punkt sentence tokenizer
#
# Copyright (C) 2001-2012 NLTK Project
# Algorithm: Kiss & Strunk (2006)
# Author: Willy <[email protected]> (original Python port)
# Steven Bird <[email protected]> (additions)
# Edward Loper <[email protected]> (rewrite)
# Joel Nothman <[email protected]> (almost rewrite)
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
#
# $Id: probability.py 4865 2007-07-11 22:6:07Z edloper $
# Modifications by Rico Sennrich:
# This is a stripped down version of the NLTK Punkt sentence tokenizer
# It offers a quicker startup time and minimizes external dependencies
# The following modifications have been made:
# - language parameters are stored in module punkt_data_german instead of being pickled/unpickled
# - removed NLTK dependencies (TokenizerI, FreqDist)
# - Python 3 compatibility
# - added methods tokenize_fobj() and _slices_from_fobj to PunktSentenceTokenizer to tokenize file object instead of string
# - if this file is started as a script, it loads the German parameters and tokenizes stdin
# Note that training is not functional since nltk.probability.FreqDist is not imported
from __future__ import unicode_literals
import re
import sys
import math
import punkt_data_german
import codecs
from collections import defaultdict
FreqDist = None
######################################################################
#{ Orthographic Context Constants
######################################################################
# The following constants are used to describe the orthographic
# contexts in which a word can occur. BEG=beginning, MID=middle,
# UNK=unknown, UC=uppercase, LC=lowercase, NC=no case.
_ORTHO_BEG_UC = 1 << 1
"""Orthographic context: beginning of a sentence with upper case."""
_ORTHO_MID_UC = 1 << 2
"""Orthographic context: middle of a sentence with upper case."""
_ORTHO_UNK_UC = 1 << 3
"""Orthographic context: unknown position in a sentence with upper case."""
_ORTHO_BEG_LC = 1 << 4
"""Orthographic context: beginning of a sentence with lower case."""
_ORTHO_MID_LC = 1 << 5
"""Orthographic context: middle of a sentence with lower case."""
_ORTHO_UNK_LC = 1 << 6
"""Orthographic context: unknown position in a sentence with lower case."""
_ORTHO_UC = _ORTHO_BEG_UC + _ORTHO_MID_UC + _ORTHO_UNK_UC
"""Orthographic context: occurs with upper case."""
_ORTHO_LC = _ORTHO_BEG_LC + _ORTHO_MID_LC + _ORTHO_UNK_LC
"""Orthographic context: occurs with lower case."""
_ORTHO_MAP = {
('initial', 'upper'): _ORTHO_BEG_UC,
('internal', 'upper'): _ORTHO_MID_UC,
('unknown', 'upper'): _ORTHO_UNK_UC,
('initial', 'lower'): _ORTHO_BEG_LC,
('internal', 'lower'): _ORTHO_MID_LC,
('unknown', 'lower'): _ORTHO_UNK_LC,
}
"""A map from context position and first-letter case to the
appropriate orthographic context flag."""
#} (end orthographic context constants)
######################################################################
######################################################################
#{ Language-dependent variables
######################################################################
class PunktLanguageVars(object):
"""
Stores variables, mostly regular expressions, which may be
language-dependent for correct application of the algorithm.
An extension of this class may modify its properties to suit
a language other than English; an instance can then be passed
as an argument to PunktSentenceTokenizer and PunktTrainer
constructors.
"""
__slots__ = ('_re_period_context', '_re_word_tokenizer')
def __getstate__(self):
# All modifications to the class are performed by inheritance.
# Non-default parameters to be pickled must be defined in the inherited
# class.
return 1
def __setstate__(self, state):
return 1
sent_end_chars = ('.', '?', '!')
"""Characters which are candidates for sentence boundaries"""
@property
def _re_sent_end_chars(self):
return '[%s]' % re.escape(''.join(self.sent_end_chars))
internal_punctuation = ',:;' # might want to extend this..
