-
-
Notifications
You must be signed in to change notification settings - Fork 5.8k
/
Copy path100_Numpy_exercises_with_hints_with_solutions.md
1252 lines (1036 loc) · 31.4 KB
/
100_Numpy_exercises_with_hints_with_solutions.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# 100 numpy exercises
This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow
and in the numpy documentation. The goal of this collection is to offer a quick reference for both old
and new users but also to provide a set of exercises for those who teach.
If you find an error or think you've a better way to solve some of them, feel
free to open an issue at <https://github.com/rougier/numpy-100>.
File automatically generated. See the documentation to update questions/answers/hints programmatically.
#### 1. Import the numpy package under the name `np` (★☆☆)
`hint: import … as`
```python
import numpy as np
```
#### 2. Print the numpy version and the configuration (★☆☆)
`hint: np.__version__, np.show_config)`
```python
print(np.__version__)
np.show_config()
```
#### 3. Create a null vector of size 10 (★☆☆)
`hint: np.zeros`
```python
Z = np.zeros(10)
print(Z)
```
#### 4. How to find the memory size of any array (★☆☆)
`hint: size, itemsize`
```python
Z = np.zeros((10,10))
print("%d bytes" % (Z.size * Z.itemsize))
```
#### 5. How to get the documentation of the numpy add function from the command line? (★☆☆)
`hint: np.info`
```python
%run `python -c "import numpy; numpy.info(numpy.add)"`
```
#### 6. Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
`hint: array[4]`
```python
Z = np.zeros(10)
Z[4] = 1
print(Z)
```
#### 7. Create a vector with values ranging from 10 to 49 (★☆☆)
`hint: arange`
```python
Z = np.arange(10,50)
print(Z)
```
#### 8. Reverse a vector (first element becomes last) (★☆☆)
`hint: array[::-1]`
```python
Z = np.arange(50)
Z = Z[::-1]
print(Z)
```
#### 9. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
`hint: reshape`
```python
Z = np.arange(9).reshape(3, 3)
print(Z)
```
#### 10. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
`hint: np.nonzero`
```python
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
```
#### 11. Create a 3x3 identity matrix (★☆☆)
`hint: np.eye`
```python
Z = np.eye(3)
print(Z)
```
#### 12. Create a 3x3x3 array with random values (★☆☆)
`hint: np.random.random`
```python
Z = np.random.random((3,3,3))
print(Z)
```
#### 13. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
`hint: min, max`
```python
Z = np.random.random((10,10))
Zmin, Zmax = Z.min(), Z.max()
print(Zmin, Zmax)
```
#### 14. Create a random vector of size 30 and find the mean value (★☆☆)
`hint: mean`
```python
Z = np.random.random(30)
m = Z.mean()
print(m)
```
#### 15. Create a 2d array with 1 on the border and 0 inside (★☆☆)
`hint: array[1:-1, 1:-1]`
```python
Z = np.ones((10,10))
Z[1:-1,1:-1] = 0
print(Z)
```
#### 16. How to add a border (filled with 0's) around an existing array? (★☆☆)
`hint: np.pad`
```python
Z = np.ones((5,5))
Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
print(Z)
# Using fancy indexing
Z[:, [0, -1]] = 0
Z[[0, -1], :] = 0
print(Z)
```
#### 17. What is the result of the following expression? (★☆☆)
```python
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
np.nan in set([np.nan])
0.3 == 3 * 0.1
```
`hint: NaN = not a number, inf = infinity`
```python
print(0 * np.nan)
print(np.nan == np.nan)
print(np.inf > np.nan)
print(np.nan - np.nan)
print(np.nan in set([np.nan]))
print(0.3 == 3 * 0.1)
```
#### 18. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
`hint: np.diag`
```python
Z = np.diag(1+np.arange(4),k=-1)
print(Z)
```
#### 19. Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
`hint: array[::2]`
```python
Z = np.zeros((8,8),dtype=int)
Z[1::2,::2] = 1
Z[::2,1::2] = 1
print(Z)
```
