-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
382 lines (320 loc) · 13.9 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# -*- coding: utf-8 -*-
"""
License: GNU-3.0
Code Reference:https://github.com/wasaCheney/IQA_pansharpening_python
"""
import numpy as np
from scipy import ndimage
import cv2
def rmse(img1, img2):
# 'rmse'
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
assert img1.ndim == 3 and img1.shape[2] > 1, "image n_channels should be greater than 1"
img1_ = img1.astype(np.float64)
img2_ = img2.astype(np.float64)
diff = np.sqrt(np.sum((img1_ - img2_) ** 2) / (img1.shape[0] * img1.shape[1] * img1.shape[2]))
return diff
def sam(img1, img2):
"""SAM for 3D image, shape (H, W, C); uint or float[0, 1]"""
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
assert img1.ndim == 3 and img1.shape[2] > 1, "image n_channels should be greater than 1"
img1_ = img1.astype(np.float64)
img2_ = img2.astype(np.float64)
inner_product = (img1_ * img2_).sum(axis=2)
img1_spectral_norm = np.sqrt((img1_ ** 2).sum(axis=2))
img2_spectral_norm = np.sqrt((img2_ ** 2).sum(axis=2))
# numerical stability
cos_theta = (inner_product / (img1_spectral_norm * img2_spectral_norm + np.finfo(np.float64).eps)).clip(min=0,
max=1)
return np.mean(np.arccos(cos_theta))
def psnr(img1, img2, dynamic_range=1):
"""PSNR metric, img uint8 if 225; uint16 if 2047"""
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
img1_ = img1.astype(np.float64)
img2_ = img2.astype(np.float64)
mse = np.mean((img1_ - img2_) ** 2)
if mse <= 1e-10:
return np.inf
return 20 * np.log10(dynamic_range / (np.sqrt(mse) + np.finfo(np.float64).eps))
def scc(img1, img2):
"""SCC for 2D (H, W)or 3D (H, W, C) image; uint or float[0, 1]"""
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
img1_ = img1.astype(np.float64)
img2_ = img2.astype(np.float64)
if img1_.ndim == 2:
return np.corrcoef(img1_.reshape(1, -1), img2_.rehshape(1, -1))[0, 1]
elif img1_.ndim == 3:
# print(img1_[..., i].reshape[1, -1].shape)
# test = np.corrcoef(img1_[..., i].reshape[1, -1], img2_[..., i].rehshape(1, -1))
# print(type(test))
ccs = [np.corrcoef(img1_[..., i].reshape(1, -1), img2_[..., i].reshape(1, -1))[0, 1]
for i in range(img1_.shape[2])]
return np.mean(ccs)
else:
raise ValueError('Wrong input image dimensions.')
def _qindex(img1, img2, block_size=8): # 1 denoting the best fidelity to reference.
"""Q-index for 2D (one-band) image, shape (H, W); uint or float [0, 1]"""
assert block_size > 1, 'block_size shold be greater than 1!'