"""sentence internal punctuation, which indicates an abbreviation if
preceded by a period-final token."""
re_boundary_realignment = re.compile(r'["\')\]}]+?(?:\s+|(?=--)|$)',
re.MULTILINE)
"""Used to realign punctuation that should be included in a sentence
although it follows the period (or ?, !)."""
_re_word_start = r"[^\(\"\`{\[:;&\#\*@\)}\]\-,]"
"""Excludes some characters from starting word tokens"""
_re_non_word_chars = r"(?:[?!)\";}\]\*:@\'\({\[])"
"""Characters that cannot appear within words"""
_re_multi_char_punct = r"(?:\-{2,}|\.{2,}|(?:\.\s){2,}\.)"
"""Hyphen and ellipsis are multi-character punctuation"""
_word_tokenize_fmt = r'''(
%(MultiChar)s
|
(?=%(WordStart)s)\S+? # Accept word characters until end is found
(?= # Sequences marking a word's end
\s| # White-space
$| # End-of-string
%(NonWord)s|%(MultiChar)s| # Punctuation
,(?=$|\s|%(NonWord)s|%(MultiChar)s) # Comma if at end of word
)
|
\S
)'''
"""Format of a regular expression to split punctuation from words,
excluding period."""
def _word_tokenizer_re(self):
"""Compiles and returns a regular expression for word tokenization"""
try:
return self._re_word_tokenizer
except AttributeError:
self._re_word_tokenizer = re.compile(
self._word_tokenize_fmt %
{
'NonWord': self._re_non_word_chars,
'MultiChar': self._re_multi_char_punct,
'WordStart': self._re_word_start,
},
re.UNICODE | re.VERBOSE
)
return self._re_word_tokenizer
def word_tokenize(self, s):
"""Tokenize a string to split off punctuation other than periods"""
return self._word_tokenizer_re().findall(s)
_period_context_fmt = r"""
\S* # some word material
%(SentEndChars)s # a potential sentence ending
(?=(?P<after_tok>
%(NonWord)s # either other punctuation
|
\s+(?P<next_tok>\S+) # or whitespace and some other token
))"""
"""Format of a regular expression to find contexts including possible
sentence boundaries. Matches token which the possible sentence boundary
ends, and matches the following token within a lookahead expression."""
def period_context_re(self):
"""Compiles and returns a regular expression to find contexts
including possible sentence boundaries."""
try:
return self._re_period_context
except:
self._re_period_context = re.compile(
self._period_context_fmt %
{
'NonWord': self._re_non_word_chars,
'SentEndChars': self._re_sent_end_chars,
},
re.UNICODE | re.VERBOSE)
return self._re_period_context
_re_non_punct = re.compile(r'[^\W\d]', re.UNICODE)
"""Matches token types that are not merely punctuation. (Types for
numeric tokens are changed to ##number## and hence contain alpha.)"""
#}
######################################################################
######################################################################
#{ Punkt Word Tokenizer
######################################################################
class PunktWordTokenizer():
# Retained for backward compatibility
def __init__(self, lang_vars=PunktLanguageVars()):
self._lang_vars = lang_vars
def tokenize(self, text):
return self._lang_vars.word_tokenize(text)
#}
######################################################################
#////////////////////////////////////////////////////////////
#{ Helper Functions
#////////////////////////////////////////////////////////////
def _pair_iter(it):
"""
Yields pairs of tokens from the given iterator such that each input
token will appear as the first element in a yielded tuple. The last
pair will have None as its second element.