#### 20. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element? (★☆☆)
`hint: np.unravel_index`
```python
print(np.unravel_index(99,(6,7,8)))
```
#### 21. Create a checkerboard 8x8 matrix using the tile function (★☆☆)
`hint: np.tile`
```python
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
print(Z)
```
#### 22. Normalize a 5x5 random matrix (★☆☆)
`hint: (x -mean)/std`
```python
Z = np.random.random((5,5))
Z = (Z - np.mean (Z)) / (np.std (Z))
print(Z)
```
#### 23. Create a custom dtype that describes a color as four unsigned bytes (RGBA) (★☆☆)
`hint: np.dtype`
```python
color = np.dtype([("r", np.ubyte),
("g", np.ubyte),
("b", np.ubyte),
("a", np.ubyte)])
```
#### 24. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
`hint:`
```python
Z = np.dot(np.ones((5,3)), np.ones((3,2)))
print(Z)
# Alternative solution, in Python 3.5 and above
Z = np.ones((5,3)) @ np.ones((3,2))
print(Z)
```
#### 25. Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)
`hint: >, <`
```python
# Author: Evgeni Burovski
Z = np.arange(11)
Z[(3 < Z) & (Z < 8)] *= -1
print(Z)
```
#### 26. What is the output of the following script? (★☆☆)
```python
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
```
`hint: np.sum`
```python
# Author: Jake VanderPlas
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
```
#### 27. Consider an integer vector Z, which of these expressions are legal? (★☆☆)
```python
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
```
`No hints provided...`
```python
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
```
#### 28. What are the result of the following expressions? (★☆☆)
```python
np.array(0) / np.array(0)
np.array(0) // np.array(0)
np.array([np.nan]).astype(int).astype(float)
```
`No hints provided...`
```python
print(np.array(0) / np.array(0))
print(np.array(0) // np.array(0))
print(np.array([np.nan]).astype(int).astype(float))
```
#### 29. How to round away from zero a float array ? (★☆☆)
`hint: np.uniform, np.copysign, np.ceil, np.abs, np.where`
```python
# Author: Charles R Harris
Z = np.random.uniform(-10,+10,10)
print(np.copysign(np.ceil(np.abs(Z)), Z))
# More readable but less efficient
print(np.where(Z>0, np.ceil(Z), np.floor(Z)))
```
#### 30. How to find common values between two arrays? (★☆☆)
`hint: np.intersect1d`
```python
Z1 = np.random.randint(0,10,10)
Z2 = np.random.randint(0,10,10)
print(np.intersect1d(Z1,Z2))
```
#### 31. How to ignore all numpy warnings (not recommended)? (★☆☆)
`hint: np.seterr, np.errstate`
```python
# Suicide mode on
defaults = np.seterr(all="ignore")
Z = np.ones(1) / 0
# Back to sanity
_ = np.seterr(**defaults)
# Equivalently with a context manager
with np.errstate(all="ignore"):
np.arange(3) / 0
```
#### 32. Is the following expressions true? (★☆☆)
```python
np.sqrt(-1) == np.emath.sqrt(-1)
```
`hint: imaginary number`
```python
np.sqrt(-1) == np.emath.sqrt(-1)
```
#### 33. How to get the dates of yesterday, today and tomorrow? (★☆☆)
`hint: np.datetime64, np.timedelta64`
```python
yesterday = np.datetime64('today') - np.timedelta64(1)
today = np.datetime64('today')
tomorrow = np.datetime64('today') + np.timedelta64(1)
```
#### 34. How to get all the dates corresponding to the month of July 2016? (★★☆)
`hint: np.arange(dtype=datetime64['D'])`
```python
Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')
print(Z)
```
#### 35. How to compute ((A+B)*(-A/2)) in place (without copy)? (★★☆)
`hint: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=)`
```python
A = np.ones(3)*1
B = np.ones(3)*2
np.add(A,B,out=B)
np.divide(A,2,out=A)
np.negative(A,out=A)
np.multiply(A,B,out=A)
```
#### 36. Extract the integer part of a random array of positive numbers using 4 different methods (★★☆)
`hint: %, np.floor, astype, np.trunc`
```python
Z = np.random.uniform(0,10,10)