img1_ = img1.astype(np.float64)
img2_ = img2.astype(np.float64)
window = np.ones((block_size, block_size)) / (block_size ** 2)
# window_size = block_size**2
# filter, valid
pad_topleft = int(np.floor(block_size / 2))
pad_bottomright = block_size - 1 - pad_topleft
mu1 = cv2.filter2D(img1_, -1, window)[pad_topleft:-pad_bottomright, pad_topleft:-pad_bottomright]
mu2 = cv2.filter2D(img2_, -1, window)[pad_topleft:-pad_bottomright, pad_topleft:-pad_bottomright]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1_ ** 2, -1, window)[pad_topleft:-pad_bottomright,
pad_topleft:-pad_bottomright] - mu1_sq
sigma2_sq = cv2.filter2D(img2_ ** 2, -1, window)[pad_topleft:-pad_bottomright,
pad_topleft:-pad_bottomright] - mu2_sq
# print(mu1_mu2.shape)
# print(sigma2_sq.shape)
sigma12 = cv2.filter2D(img1_ * img2_, -1, window)[pad_topleft:-pad_bottomright,
pad_topleft:-pad_bottomright] - mu1_mu2
# all = 1, include the case of simga == mu == 0
qindex_map = np.ones(sigma12.shape)
# sigma == 0 and mu != 0
# print(np.min(sigma1_sq + sigma2_sq), np.min(mu1_sq + mu2_sq))
idx = ((sigma1_sq + sigma2_sq) < 1e-8) * ((mu1_sq + mu2_sq) > 1e-8)
qindex_map[idx] = 2 * mu1_mu2[idx] / (mu1_sq + mu2_sq)[idx]
# sigma !=0 and mu == 0
idx = ((sigma1_sq + sigma2_sq) > 1e-8) * ((mu1_sq + mu2_sq) < 1e-8)
qindex_map[idx] = 2 * sigma12[idx] / (sigma1_sq + sigma2_sq)[idx]
# sigma != 0 and mu != 0
idx = ((sigma1_sq + sigma2_sq) > 1e-8) * ((mu1_sq + mu2_sq) > 1e-8)
qindex_map[idx] = ((2 * mu1_mu2[idx]) * (2 * sigma12[idx])) / (
(mu1_sq + mu2_sq)[idx] * (sigma1_sq + sigma2_sq)[idx])
# print(np.mean(qindex_map))
# idx = ((sigma1_sq + sigma2_sq) == 0) * ((mu1_sq + mu2_sq) != 0)
# qindex_map[idx] = 2 * mu1_mu2[idx] / (mu1_sq + mu2_sq)[idx]
# # sigma !=0 and mu == 0
# idx = ((sigma1_sq + sigma2_sq) != 0) * ((mu1_sq + mu2_sq) == 0)
# qindex_map[idx] = 2 * sigma12[idx] / (sigma1_sq + sigma2_sq)[idx]
# # sigma != 0 and mu != 0
# idx = ((sigma1_sq + sigma2_sq) != 0) * ((mu1_sq + mu2_sq) != 0)
# qindex_map[idx] =((2 * mu1_mu2[idx]) * (2 * sigma12[idx])) / (
# (mu1_sq + mu2_sq)[idx] * (sigma1_sq + sigma2_sq)[idx])
return np.mean(qindex_map)
def qindex(img1, img2, block_size=8):
"""Q-index for 2D (H, W) or 3D (H, W, C) image; uint or float [0, 1]"""
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return _qindex(img1, img2, block_size)
elif img1.ndim == 3:
qindexs = [_qindex(img1[..., i], img2[..., i], block_size) for i in range(img1.shape[2])]
return np.array(qindexs).mean()
else:
raise ValueError('Wrong input image dimensions.')
def _ssim(img1, img2, dynamic_range=1):
"""SSIM for 2D (one-band) image, shape (H, W); uint8 if 225; uint16 if 2047"""
C1 = (0.01 * dynamic_range) ** 2
C2 = (0.03 * dynamic_range) ** 2
img1_ = img1.astype(np.float64)
img2_ = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5) # kernel size 11
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1_, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2_, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1_ ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2_ ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1_ * img2_, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def ssim(img1, img2, dynamic_range=1):
"""SSIM for 2D (H, W) or 3D (H, W, C) image; uint8 if 225; uint16 if 2047"""
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return _ssim(img1, img2, dynamic_range)
elif img1.ndim == 3:
ssims = [_ssim(img1[..., i], img2[..., i], dynamic_range) for i in range(img1.shape[2])]
return np.array(ssims).mean()
else:
raise ValueError('Wrong input image dimensions.')
def ergas(img_fake, img_real, scale=4):
"""ERGAS for 2D (H, W) or 3D (H, W, C) image; uint or float [0, 1].
scale = spatial resolution of PAN / spatial resolution of MUL, default 4."""
if not img_fake.shape == img_real.shape:
raise ValueError('Input images must have the same dimensions.')