"""
it = iter(it)
prev = next(it)
for el in it:
yield (prev, el)
prev = el
yield (prev, None)
######################################################################
#{ Punkt Parameters
######################################################################
class PunktParameters(object):
"""Stores data used to perform sentence boundary detection with Punkt."""
def __init__(self):
self.abbrev_types = set()
"""A set of word types for known abbreviations."""
self.collocations = set()
"""A set of word type tuples for known common collocations
where the first word ends in a period. E.g., ('S.', 'Bach')
is a common collocation in a text that discusses 'Johann
S. Bach'. These count as negative evidence for sentence
boundaries."""
self.sent_starters = set()
"""A set of word types for words that often appear at the
beginning of sentences."""
self.ortho_context = defaultdict(int)
"""A dictionary mapping word types to the set of orthographic
contexts that word type appears in. Contexts are represented
by adding orthographic context flags: ..."""
def clear_abbrevs(self):
self.abbrev_types = set()
def clear_collocations(self):
self.collocations = set()
def clear_sent_starters(self):
self.sent_starters = set()
def clear_ortho_context(self):
self.ortho_context = defaultdict(int)
def add_ortho_context(self, typ, flag):
self.ortho_context[typ] |= flag
######################################################################
#{ PunktToken
######################################################################
class PunktToken(object):
"""Stores a token of text with annotations produced during
sentence boundary detection."""
_properties = [
'parastart', 'linestart',
'sentbreak', 'abbr', 'ellipsis'
]
__slots__ = ['tok', 'type', 'period_final'] + _properties
def __init__(self, tok, **params):
self.tok = tok
self.type = self._get_type(tok)
self.period_final = tok.endswith('.')
for p in self._properties:
setattr(self, p, None)
for k, v in params.items():
setattr(self, k, v)
#////////////////////////////////////////////////////////////
#{ Regular expressions for properties
#////////////////////////////////////////////////////////////
# Note: [A-Za-z] is approximated by [^\W\d] in the general case.
_RE_ELLIPSIS = re.compile(r'\.\.+$')
_RE_NUMERIC = re.compile(r'^-?[\.,]?[\divxlcdm][\d,\.\-ivxlcdm]*\.?$')
_RE_INITIAL = re.compile(r'[^\W\d]\.$', re.UNICODE)
_RE_ALPHA = re.compile(r'[^\W\d]+$', re.UNICODE)
#////////////////////////////////////////////////////////////
#{ Derived properties
#////////////////////////////////////////////////////////////
def _get_type(self, tok):
"""Returns a case-normalized representation of the token."""
return self._RE_NUMERIC.sub('##number##', tok.lower())
@property
def type_no_period(self):
"""
The type with its final period removed if it has one.
"""
if len(self.type) > 1 and self.type[-1] == '.':
return self.type[:-1]
return self.type
@property
def type_no_sentperiod(self):
"""
The type with its final period removed if it is marked as a
sentence break.
"""
if self.sentbreak:
return self.type_no_period
return self.type
@property
def first_upper(self):
"""True if the token's first character is uppercase."""
return self.tok[0].isupper()
@property
def first_lower(self):
"""True if the token's first character is lowercase."""
return self.tok[0].islower()
@property
def first_case(self):
if self.first_lower:
return 'lower'
elif self.first_upper:
return 'upper'
return 'none'
@property
def is_ellipsis(self):
"""True if the token text is that of an ellipsis."""
return self._RE_ELLIPSIS.match(self.tok)
@property
def is_number(self):
"""True if the token text is that of a number."""
return self.type.startswith('##number##')
@property
def is_initial(self):
"""True if the token text is that of an initial."""
return self._RE_INITIAL.match(self.tok)
@property
def is_alpha(self):
"""True if the token text is all alphabetic."""
return self._RE_ALPHA.match(self.tok)
@property
def is_non_punct(self):
"""True if the token is either a number or is alphabetic."""
return _re_non_punct.search(self.type)
#////////////////////////////////////////////////////////////
#{ String representation
#////////////////////////////////////////////////////////////
def __repr__(self):
"""
A string representation of the token that can reproduce it
with eval(), which lists all the token's non-default
annotations.
