-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_image_wv2.py
349 lines (277 loc) · 12.9 KB
/
save_image_wv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import sys
sys.path.append('/home/aistudio/code')
sys.path.append('/home/aistudio/code/SSR')
import numpy as np
import pandas as pd
import os
import gc
import random
import time
import signal
# import cv2
import torch
# from function import transpose_banddim
# from function import generate_cropdata
# from function import Crop_traindata_ssr
# from function import blur_downsampling
# from function import Downsampler
# from vca import vca
def all_valid(data, dim=0):
# a, b, c = data.shape
# 波段轴在1
# if a < b and a < c:
if axis == 0:
length = data.shape[1] * data.shape[2]
elif axis == 2:
length = data.shape[0] * data.shape[1]
sum_data = np.sum(data, dim=axis)
if len(np.where(sum_data > 0)[0]) == length:
return True
else:
return False
def read_srf(filename, skiprows=11):
data = np.loadtxt(filename, skiprows=skiprows)
return data
def read_band(filename): # 读取wv2影像波段和波宽
data = open(filename, 'r')
f = data.read()
band = str.split(f)
band = [float(x) for x in band]
length = len(np.array(band))
band_center = np.array(band)[:int(length/2)]
band_width = np.array(band)[int(length/2):]
if band_center[0] > 100:
return band_center, band_width
else:
return band_center*1000, band_width*1000
def generate_srf(filename4): # 产生和每个高光谱波段
srf = read_srf(filename4[0])
srf[:, 0] = srf[:, 0] * 1000
srf = srf[:, 0:7] # 放弃海岸线和近红波段
band_center, band_width = read_band(filename4[1])
left_band = band_center - band_width / 2.0
right_band = band_center + band_width / 2.0
srf_simu = np.expand_dims(np.zeros(6), dim=0)
for i0 in range(len(band_center)):
index = np.where((srf[:, 0] >= left_band[i0]) & (srf[:, 0] <= right_band[i0]))
srf_simu = np.concatenate((srf_simu, np.mean(srf[index, 1:], dim=1)), dim=0)
band_center = np.expand_dims(band_center, dim=0)
print(srf_simu.shape)
srf_simu = np.concatenate((np.transpose(band_center), srf_simu[1:, :]), dim=1)
return srf_simu
def generate_data():
patch_size = 64
band_num = 126
img_num = 2
ratio_hs = 16
ratio_mss = 4
endmembers_num = 5
band_mss = 5
# filename5 = [
# '/home/aistudio/work/little_file/envi_plot_wv2.txt',
# '/home/aistudio/work/little_file/hyperspectral_band_jiaxing.txt'
# ]
# srf_simu = np.float32(generate_srf(filename5))
# srf_pan = np.expand_dims(np.expand_dims(np.load('/home/aistudio/data/data96268/srf_pan.npy'), dim=-1), dim=-1)
# srf_pan = np.expand_dims(np.expand_dims(np.load('/home/aistudio/work/Chikusei/srf_pan_Chikusei.npy'), dim=-1), dim=-1)
# Downsampler12 = Downsampler(4, padding=4)
hs_path = '/home/aistudio/data/data122836/msi.npy'
pan_path = '/home/aistudio/data/data122836/pan.npy'
save_dir = "/home/aistudio/work/wuhan_wv2"
original_hs = np.float32(np.load(hs_path) / 10000.0)#[:, :1000, :1000]
index_n = np.where(original_hs < 0)
original_hs[index_n] = 0
index_n = np.where(original_hs > 1)
original_hs[index_n] = 1
original_hs = original_hs[:, :int(original_hs.shape[1]-original_hs.shape[1]%64), :int(original_hs.shape[2]-original_hs.shape[2]%64)]
original_pan = np.expand_dims(np.float32(np.load(pan_path) / 2047.0), dim=0)#[:, :1000*12, :1000*12]
index_n = np.where(original_pan < 0)
original_pan[index_n] = 0
index_n = np.where(original_pan > 1)
original_pan[index_n] = 1
original_pan = original_pan[:, :int(original_pan.shape[1]-original_pan.shape[1]%(64*4)), :int(original_pan.shape[2]-original_pan.shape[2]%(64*4))]
# np.save(save_dir+'/ms_2m.npy', original_hs)
# np.save(save_dir+'/pan_05m.npy', original_pan)
print(original_hs.shape)
print(original_pan.shape)