img_fake_ = img_fake.astype(np.float64)
img_real_ = img_real.astype(np.float64)
if img_fake_.ndim == 2:
mean_real = img_real_.mean()
mse = np.mean((img_fake_ - img_real_) ** 2)
return 100 / scale * np.sqrt(mse / (mean_real ** 2 + np.finfo(np.float64).eps))
elif img_fake_.ndim == 3:
means_real = img_real_.reshape(-1, img_real_.shape[2]).mean(axis=0)
mses = ((img_fake_ - img_real_) ** 2).reshape(-1, img_fake_.shape[2]).mean(axis=0)
return 100 / scale * np.sqrt((mses / (means_real ** 2 + np.finfo(np.float64).eps)).mean())
else:
raise ValueError('Wrong input image dimensions.')
####################
# observation model
####################
def gaussian2d(N, std):
t = np.arange(-(N - 1) // 2, (N + 2) // 2)
t1, t2 = np.meshgrid(t, t)
std = np.double(std)
w = np.exp(-0.5 * (t1 / std) ** 2) * np.exp(-0.5 * (t2 / std) ** 2)
return w
def kaiser2d(N, beta):
t = np.arange(-(N - 1) // 2, (N + 2) // 2) / np.double(N - 1)
t1, t2 = np.meshgrid(t, t)
t12 = np.sqrt(t1 * t1 + t2 * t2)
w1 = np.kaiser(N, beta)
w = np.interp(t12, t, w1)
w[t12 > t[-1]] = 0
w[t12 < t[0]] = 0
return w
def fir_filter_wind(Hd, w):
"""
compute fir (finite impulse response) filter with window method
Hd: desired freqeuncy response (2D)
w: window (2D)
"""
hd = np.rot90(np.fft.fftshift(np.rot90(Hd, 2)), 2)
h = np.fft.fftshift(np.fft.ifft2(hd))
h = np.rot90(h, 2)
h = h * w
h = h / np.sum(h)
return h
def GNyq2win(GNyq, scale=4, N=41):
"""Generate a 2D convolutional window from a given GNyq
GNyq: Nyquist frequency
scale: spatial size of PAN / spatial size of MS
"""
# fir filter with window method
fcut = 1 / scale
alpha = np.sqrt(((N - 1) * (fcut / 2)) ** 2 / (-2 * np.log(GNyq)))
H = gaussian2d(N, alpha)
Hd = H / np.max(H)
w = kaiser2d(N, 0.5)
h = fir_filter_wind(Hd, w)
return np.real(h)
def mtf_resize(img, satellite='QuickBird', scale=4):
# satellite GNyq
scale = int(scale)
if satellite == 'QuickBird':
GNyq = [0.34, 0.32, 0.30, 0.22] # Band Order: B,G,R,NIR
GNyqPan = 0.15
elif satellite == 'IKONOS':
GNyq = [0.26, 0.28, 0.29, 0.28] # Band Order: B,G,R,NIR
GNyqPan = 0.17
else:
raise NotImplementedError('satellite: QuickBird or IKONOS')
# lowpass
img_ = img.squeeze()
img_ = img_.astype(np.float64)
if img_.ndim == 2: # Pan
H, W = img_.shape
lowpass = GNyq2win(GNyqPan, scale, N=41)
elif img_.ndim == 3: # MS
H, W, _ = img.shape
lowpass = [GNyq2win(gnyq, scale, N=41) for gnyq in GNyq]
lowpass = np.stack(lowpass, axis=-1)
img_ = ndimage.filters.correlate(img_, lowpass, mode='nearest')
# downsampling
output_size = (H // scale, W // scale)
img_ = cv2.resize(img_, dsize=output_size, interpolation=cv2.INTER_NEAREST)
return img_
##################
# No reference IQA
##################
def D_lambda(img_fake, img_lm, block_size=32, p=1):
"""Spectral distortion
img_fake, generated HRMS
img_lm, LRMS"""
assert img_fake.ndim == img_lm.ndim == 3, 'Images must be 3D!'