print(Z - Z%1)
print(Z // 1)
print(np.floor(Z))
print(Z.astype(int))
print(np.trunc(Z))
```
#### 37. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
`hint: np.arange`
```python
Z = np.zeros((5,5))
Z += np.arange(5)
print(Z)
# without broadcasting
Z = np.tile(np.arange(0, 5), (5,1))
print(Z)
```
#### 38. Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
`hint: np.fromiter`
```python
def generate():
for x in range(10):
yield x
Z = np.fromiter(generate(),dtype=float,count=-1)
print(Z)
```
#### 39. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
`hint: np.linspace`
```python
Z = np.linspace(0,1,11,endpoint=False)[1:]
print(Z)
```
#### 40. Create a random vector of size 10 and sort it (★★☆)
`hint: sort`
```python
Z = np.random.random(10)
Z.sort()
print(Z)
```
#### 41. How to sum a small array faster than np.sum? (★★☆)
`hint: np.add.reduce`
```python
# Author: Evgeni Burovski
Z = np.arange(10)
np.add.reduce(Z)
```
#### 42. Consider two random array A and B, check if they are equal (★★☆)
`hint: np.allclose, np.array_equal`
```python
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
# Assuming identical shape of the arrays and a tolerance for the comparison of values
equal = np.allclose(A,B)
print(equal)
# Checking both the shape and the element values, no tolerance (values have to be exactly equal)
equal = np.array_equal(A,B)
print(equal)
```
#### 43. Make an array immutable (read-only) (★★☆)
`hint: flags.writeable`
```python
Z = np.zeros(10)
Z.flags.writeable = False
Z[0] = 1
```
#### 44. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
`hint: np.sqrt, np.arctan2`
```python
Z = np.random.random((10,2))
X,Y = Z[:,0], Z[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)
```
#### 45. Create random vector of size 10 and replace the maximum value by 0 (★★☆)
`hint: argmax`
```python
Z = np.random.random(10)
Z[Z.argmax()] = 0
print(Z)
```
#### 46. Create a structured array with `x` and `y` coordinates covering the [0,1]x[0,1] area (★★☆)
`hint: np.meshgrid`
```python
Z = np.zeros((5,5), [('x',float),('y',float)])
Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,5),
np.linspace(0,1,5))
print(Z)
```
#### 47. Given two arrays, X and Y, construct the Cauchy matrix C (Cij =1/(xi - yj)) (★★☆)
`hint: np.subtract.outer`
```python
# Author: Evgeni Burovski
X = np.arange(8)
Y = X + 0.5
C = 1.0 / np.subtract.outer(X, Y)
print(np.linalg.det(C))
```
#### 48. Print the minimum and maximum representable value for each numpy scalar type (★★☆)
`hint: np.iinfo, np.finfo, eps`
```python
for dtype in [np.int8, np.int32, np.int64]:
print(np.iinfo(dtype).min)
print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
print(np.finfo(dtype).min)
print(np.finfo(dtype).max)
print(np.finfo(dtype).eps)
```
#### 49. How to print all the values of an array? (★★☆)
`hint: np.set_printoptions`
```python
np.set_printoptions(threshold=float("inf"))
Z = np.zeros((40,40))
print(Z)
```
#### 50. How to find the closest value (to a given scalar) in a vector? (★★☆)
`hint: argmin`
```python
Z = np.arange(100)
v = np.random.uniform(0,100)
index = (np.abs(Z-v)).argmin()
print(Z[index])
```
#### 51. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
`hint: dtype`
```python
Z = np.zeros(10, [ ('position', [ ('x', float, 1),
('y', float, 1)]),
('color', [ ('r', float, 1),
('g', float, 1),
('b', float, 1)])])
print(Z)
```
#### 52. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
`hint: np.atleast_2d, T, np.sqrt`
```python
Z = np.random.random((10,2))
X,Y = np.atleast_2d(Z[:,0], Z[:,1])
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
print(D)
# Much faster with scipy
import scipy
# Thanks Gavin Heverly-Coulson (#issue 1)
import scipy.spatial
Z = np.random.random((10,2))
D = scipy.spatial.distance.cdist(Z,Z)
print(D)