"""
if self.type != self.tok:
typestr = ' type=%s,' % repr(self.type)
else:
typestr = ''
propvals = ', '.join(
'%s=%s' % (p, repr(getattr(self, p)))
for p in self._properties
if getattr(self, p)
)
return '%s(%s,%s %s)' % (self.__class__.__name__,
repr(self.tok), typestr, propvals)
def __str__(self):
"""
A string representation akin to that used by Kiss and Strunk.
"""
res = self.tok
if self.abbr:
res += '<A>'
if self.ellipsis:
res += '<E>'
if self.sentbreak:
res += '<S>'
return res
######################################################################
#{ Punkt base class
######################################################################
class PunktBaseClass(object):
"""
Includes common components of PunktTrainer and PunktSentenceTokenizer.
"""
def __init__(self, lang_vars=PunktLanguageVars(), token_cls=PunktToken,
params=PunktParameters()):
self._params = params
self._lang_vars = lang_vars
self._Token = token_cls
"""The collection of parameters that determines the behavior
of the punkt tokenizer."""
#////////////////////////////////////////////////////////////
#{ Word tokenization
#////////////////////////////////////////////////////////////
def _tokenize_words(self, plaintext):
"""
Divide the given text into tokens, using the punkt word
segmentation regular expression, and generate the resulting list
of tokens augmented as three-tuples with two boolean values for whether
the given token occurs at the start of a paragraph or a new line,
respectively.
"""
parastart = False
for line in plaintext.split('\n'):
if line.strip():
line_toks = iter(self._lang_vars.word_tokenize(line))
yield self._Token(next(line_toks),
parastart=parastart, linestart=True)
parastart = False
for t in line_toks:
yield self._Token(t)
else:
parastart = True
#////////////////////////////////////////////////////////////
#{ Annotation Procedures
#////////////////////////////////////////////////////////////
def _annotate_first_pass(self, tokens):
"""
Perform the first pass of annotation, which makes decisions
based purely based on the word type of each word:
- '?', '!', and '.' are marked as sentence breaks.
- sequences of two or more periods are marked as ellipsis.
- any word ending in '.' that's a known abbreviation is
marked as an abbreviation.
- any other word ending in '.' is marked as a sentence break.
Return these annotations as a tuple of three sets:
- sentbreak_toks: The indices of all sentence breaks.
- abbrev_toks: The indices of all abbreviations.
- ellipsis_toks: The indices of all ellipsis marks.
"""
for aug_tok in tokens:
self._first_pass_annotation(aug_tok)
yield aug_tok
def _first_pass_annotation(self, aug_tok):
"""
Performs type-based annotation on a single token.
"""
tok = aug_tok.tok
if tok in self._lang_vars.sent_end_chars:
aug_tok.sentbreak = True
elif aug_tok.is_ellipsis:
aug_tok.ellipsis = True
elif aug_tok.period_final and not tok.endswith('..'):
if (tok[:-1].lower() in self._params.abbrev_types or
tok[:-1].lower().split('-')[-1] in self._params.abbrev_types):
aug_tok.abbr = True
else:
aug_tok.sentbreak = True
return
######################################################################
#{ Punkt Trainer
######################################################################
class PunktTrainer(PunktBaseClass):
"""Learns parameters used in Punkt sentence boundary detection."""
def __init__(self, train_text=None, verbose=False,
lang_vars=PunktLanguageVars(), token_cls=PunktToken):
PunktBaseClass.__init__(self, lang_vars=lang_vars,
token_cls=token_cls)
self._type_fdist = FreqDist()
"""A frequency distribution giving the frequency of each
case-normalized token type in the training data."""
self._num_period_toks = 0
"""The number of words ending in period in the training data."""
self._collocation_fdist = FreqDist()
"""A frequency distribution giving the frequency of all
bigrams in the training data where the first word ends in a
period. Bigrams are encoded as tuples of word types.