# temp_blur_hs = Downsampler12(torch.tensor(np.expand_dims(original_hs, dim=0), dtype='float32'))
# print(temp_blur_hs.shape)
# temp_blur_hs = np.squeeze(temp_blur_hs.numpy(), dim=0)
# temp_blur_pan = Downsampler12(torch.tensor(np.expand_dims(original_pan, dim=0), dtype='float32'))
# print(temp_blur_pan.shape)
# temp_blur_pan = np.squeeze(temp_blur_pan.numpy(), dim=0)
# np.save(save_dir+'/ms_8m.npy', temp_blur_hs)
# np.save(save_dir+'/pan_2m.npy', temp_blur_pan)
return original_hs, original_pan # , temp_blur_hs, temp_blur_pan
def crop_data(original_hs, original_pan):
train_ratio = 0.8
train_factor = 1
test_factor = 1 # 数值越大表明测试影像数量越少
save_num = 5 # 存储测试影像数目
band = 126
training_size = 64 # training patch size
testing_size = 64 # testing patch size
ratio = 16
# 加载数据
# base_dir0 = '/home/aistudio/work/Line'
# base_dir1 = '/home/aistudio/data/data96268/Line'
region = 'wuhan_wv2'
# temp_blur_hs = np.float32(np.load('/home/aistudio/work/wuhan_wv2/ms_8m.npy'))
# temp_blur_pan = np.float32(np.load('/home/aistudio/work/wuhan_wv2/pan_2m.npy'))
# original_hs = np.float32(np.load('/home/aistudio/work/wuhan_wv2/ms_2m.npy'))
# original_hs = np.float32(np.load('/home/aistudio/work/wuhan_wv2/ms_2m.npy'))
# original_pan = np.float32(np.load('/home/aistudio/work/wuhan_wv2/pan_05m.npy'))
# train_hs_image, train_pan_image, train_label = \
# Crop_traindata_three(temp_blur_hs, # 可调整size
# temp_blur_pan,
# original_hs,
# training_size,
# test=False, step_facter=1, ratio=4)
test_hs_image, test_pan_image = \
Crop_traindata_two(original_hs,
original_pan,
testing_size,
test=True, step_facter=1, ratio=4)
# print('train size:' + str(train_hs_image.shape))
print('test size:' + str(test_hs_image.shape))
# np.save('/home/aistudio/work/'+region+'/train_ms.npy', train_hs_image)
# np.save('/home/aistudio/work/'+region+'/train_pan.npy', train_pan_image)
# np.save('/home/aistudio/work/'+region+'/train_label.npy', train_label)
# np.save('/home/aistudio/work/'+region+'/test_ms.npy', test_hs_image)
# np.save('/home/aistudio/work/'+region+'/test_pan.npy', test_pan_image)
return test_hs_image, test_pan_image
def Crop_traindata_two(image_ms, image_pan, size, test=False, step_facter=1, ratio=4):
image_ms_all = []
image_pan_all = []
"""crop images"""
temp_name = 'test' if test else 'train'
print('croping ' + temp_name + ' images...')
print(image_ms.shape)
for j in range(0, image_ms.shape[1] - size, int(size/step_facter)):
for k in range(0, image_ms.shape[2] - size, int(size/step_facter)):
temp_image_ms = image_ms[:, j :j + size, k :k + size]
temp_image_pan = image_pan[:, j*ratio :(j + size)*ratio, k*ratio :(k + size)*ratio]
if all_valid(temp_image_ms, dim=0):
image_ms_all.append(temp_image_ms)
image_pan_all.append(temp_image_pan)
image_ms_all = np.array(image_ms_all, dtype='float32')
image_pan_all = np.array(image_pan_all, dtype='float32')
print("size of test_lrmsimage:{}".
format(image_ms_all.shape))
print("size of test_hrpanimage:{}".
format(image_pan_all.shape))
return image_ms_all, image_pan_all
def Crop_traindata_three(image_ms, image_pan, image_label, size, test=False, step_facter=1, ratio=4):
image_ms_all = []
image_pan_all = []
label = []
"""crop images"""
temp_name = 'test' if test else 'train'
print('croping ' + temp_name + ' images...')
print(image_ms.shape)
for j in range(0, image_ms.shape[1] - size, int(size/step_facter)):
for k in range(0, image_ms.shape[2] - size, int(size/step_facter)):
temp_image_ms = image_ms[:, j :j + size, k :k + size]
temp_image_pan = image_pan[:, j*ratio :(j + size)*ratio, k*ratio :(k + size)*ratio]
temp_label = image_label[:, j*ratio :(j + size)*ratio, k*ratio :(k + size)*ratio]
if all_valid(temp_image_ms, dim=0):
# print(temp_image_pan.shape)
image_ms_all.append(temp_image_ms)
image_pan_all.append(temp_image_pan)
label.append(temp_label)
print(len(image_pan_all))
image_ms_all = np.array(image_ms_all, dtype='float32')
image_pan_all = np.array(image_pan_all, dtype='float32')
image_label_all = np.array(label, dtype='float32')
print("size of lrmsimage:{}".
format(image_ms_all.shape))
print("size of hrpanimage:{}".
format(image_pan_all.shape))
print("size of labelimage:{}".