```
#### 53. How to convert a float (32 bits) array into an integer (32 bits) in place?
`hint: view and [:] =`
```python
# Thanks Vikas (https://stackoverflow.com/a/10622758/5989906)
# & unutbu (https://stackoverflow.com/a/4396247/5989906)
Z = (np.random.rand(10)*100).astype(np.float32)
Y = Z.view(np.int32)
Y[:] = Z
print(Y)
```
#### 54. How to read the following file? (★★☆)
```
1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
```
`hint: np.genfromtxt`
```python
from io import StringIO
# Fake file
s = StringIO('''1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
''')
Z = np.genfromtxt(s, delimiter=",", dtype=np.int)
print(Z)
```
#### 55. What is the equivalent of enumerate for numpy arrays? (★★☆)
`hint: np.ndenumerate, np.ndindex`
```python
Z = np.arange(9).reshape(3,3)
for index, value in np.ndenumerate(Z):
print(index, value)
for index in np.ndindex(Z.shape):
print(index, Z[index])
```
#### 56. Generate a generic 2D Gaussian-like array (★★☆)
`hint: np.meshgrid, np.exp`
```python
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
D = np.sqrt(X*X+Y*Y)
sigma, mu = 1.0, 0.0
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
print(G)
```
#### 57. How to randomly place p elements in a 2D array? (★★☆)
`hint: np.put, np.random.choice`
```python
# Author: Divakar
n = 10
p = 3
Z = np.zeros((n,n))
np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
print(Z)
```
#### 58. Subtract the mean of each row of a matrix (★★☆)
`hint: mean(axis=,keepdims=)`
```python
# Author: Warren Weckesser
X = np.random.rand(5, 10)
# Recent versions of numpy
Y = X - X.mean(axis=1, keepdims=True)
# Older versions of numpy
Y = X - X.mean(axis=1).reshape(-1, 1)
print(Y)
```
#### 59. How to sort an array by the nth column? (★★☆)
`hint: argsort`
```python
# Author: Steve Tjoa
Z = np.random.randint(0,10,(3,3))
print(Z)
print(Z[Z[:,1].argsort()])
```
#### 60. How to tell if a given 2D array has null columns? (★★☆)
`hint: any, ~`
```python
# Author: Warren Weckesser
# null : 0
Z = np.random.randint(0,3,(3,10))
print((~Z.any(axis=0)).any())
# null : np.nan
Z=np.array([
[0,1,np.nan],
[1,2,np.nan],
[4,5,np.nan]
])
print(np.isnan(Z).all(axis=0))
```
#### 61. Find the nearest value from a given value in an array (★★☆)
`hint: np.abs, argmin, flat`
```python
Z = np.random.uniform(0,1,10)
z = 0.5
m = Z.flat[np.abs(Z - z).argmin()]
print(m)
```
#### 62. Considering two arrays with shape (1,3) and (3,1), how to compute their sum using an iterator? (★★☆)
`hint: np.nditer`
```python
A = np.arange(3).reshape(3,1)
B = np.arange(3).reshape(1,3)
it = np.nditer([A,B,None])
for x,y,z in it: z[...] = x + y
print(it.operands[2])
```
#### 63. Create an array class that has a name attribute (★★☆)
`hint: class method`
```python
class NamedArray(np.ndarray):
def __new__(cls, array, name="no name"):
obj = np.asarray(array).view(cls)
obj.name = name
return obj
def __array_finalize__(self, obj):
if obj is None: return
self.name = getattr(obj, 'name', "no name")
Z = NamedArray(np.arange(10), "range_10")
print (Z.name)
```
#### 64. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices)? (★★★)
`hint: np.bincount | np.add.at`
```python
# Author: Brett Olsen
Z = np.ones(10)
I = np.random.randint(0,len(Z),20)
Z += np.bincount(I, minlength=len(Z))
print(Z)
# Another solution
# Author: Bartosz Telenczuk
np.add.at(Z, I, 1)
print(Z)
```
#### 65. How to accumulate elements of a vector (X) to an array (F) based on an index list (I)? (★★★)
`hint: np.bincount`
```python
# Author: Alan G Isaac
X = [1,2,3,4,5,6]
I = [1,3,9,3,4,1]
F = np.bincount(I,X)
print(F)
```
#### 66. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★☆)
`hint: np.unique`
```python
# Author: Fisher Wang
w, h = 256, 256