H_f, W_f, C_f = img_fake.shape
H_r, W_r, C_r = img_lm.shape
assert C_f == C_r, 'Fake and lm should have the same number of bands!'
# D_lambda
Q_fake = []
Q_lm = []
for i in range(C_f):
for j in range(i + 1, C_f):
# for fake
band1 = img_fake[..., i]
band2 = img_fake[..., j]
Q_fake.append(_qindex(band1, band2, block_size=block_size))
# for real
band1 = img_lm[..., i]
band2 = img_lm[..., j]
Q_lm.append(_qindex(band1, band2, block_size=block_size))
Q_fake = np.array(Q_fake)
Q_lm = np.array(Q_lm)
D_lambda_index = (np.abs(Q_fake - Q_lm) ** p).mean()
return D_lambda_index ** (1 / p)
def D_s(img_fake, img_lm, pan, satellite='QuickBird', scale=4, block_size=32, q=1):
"""Spatial distortion
img_fake, generated HRMS
img_lm, LRMS
pan, HRPan"""
# fake and lm
assert img_fake.ndim == img_lm.ndim == 3, 'MS images must be 3D!'
H_f, W_f, C_f = img_fake.shape
H_r, W_r, C_r = img_lm.shape
assert H_f // H_r == W_f // W_r == scale, 'Spatial resolution should be compatible with scale'
assert C_f == C_r, 'Fake and lm should have the same number of bands!'
# fake and pan
assert pan.ndim == 3, 'Panchromatic image must be 3D!'
H_p, W_p, C_p = pan.shape
assert C_p == 1, 'size of 3rd dim of Panchromatic image must be 1'
assert H_f == H_p and W_f == W_p, "Pan's and fake's spatial resolution should be the same"
# get LRPan, 2D
pan_lr = mtf_resize(pan, satellite=satellite, scale=scale)
# print(pan_lr.shape)
# D_s
Q_hr = []
Q_lr = []
for i in range(C_f):
# for HR fake
band1 = img_fake[..., i]
band2 = pan[..., 0] # the input PAN is 3D with size=1 along 3rd dim
# print(band1.shape)
# print(band2.shape)
Q_hr.append(_qindex(band1, band2, block_size=block_size))
band1 = img_lm[..., i]
band2 = pan_lr # this is 2D
# print(band1.shape)
# print(band2.shape)
Q_lr.append(_qindex(band1, band2, block_size=block_size))
Q_hr = np.array(Q_hr)
Q_lr = np.array(Q_lr)
D_s_index = (np.abs(Q_hr - Q_lr) ** q).mean()
return D_s_index ** (1 / q)
def qnr(img_fake, img_lm, pan, satellite='QuickBird', scale=4, block_size=32, p=1, q=1, alpha=1, beta=1):
"""QNR - No reference IQA""" # The higher the QNR index, the better the quality of the fused product
D_lambda_idx = D_lambda(img_fake, img_lm, block_size, p)
D_s_idx = D_s(img_fake, img_lm, pan, satellite, scale, block_size, q)
QNR_idx = (1 - D_lambda_idx) ** alpha * (1 - D_s_idx) ** beta
return QNR_idx
def ref_evaluate(pred, gt, scale=4, dynamic_range=1):
# reference metrics
c_psnr = psnr(pred, gt, dynamic_range=dynamic_range)
c_ssim = ssim(pred, gt, dynamic_range=dynamic_range)
c_sam = sam(pred, gt)
c_ergas = ergas(pred, gt, scale=scale)
c_scc = scc(pred, gt)
c_q = qindex(pred, gt)
c_rmse = rmse(pred, gt)
return [c_psnr, c_ssim, c_sam, c_ergas, c_scc, c_q, c_rmse]
def no_ref_evaluate(pred, pan, hs, scale=4):
# no reference metrics
c_D_lambda = D_lambda(pred, hs)
c_D_s = D_s(pred, hs, pan, scale=scale)
c_qnr = qnr(pred, hs, pan, scale=scale)
return [c_D_lambda, c_D_s, c_qnr]