Especially common collocations are extracted from this
frequency distribution, and stored in
``_params``.``collocations <PunktParameters.collocations>``."""
self._sent_starter_fdist = FreqDist()
"""A frequency distribution giving the frequency of all words
that occur at the training data at the beginning of a sentence
(after the first pass of annotation). Especially common
sentence starters are extracted from this frequency
distribution, and stored in ``_params.sent_starters``.
"""
self._sentbreak_count = 0
"""The total number of sentence breaks identified in training, used for
calculating the frequent sentence starter heuristic."""
self._finalized = True
"""A flag as to whether the training has been finalized by finding
collocations and sentence starters, or whether finalize_training()
still needs to be called."""
if train_text:
self.train(train_text, verbose, finalize=True)
def get_params(self):
"""
Calculates and returns parameters for sentence boundary detection as
derived from training."""
if not self._finalized:
self.finalize_training()
return self._params
#////////////////////////////////////////////////////////////
#{ Customization Variables
#////////////////////////////////////////////////////////////
ABBREV = 0.3
"""cut-off value whether a 'token' is an abbreviation"""
IGNORE_ABBREV_PENALTY = False
"""allows the disabling of the abbreviation penalty heuristic, which
exponentially disadvantages words that are found at times without a
final period."""
ABBREV_BACKOFF = 5
"""upper cut-off for Mikheev's(2002) abbreviation detection algorithm"""
COLLOCATION = 7.88
"""minimal log-likelihood value that two tokens need to be considered
as a collocation"""
SENT_STARTER = 30
"""minimal log-likelihood value that a token requires to be considered
as a frequent sentence starter"""
INCLUDE_ALL_COLLOCS = False
"""this includes as potential collocations all word pairs where the first
word ends in a period. It may be useful in corpora where there is a lot
of variation that makes abbreviations like Mr difficult to identify."""
INCLUDE_ABBREV_COLLOCS = False
"""this includes as potential collocations all word pairs where the first
word is an abbreviation. Such collocations override the orthographic
heuristic, but not the sentence starter heuristic. This is overridden by
INCLUDE_ALL_COLLOCS, and if both are false, only collocations with initials
and ordinals are considered."""
""""""
MIN_COLLOC_FREQ = 1
"""this sets a minimum bound on the number of times a bigram needs to
appear before it can be considered a collocation, in addition to log
likelihood statistics. This is useful when INCLUDE_ALL_COLLOCS is True."""
#////////////////////////////////////////////////////////////
#{ Training..
#////////////////////////////////////////////////////////////
def train(self, text, verbose=False, finalize=True):
"""
Collects training data from a given text. If finalize is True, it
will determine all the parameters for sentence boundary detection. If
not, this will be delayed until get_params() or finalize_training() is
called. If verbose is True, abbreviations found will be listed.
"""
# Break the text into tokens; record which token indices correspond to
# line starts and paragraph starts; and determine their types.
self._train_tokens(self._tokenize_words(text), verbose)
if finalize:
self.finalize_training(verbose)
def train_tokens(self, tokens, verbose=False, finalize=True):
"""
Collects training data from a given list of tokens.
"""
self._train_tokens((self._Token(t) for t in tokens), verbose)
if finalize:
self.finalize_training(verbose)
def _train_tokens(self, tokens, verbose):
self._finalized = False
# Ensure tokens are a list
tokens = list(tokens)
# Find the frequency of each case-normalized type. (Don't
# strip off final periods.) Also keep track of the number of
# tokens that end in periods.
for aug_tok in tokens:
self._type_fdist.inc(aug_tok.type)
if aug_tok.period_final:
self._num_period_toks += 1
# Look for new abbreviations, and for types that no longer are
unique_types = self._unique_types(tokens)
for abbr, score, is_add in self._reclassify_abbrev_types(unique_types):
if score >= self.ABBREV:
if is_add:
self._params.abbrev_types.add(abbr)
if verbose:
print((' Abbreviation: [%6.4f] %s' %
(score, abbr)))
else:
if not is_add:
self._params.abbrev_types.remove(abbr)
if verbose:
print((' Removed abbreviation: [%6.4f] %s' %
(score, abbr)))