I = np.random.randint(0, 4, (h, w, 3)).astype(np.ubyte)
colors = np.unique(I.reshape(-1, 3), axis=0)
n = len(colors)
print(n)
# Faster version
# Author: Mark Setchell
# https://stackoverflow.com/a/59671950/2836621
w, h = 256, 256
I = np.random.randint(0,4,(h,w,3), dtype=np.uint8)
# View each pixel as a single 24-bit integer, rather than three 8-bit bytes
I24 = np.dot(I.astype(np.uint32),[1,256,65536])
# Count unique colours
n = len(np.unique(I24))
print(n)
```
#### 67. Considering a four dimensions array, how to get sum over the last two axis at once? (★★★)
`hint: sum(axis=(-2,-1))`
```python
A = np.random.randint(0,10,(3,4,3,4))
# solution by passing a tuple of axes (introduced in numpy 1.7.0)
sum = A.sum(axis=(-2,-1))
print(sum)
# solution by flattening the last two dimensions into one
# (useful for functions that don't accept tuples for axis argument)
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)
```
#### 68. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices? (★★★)
`hint: np.bincount`
```python
# Author: Jaime Fernández del Río
D = np.random.uniform(0,1,100)
S = np.random.randint(0,10,100)
D_sums = np.bincount(S, weights=D)
D_counts = np.bincount(S)
D_means = D_sums / D_counts
print(D_means)
# Pandas solution as a reference due to more intuitive code
import pandas as pd
print(pd.Series(D).groupby(S).mean())
```
#### 69. How to get the diagonal of a dot product? (★★★)
`hint: np.diag`
```python
# Author: Mathieu Blondel
A = np.random.uniform(0,1,(5,5))
B = np.random.uniform(0,1,(5,5))
# Slow version
np.diag(np.dot(A, B))
# Fast version
np.sum(A * B.T, axis=1)
# Faster version
np.einsum("ij,ji->i", A, B)
```
#### 70. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value? (★★★)
`hint: array[::4]`
```python
# Author: Warren Weckesser
Z = np.array([1,2,3,4,5])
nz = 3
Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
Z0[::nz+1] = Z
print(Z0)
```
#### 71. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5)? (★★★)
`hint: array[:, :, None]`
```python
A = np.ones((5,5,3))
B = 2*np.ones((5,5))
print(A * B[:,:,None])
```
#### 72. How to swap two rows of an array? (★★★)
`hint: array[[]] = array[[]]`
```python
# Author: Eelco Hoogendoorn
A = np.arange(25).reshape(5,5)
A[[0,1]] = A[[1,0]]
print(A)
```
#### 73. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
`hint: repeat, np.roll, np.sort, view, np.unique`
```python
# Author: Nicolas P. Rougier
faces = np.random.randint(0,100,(10,3))
F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
F = F.reshape(len(F)*3,2)
F = np.sort(F,axis=1)
G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
G = np.unique(G)
print(G)
```
#### 74. Given a sorted array C that corresponds to a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)
`hint: np.repeat`
```python
# Author: Jaime Fernández del Río
C = np.bincount([1,1,2,3,4,4,6])
A = np.repeat(np.arange(len(C)), C)
print(A)
```
#### 75. How to compute averages using a sliding window over an array? (★★★)
`hint: np.cumsum, from numpy.lib.stride_tricks import sliding_window_view (np>=1.20.0)`
```python
# Author: Jaime Fernández del Río
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
Z = np.arange(20)
print(moving_average(Z, n=3))
# Author: Jeff Luo (@Jeff1999)
# make sure your NumPy >= 1.20.0
from numpy.lib.stride_tricks import sliding_window_view
Z = np.arange(20)
print(sliding_window_view(Z, window_shape=3).mean(axis=-1))
```
#### 76. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
`hint: from numpy.lib import stride_tricks, from numpy.lib.stride_tricks import sliding_window_view (np>=1.20.0)`
```python
# Author: Joe Kington / Erik Rigtorp
from numpy.lib import stride_tricks
def rolling(a, window):
shape = (a.size - window + 1, window)