format(image_label_all.shape))
return image_ms_all, image_pan_all, image_label_all
def unsupervise_crop():
img_num = 1
train_ratio = 0.8
train_factor = 1
test_factor = 1 # 数值越大表明测试影像数量越少
save_num = 5 # 存储测试影像数目
band = 126
training_size = 8 # training patch size
testing_size = 16 * 16 # testing patch size
ratio = 16
region = 'jiaxing'
base_dir1 = '/home/aistudio/work/'+region+'/Line'
base_dir0 = '/home/aistudio/data/data96268/Line'
# 多张影像
hs_data = []
# mss_data = []
pan_data = []
label_data = []
# abun16 = []
for i2 in range(img_num):
hs_data.append(np.float32(np.load('/home/aistudio/data/data95831/HS_ziyuan.npy')[:-2, :1000, :1000]) / 4095.0)
pan_data.append(np.expand_dims(np.float32(np.load('/home/aistudio/data/data95831/pan_ziyuan.npy')[:1000*12, :1000*12]) / 4095.0, dim=0))
# 安全
assert len(hs_data) == img_num
result_hs = []
result_pan = []
'''产生训练和测试数据'''
for i in range(len(hs_data)):
a = Crop_traindata_sig(hs_data[i], pan_data[i], size=training_size, ratio=12)
result_hs.append(a[0])
result_pan.append(a[1])
result_hs = np.concatenate(result_hs, 0)
result_pan = np.concatenate(result_pan, 0)
print('croped result_hs size:' + str(result_hs.shape))
print('croped result_pan size:' + str(result_pan.shape))
print(np.max(result_hs), np.min(result_hs))
print(np.max(result_pan), np.min(result_pan))
np.save('/home/aistudio/work/ziyuan/train_hs.npy', result_hs)
np.save('/home/aistudio/work/ziyuan/train_pan.npy', result_pan)
def generate_patch_ms(train_num=1000, ms_band=4):
hs_data = np.load('/home/aistudio/work/jiaxing/label_hs.npy')
test_data = hs_data[1000:, :, :, :]
filename5 = [
'/home/aistudio/work/little_file/envi_plot_wv2.txt',
'/home/aistudio/work/little_file/hyperspectral_band_jiaxing.txt'
]
srf_simu = np.float32(generate_srf(filename5))
print(srf_simu.shape)
noise_mean = 0.0
noise_var = 0.0001
result = []
for i2 in range(ms_band): # worldview2 SRF range of pan include five ms bands
srf_simu_expand0 = np.reshape(srf_simu[:, i2 + 2], [1, srf_simu.shape[0], 1, 1])
result.append(np.expand_dims(np.sum(test_data * \
srf_simu_expand0, dim=1) / np.sum(srf_simu_expand0), dim=1))
result = np.concatenate(result, dim=1)
# blur_result = blur_downsampling(result, ratio=ratio_mss)
print(result.shape)
# for i3 in range(ms_band):
# result[:, i3, :, :] = result[:, i3, :, :] + \
# np.random.normal(noise_mean, noise_var ** 0.5, [result.shape[0], result.shape[2], result.shape[3]])
np.save('/home/aistudio/work/jiaxing/test_ms', result)
if __name__ == '__main__':
# generate_data()
crop_data()
# unsupervise_crop()
# generate_patch_ms()
# hs = np.load('/home/aistudio/data/data96268/Line2-Geo.npy')[:, 400:600, 1000:5000]
# ms = np.load('/home/aistudio/work/jiaxing/Line-Geo2_ms.npy')[:, 400:600, 1000:5000]
# filename5 = [
# '/home/aistudio/work/little_file/envi_plot_wv2.txt',
# '/home/aistudio/work/little_file/hyperspectral_band_jiaxing.txt'
# ]
# srf_simu = np.float32(generate_srf(filename5))
# srf_simu = np.transpose(srf_simu[:, 2:7])
# # print(np.sum(srf_simu, dim=1).shape)
# print(np.tile(np.expand_dims(np.sum(srf_simu, dim=1), dim=1), [1, 5]))
# # print(srf_pan.shape)
# print(hs.shape)
# print(ms.shape)
# endmember_ms, _, _ = vca(np.reshape(ms, [ms.shape[0], ms.shape[1]*ms.shape[2]]), 5)
# endmember_hs, _, _ = vca(np.reshape(hs, [hs.shape[0], hs.shape[1]*hs.shape[2]]), 5)
# endmember_hs2 = np.dot(srf_simu, endmember_hs) / np.tile(np.expand_dims(np.sum(srf_simu, dim=1), dim=1), [1, 5])
# loss_csv = pd.DataFrame(np.asarray(endmember_hs2))
# loss_csv.to_csv('/home/aistudio/result/endmember_hs2.csv')