# Make a preliminary pass through the document, marking likely
# sentence breaks, abbreviations, and ellipsis tokens.
tokens = list(self._annotate_first_pass(tokens))
# Check what contexts each word type can appear in, given the
# case of its first letter.
self._get_orthography_data(tokens)
# We need total number of sentence breaks to find sentence starters
self._sentbreak_count += self._get_sentbreak_count(tokens)
# The remaining heuristics relate to pairs of tokens where the first
# ends in a period.
for aug_tok1, aug_tok2 in _pair_iter(tokens):
if not aug_tok1.period_final or not aug_tok2:
continue
# Is the first token a rare abbreviation?
if self._is_rare_abbrev_type(aug_tok1, aug_tok2):
self._params.abbrev_types.add(aug_tok1.type_no_period)
if verbose:
print((' Rare Abbrev: %s' % aug_tok1.type))
# Does second token have a high likelihood of starting a sentence?
if self._is_potential_sent_starter(aug_tok2, aug_tok1):
self._sent_starter_fdist.inc(aug_tok2.type)
# Is this bigram a potential collocation?
if self._is_potential_collocation(aug_tok1, aug_tok2):
self._collocation_fdist.inc(
(aug_tok1.type_no_period, aug_tok2.type_no_sentperiod))
def _unique_types(self, tokens):
return set(aug_tok.type for aug_tok in tokens)
def finalize_training(self, verbose=False):
"""
Uses data that has been gathered in training to determine likely
collocations and sentence starters.
"""
self._params.clear_sent_starters()
for typ, ll in self._find_sent_starters():
self._params.sent_starters.add(typ)
if verbose:
print((' Sent Starter: [%6.4f] %r' % (ll, typ)))
self._params.clear_collocations()
for (typ1, typ2), ll in self._find_collocations():
self._params.collocations.add( (typ1,typ2) )
if verbose:
print((' Collocation: [%6.4f] %r+%r' %
(ll, typ1, typ2)))
self._finalized = True
#////////////////////////////////////////////////////////////
#{ Overhead reduction
#////////////////////////////////////////////////////////////
def freq_threshold(self, ortho_thresh=2, type_thresh=2, colloc_thres=2,
sentstart_thresh=2):
"""
Allows memory use to be reduced after much training by removing data
about rare tokens that are unlikely to have a statistical effect with
further training. Entries occurring above the given thresholds will be
retained.
"""
if ortho_thresh > 1:
old_oc = self._params.ortho_context
self._params.clear_ortho_context()
for tok, count in self._type_fdist.items():
if count >= ortho_thresh:
self._params.ortho_context[tok] = old_oc[tok]
self._type_fdist = self._freq_threshold(self._type_fdist, type_thresh)
self._collocation_fdist = self._freq_threshold(
self._collocation_fdist, colloc_thres)
self._sent_starter_fdist = self._freq_threshold(
self._sent_starter_fdist, sentstart_thresh)
def _freq_threshold(self, fdist, threshold):
"""
Returns a FreqDist containing only data with counts below a given
threshold, as well as a mapping (None -> count_removed).
"""
# We assume that there is more data below the threshold than above it
# and so create a new FreqDist rather than working in place.
res = FreqDist()
num_removed = 0
for tok, count in fdist.items():
if count < threshold:
num_removed += 1
else:
res.inc(tok, count)
res.inc(None, num_removed)
return res
#////////////////////////////////////////////////////////////
#{ Orthographic data
#////////////////////////////////////////////////////////////
def _get_orthography_data(self, tokens):
"""
Collect information about whether each token type occurs
with different case patterns (i) overall, (ii) at
sentence-initial positions, and (iii) at sentence-internal
positions.
