-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinst_HIFLEX.py
117 lines (99 loc) · 4.75 KB
/
inst_HIFLEX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from read_spec import *
# Instrument parameters
name = inst = 'HIFLEX'
pat = '*.fits' # Pattern of the file name
# obsname = (28.75728, -17.88508, 2382) from wiki
obsname = "hiflex" # for barycorrpy, not import if the BJD is in the header
hiflex_file = 'conf_hiflex_serval.txt'
params = dict()
if os.path.isfile(hiflex_file):
try:
keys, values = np.genfromtxt(hiflex_file, dtype=str, comments='#', delimiter='=', filling_values='', autostrip=True, unpack=True)
params = dict(zip(keys, values))
except ValueError as error:
print('Problems when reading {0}'.format(hiflex_file))
else:
print('Warn: No {0} found.'.format(hiflex_file))
for key in params.keys():
params[key] = int(params[key])
iomax = params.get('orders', 1000) # 1000: stupidly big number for orders. Real control is done with -oset
hdatf = params.get('data_dataset', 5) # 1: higher scatter of resulting RVs; 5: no information about flux (continuum corrected)
hdate = params.get('error_dataset', 6)
hdatw = params.get('wave_dataset', 9) # 9: Wavelength, drift correcte; 0: + barycentric correction
hdats = params.get('mask_dataset', 7)
snord = params.get('order_snr', 0)
print('Info: Using dataset {0} for the spectral data, {1} for the uncertainty, {2} for the wavelength, and {3} for the mask.'.format(hdatf, hdate, hdatw, hdats))
maskfile = 'telluric_mask_atlas.dat'
# Instrument read functions
def scan(self, s, pfits=True):
"""
Returns
-------
namedtuple('spectrum', 'w f berv bjd blaze drift timeid sn55 ')
w - wavelength
f - flux
berv - Barycentric Earth Radial Velocity
bjd - Barycentric Julian Day
blaze - Blaze filename
drift - Used RV Drift
sn55 - S_N order center55
Example
-------
"""
global snord
HIERARCH = 'HIERARCH '
HIERHIFLEX = HIERARCH + 'HiFLEx '
hdulist = self.hdulist = pyfits.open(s) # slow 30 ms
if 1:
self.header = self.hdr = hdr = hdulist[0].header
iomax = hdr['NAXIS2']
self.instname = 'HIFLEX' # hdr['INSTRUME']
self.drsberv = hdr.get(HIERHIFLEX + 'BCV', np.nan)
self.drsbjd = hdr.get(HIERHIFLEX + 'BJDTDB', np.nan)
self.dateobs = hdr[HIERHIFLEX + 'DATE-OBS']
self.mjd = hdr.get(HIERHIFLEX + 'MJD')
# for HiFLEx spectra the drift is already included in the wavelength solution
#self.drift = hdr.get(HIERHIFLEX+'D_SHIFT_KMS', np.nan)
#self.e_drift = hdr.get(HIERHIFLEX+'CARACAL DRIFT FP E_RV', np.nan) # Adapt HiFLEx so this value could be given
if snord == 0:
snord = int(iomax/2)
self.sn55 = hdr.get(HIERHIFLEX + 'SN_order%2.2i'%(snord), 50) # Modfied, flexible, maybe fix it to one order in HiFLEx
self.fileid = self.timeid = hdr.get(HIERHIFLEX + 'DATE-OBS', 0)
self.calmode = "%s,%s,%s" % (hdr.get('SCI-OBJ', ''), hdr.get('CAL-OBJ', ''), hdr.get('SKY-OBJ', ''))
#calmodedict = {'objcal':'OBJ,CAL','objsky':'OBJ,SKY'}
#if calmode in calmodedict: calmode = calmodedict[calmode]
self.ccf.rvc = hdr.get(HIERHIFLEX+'RV_BARY___', np.nan)
self.ccf.err_rvc = hdr.get(HIERHIFLEX+'RV_ERR____', np.nan)
self.ra = hdr[HIERHIFLEX + 'RA']
self.de = hdr[HIERHIFLEX + 'DEC']
self.airmass = hdr.get(HIERHIFLEX + 'AIRMASS', np.nan)
self.exptime = hdr[HIERHIFLEX+'EXPOSURE']
self.tmmean = hdr.get(HIERHIFLEX+'EXP_FRAC', 0.5)
if 'OBJECT' not in hdr.keys():
hdr['OBJECT'] = hdr.get(HIERHIFLEX+'OBJNAME', 'Dummy')
def data(self, orders=None, pfits=True):
if 1: # read order data
if hasattr(self, 'hdu'): # read directly
data = self.hdu.getdata()
else:
if not hasattr(self, 'hdulist'):
scan(self, self.filename)
data = self.hdulist[0].section[:]
data = data.astype(dtype=np.float64)
f = data[hdatf,orders,:] # higher scatter of resulting RVs
#f = data[5,orders,:] # no information about flux (continuum corrected)
e = data[hdate,orders,:]
#w = data[0,orders,:] # Wavelength, drift corrected, barycentric correction
w = data[hdatw,orders,:] # Wavelength, drift corrected
s = data[hdats,orders,:] # Mask
bpmap = np.isnan(f).astype(int) # flag 1 for nan
e[np.isnan(e)] = 0
e[e<0] = np.median(e[e>0],axis=None)
with np.errstate(invalid='ignore'):
bpmap[f <= 0.001] |= flag.neg # flag 2 for zero and negative flux
bpmap[f < -3*e] |= flag.neg # flag 2 for zero and negative flux
bpmap[s == 0.2] |= flag.neg # bad-pixel
bpmap[s == 0.1] |= flag.sat # saturated
bpmap[e==0] |= flag.nan
w = airtovac(w)
return w, f, e, bpmap