strides = (a.strides[0], a.strides[0])
return stride_tricks.as_strided(a, shape=shape, strides=strides)
Z = rolling(np.arange(10), 3)
print(Z)
# Author: Jeff Luo (@Jeff1999)
Z = np.arange(10)
print(sliding_window_view(Z, window_shape=3))
```
#### 77. How to negate a boolean, or to change the sign of a float inplace? (★★★)
`hint: np.logical_not, np.negative`
```python
# Author: Nathaniel J. Smith
Z = np.random.randint(0,2,100)
np.logical_not(Z, out=Z)
Z = np.random.uniform(-1.0,1.0,100)
np.negative(Z, out=Z)
```
#### 78. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i])? (★★★)
`No hints provided...`
```python
def distance(P0, P1, p):
T = P1 - P0
L = (T**2).sum(axis=1)
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
U = U.reshape(len(U),1)
D = P0 + U*T - p
return np.sqrt((D**2).sum(axis=1))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))
```
#### 79. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i])? (★★★)
`No hints provided...`
```python
# Author: Italmassov Kuanysh
# based on distance function from previous question
P0 = np.random.uniform(-10, 10, (10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10, 10, (10,2))
print(np.array([distance(P0,P1,p_i) for p_i in p]))
```
#### 80. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a `fill` value when necessary) (★★★)
`hint: minimum maximum`
```python
# Author: Nicolas Rougier
Z = np.random.randint(0,10,(10,10))
shape = (5,5)
fill = 0
position = (1,1)
R = np.ones(shape, dtype=Z.dtype)*fill
P = np.array(list(position)).astype(int)
Rs = np.array(list(R.shape)).astype(int)
Zs = np.array(list(Z.shape)).astype(int)
R_start = np.zeros((len(shape),)).astype(int)
R_stop = np.array(list(shape)).astype(int)
Z_start = (P-Rs//2)
Z_stop = (P+Rs//2)+Rs%2
R_start = (R_start - np.minimum(Z_start,0)).tolist()
Z_start = (np.maximum(Z_start,0)).tolist()
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
R[r] = Z[z]
print(Z)
print(R)
```
#### 81. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]]? (★★★)
`hint: stride_tricks.as_strided, from numpy.lib.stride_tricks import sliding_window_view (np>=1.20.0)`
```python
# Author: Stefan van der Walt
Z = np.arange(1,15,dtype=np.uint32)
R = stride_tricks.as_strided(Z,(11,4),(4,4))
print(R)
# Author: Jeff Luo (@Jeff1999)
Z = np.arange(1, 15, dtype=np.uint32)
print(sliding_window_view(Z, window_shape=4))
```
#### 82. Compute a matrix rank (★★★)
`hint: np.linalg.svd, np.linalg.matrix_rank`
```python
# Author: Stefan van der Walt
Z = np.random.uniform(0,1,(10,10))
U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
rank = np.sum(S > 1e-10)
print(rank)
# alternative solution:
# Author: Jeff Luo (@Jeff1999)
rank = np.linalg.matrix_rank(Z)
print(rank)
```
#### 83. How to find the most frequent value in an array?
`hint: np.bincount, argmax`
```python
Z = np.random.randint(0,10,50)
print(np.bincount(Z).argmax())
```
#### 84. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)
`hint: stride_tricks.as_strided, from numpy.lib.stride_tricks import sliding_window_view (np>=1.20.0)`
```python
# Author: Chris Barker
Z = np.random.randint(0,5,(10,10))
n = 3
i = 1 + (Z.shape[0]-3)
j = 1 + (Z.shape[1]-3)
C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
print(C)
# Author: Jeff Luo (@Jeff1999)
Z = np.random.randint(0,5,(10,10))
print(sliding_window_view(Z, window_shape=(3, 3)))
```
#### 85. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)
`hint: class method`
```python
# Author: Eric O. Lebigot
# Note: only works for 2d array and value setting using indices
class Symetric(np.ndarray):
def __setitem__(self, index, value):
i,j = index
super(Symetric, self).__setitem__((i,j), value)
super(Symetric, self).__setitem__((j,i), value)
def symetric(Z):