"""
# 'initial' or 'internal' or 'unknown'
context = 'internal'
tokens = list(tokens)
for aug_tok in tokens:
# If we encounter a paragraph break, then it's a good sign
# that it's a sentence break. But err on the side of
# caution (by not positing a sentence break) if we just
# saw an abbreviation.
if aug_tok.parastart and context != 'unknown':
context = 'initial'
# If we're at the beginning of a line, then err on the
# side of calling our context 'initial'.
if aug_tok.linestart and context == 'internal':
context = 'unknown'
# Find the case-normalized type of the token. If it's a
# sentence-final token, strip off the period.
typ = aug_tok.type_no_sentperiod
# Update the orthographic context table.
flag = _ORTHO_MAP.get((context, aug_tok.first_case), 0)
if flag:
self._params.add_ortho_context(typ, flag)
# Decide whether the next word is at a sentence boundary.
if aug_tok.sentbreak:
if not (aug_tok.is_number or aug_tok.is_initial):
context = 'initial'
else:
context = 'unknown'
elif aug_tok.ellipsis or aug_tok.abbr:
context = 'unknown'
else:
context = 'internal'
#////////////////////////////////////////////////////////////
#{ Abbreviations
#////////////////////////////////////////////////////////////
def _reclassify_abbrev_types(self, types):
"""
(Re)classifies each given token if
- it is period-final and not a known abbreviation; or
- it is not period-final and is otherwise a known abbreviation
by checking whether its previous classification still holds according
to the heuristics of section 3.
Yields triples (abbr, score, is_add) where abbr is the type in question,
score is its log-likelihood with penalties applied, and is_add specifies
whether the present type is a candidate for inclusion or exclusion as an
abbreviation, such that:
- (is_add and score >= 0.3) suggests a new abbreviation; and
- (not is_add and score < 0.3) suggests excluding an abbreviation.
"""
# (While one could recalculate abbreviations from all .-final tokens at
# every iteration, in cases requiring efficiency, the number of tokens
# in the present training document will be much less.)
for typ in types:
# Check some basic conditions, to rule out words that are
# clearly not abbrev_types.
if not _re_non_punct.search(typ) or typ == '##number##':
continue
if typ.endswith('.'):
if typ in self._params.abbrev_types:
continue
typ = typ[:-1]
is_add = True
else:
if typ not in self._params.abbrev_types:
continue
is_add = False
# Count how many periods & nonperiods are in the
# candidate.
num_periods = typ.count('.') + 1
num_nonperiods = len(typ) - num_periods + 1
# Let <a> be the candidate without the period, and <b>
# be the period. Find a log likelihood ratio that
# indicates whether <ab> occurs as a single unit (high
# value of ll), or as two independent units <a> and
# <b> (low value of ll).
count_with_period = self._type_fdist[typ + '.']
count_without_period = self._type_fdist[typ]
ll = self._dunning_log_likelihood(
count_with_period + count_without_period,
self._num_period_toks, count_with_period,
self._type_fdist.N())
# Apply three scaling factors to 'tweak' the basic log
# likelihood ratio:
# F_length: long word -> less likely to be an abbrev
# F_periods: more periods -> more likely to be an abbrev
# F_penalty: penalize occurrences w/o a period
f_length = math.exp(-num_nonperiods)
f_periods = num_periods
f_penalty = (int(self.IGNORE_ABBREV_PENALTY)
or math.pow(num_nonperiods, -count_without_period))
score = ll * f_length * f_periods * f_penalty
yield typ, score, is_add
def find_abbrev_types(self):
"""
Recalculates abbreviations given type frequencies, despite no prior
determination of abbreviations.
This fails to include abbreviations otherwise found as "rare".
"""
self._params.clear_abbrevs()
tokens = (typ for typ in self._type_fdist if typ and typ.endswith('.'))
for abbr, score, is_add in self._reclassify_abbrev_types(tokens):
if score >= self.ABBREV:
self._params.abbrev_types.add(abbr)
# This function combines the work done by the original code's
# functions `count_orthography_context`, `get_orthography_count`,
# and `get_rare_abbreviations`.
def _is_rare_abbrev_type(self, cur_tok, next_tok):
"""
A word type is counted as a rare abbreviation if...
- it's not already marked as an abbreviation
- it occurs fewer than ABBREV_BACKOFF times
- either it is followed by a sentence-internal punctuation
mark, *or* it is followed by a lower-case word that
sometimes appears with upper case, but never occurs with
lower case at the beginning of sentences.
"""
if cur_tok.abbr or not cur_tok.sentbreak:
return False
# Find the case-normalized type of the token. If it's
# a sentence-final token, strip off the period.
typ = cur_tok.type_no_sentperiod
# Proceed only if the type hasn't been categorized as an
# abbreviation already, and is sufficiently rare...
count = self._type_fdist[typ] + self._type_fdist[typ[:-1]]
if (typ in self._params.abbrev_types or count >= self.ABBREV_BACKOFF):
return False
# Record this token as an abbreviation if the next
# token is a sentence-internal punctuation mark.
# [XX] :1 or check the whole thing??
if next_tok.tok[:1] in self._lang_vars.internal_punctuation:
return True
# Record this type as an abbreviation if the next
# token... (i) starts with a lower case letter,
# (ii) sometimes occurs with an uppercase letter,
# and (iii) never occus with an uppercase letter
# sentence-internally.
# [xx] should the check for (ii) be modified??
elif next_tok.first_lower:
typ2 = next_tok.type_no_sentperiod
typ2ortho_context = self._params.ortho_context[typ2]
if ( (typ2ortho_context & _ORTHO_BEG_UC) and
not (typ2ortho_context & _ORTHO_MID_UC) ):
return True
#////////////////////////////////////////////////////////////
#{ Log Likelihoods
#////////////////////////////////////////////////////////////
# helper for _reclassify_abbrev_types:
@staticmethod
def _dunning_log_likelihood(count_a, count_b, count_ab, N):
"""
A function that calculates the modified Dunning log-likelihood
ratio scores for abbreviation candidates. The details of how
this works is available in the paper.
"""
p1 = float(count_b) / N
p2 = 0.99
null_hypo = (float(count_ab) * math.log(p1) +
(count_a - count_ab) * math.log(1.0 - p1))
alt_hypo = (float(count_ab) * math.log(p2) +
(count_a - count_ab) * math.log(1.0 - p2))
likelihood = null_hypo - alt_hypo
return (-2.0 * likelihood)
@staticmethod
def _col_log_likelihood(count_a, count_b, count_ab, N):
"""
A function that will just compute log-likelihood estimate, in
the original paper it's described in algorithm 6 and 7.
This *should* be the original Dunning log-likelihood values,
unlike the previous log_l function where it used modified
Dunning log-likelihood values
"""
import math
p = 1.0 * count_b / N
p1 = 1.0 * count_ab / count_a
p2 = 1.0 * (count_b - count_ab) / (N - count_a)
summand1 = (count_ab * math.log(p) +
(count_a - count_ab) * math.log(1.0 - p))
summand2 = ((count_b - count_ab) * math.log(p) +
(N - count_a - count_b + count_ab) * math.log(1.0 - p))
if count_a == count_ab:
summand3 = 0
else:
summand3 = (count_ab * math.log(p1) +
(count_a - count_ab) * math.log(1.0 - p1))
if count_b == count_ab:
summand4 = 0
else:
summand4 = ((count_b - count_ab) * math.log(p2) +
(N - count_a - count_b + count_ab) * math.log(1.0 - p2))
likelihood = summand1 + summand2 - summand3 - summand4
return (-2.0 * likelihood)
#////////////////////////////////////////////////////////////
#{ Collocation Finder
#////////////////////////////////////////////////////////////
def _is_potential_collocation(self, aug_tok1, aug_tok2):
"""