-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_badpx_mask.py
353 lines (317 loc) · 18.4 KB
/
create_badpx_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import numpy as np
import os
#import sys
from procedures import *
from tqdm import tqdm
import copy
import random
# =============================================================================
# Define variables
# =============================================================================
params = dict() # default param dictionary
global calimages # dictionary for all calibration images
# location of config file
CONFIGFILE = 'conf.txt'
#params['exptimes'] = [0.1,0.2,0.3,0.5,0.7, 1,1.5,2,3,4,5,6,8,10,12]
params['exptimes'] = [0.1,0.3,0.5,0.7,0.9, 1.1,1.3,1.5,1.7,1.9, 2.1,2.3,2.5,2.7,2.9] #21/7
params['exptimes'] = [0.1,0.4,0.7, 1,1.2,1.4,1.6,1.8, 2,2.2,2.4,2.6,2.8, 3,3.2,3.4,3.6,3.8, 4,4.2,4.5] #5/12
#params['exptimes'] = [1,2,3,3.4,3.8] #5/12
#params['exptimes'] = [3.8] #5/12
#params['exptimes'] = [0.01,0.04,0.07,0.1,0.4,0.5, 1,1.3,1.7, 2,2.4,2.8,3.2,3.6, 4,4.5,5] #5/1
#params['exptimes'] = [0.1,1,3.2] #5/1
params['exptimes'] = [0.1,0.15,0.2,0.3,0.5,0.7, 1,1.5,2,3,5,7, 10,15,16,17,18,19,20] # 20180924
params['exptimes'] = [0.001,0.002,0.003,0.005,0.007, 0.01,0.02,0.03,0.05,0.07, 0.1,0.2,0.3,0.5,0.7, 1,2,3,5,7, 10] # 20190110
params['exptimes'] = [0.01,0.02,0.03,0.05,0.07, 0.1,0.2,0.3,0.5,0.7, 1,2,3,5,7, 10] # 20190110
params['exptimes'] = [0.001,0.01,0.02,0.03,0.05,0.07, 0.1,0.2,0.3,0.5,0.7, 1,1.5,2,2.5,3,3.5,4,5,6,7] # 20190116
#params['exptimes'] = [0.5,0.7, 1,1.5,2,2.5,3,3.5,4,5,6] # 20190116
params['exptimes'] = [1,10,20,40,60] # 20190116
params['exptimes'] = [0.01, 0.02,0.03,0.04,0.06,0.08, 0.1,0.12,0.14,0.16,0.18, 0.2,0.22,0.24,0.26,0.28, 0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 2,2.2,2.4,2.6,2.8, 3,3.2,3.4,3.6,3.8, 4,4.2,4.4,4.6,4.8, 5,5.2,5.4,5.6,5.8, 6,6.2,6.4,6.6,6.8, 7,7.2,7.4,7.6] # 20190116
#params['exptimes'] = []
range_bias = range(1,52)
range_dark = range(1,8)
range_flat = range(1,6)
#range_flat = range(0,0)
show_stats = ['bias', 'dark', 'flat']
show_stats = ['flat']
show_stats = ['dark']
show_stats = []
params['gains'] = 'gains.fits'
params['zerop'] = 'zerop.fits'
params['xord'], params['yord'] = 5, 5 # for qsi camera yord is along dispersion axis, 3,4 needs about 3GB memory, 4,4 about 3.5 GB; 1,0 is for bias/dark; 4,4 for flats, gain
params['xord'], params['yord'] = 2, 2 # for biases/darks
#get_statistics = ['Flat-0001_0p001s.fit', 'Flat-0002_0p001s.fit', 'Flat-0003_0p001s.fit', 'Flat-0004_0p001s.fit', 'Flat-0005_0p001s.fit', 'Flat-0001b_0p001s.fit', 'Flat-0002b_0p001s.fit', 'Flat-0003b_0p001s.fit', 'Flat-0004b_0p001s.fit', 'Flat-0005b_0p001s.fit', 'Flat-0001c_0p001s.fit', 'Flat-0002c_0p001s.fit', 'Flat-0003c_0p001s.fit', 'Flat-0004c_0p001s.fit', 'Flat-0005c_0p001s.fit']
get_statistics = []
# Start of code
# deal with arguments from a text file
params = textfileargs(params, CONFIGFILE)
params['raw_data_path'] = params['raw_data_paths'][0] # Compatibility after 20190530
def find_stats(im_stats):
if len(im_stats) == 0:
return
stat_single = []
for im in tqdm(im_stats):
im_fit = fit_2d_image(im, params['xord'], params['yord'])
im_diff = im - im_fit
#plot_img_spec.plot_image(im_diff, ['savepaths'], 1, True, [0.05,0.95,0.95,0.05], 'residuals between fit of the gain and the gain')
list_diff = im_diff.flatten()
bins = int( ( max(list_diff) - min(list_diff) ) / 25 + 1) # 25 ADU wide bins
hist, bin_edges = np.histogram(list_diff, bins=bins)
#print hist,bin_edges, hist.shape,bin_edges.shape
#plot_img_spec.plot_points([bin_edges], [hist], ['histogram'], '', show=True, return_frame=False, x_title='flux [ADU]', y_title='number')
index = np.argmax(hist)
indexl = -1
indexr = len(bin_edges)-1 # -1 because otherwise it would try to read the index after the last one
for i in range(index-1)[::-1]:
if hist[i] == 0:
indexl = i
break
for j in range(index+1,len(hist)):
if hist[j] == 0:
indexr = j
break
#print indexl,indexr, len(list_diff), len(hist), len(bin_edges), bin_edges[indexl+1], bin_edges[indexr]
list_diff = list_diff[list_diff >= bin_edges[indexl+1] ]
list_diff = list_diff[list_diff <= bin_edges[indexr] ]
#print len(list_diff)
stat_single.append([len(stat_single), np.mean(im), np.median(im), np.std(im, ddof=1), np.median(im_diff), np.std(im_diff, ddof=1), np.std(list_diff, ddof=1)])
printarrayformat = ['%1.1i', '%3.1f', '%3.1f', '%4.2f', '%3.1f', '%4.2f', '%4.2f']
logger(('The individual files have the following properties (values given in ADU, the first set without a fit of the data, the second is on the residuals of the data, the third is the residuals, cleared by outlier):'+os.linesep+\
'\t\tindex\taverage\tmedian\tstdev\tmedian\tstdev\tstdev'),printarrayformat=printarrayformat, printarray=stat_single)
stat_diff = []
for i in range(len(im_stats)-1):
for j in range(i+1,len(im_stats)):
im = im_stats[i]-im_stats[j]
stat_diff.append([i,j, np.mean(im), np.median(im), np.std(im, ddof=1)])
printarrayformat = ['%1.1i', '%1.1i', '%4.2f', '%4.2f', '%5.3f']
logger(('The difference between 2 files have the following properties (values given in ADU, stdev defines the readout noise):'+os.linesep+\
'\t\tindex1\tindex2\taverage\tmedian\tstdev'),printarrayformat=printarrayformat, printarray=stat_diff)
def plot_linearity_UI(exp_times, data, title='', adjust=[0.07,0.90,0.94,0.06, 1.0,1.01]):
fig, frame = plt.subplots(1, 1)
plt.subplots_adjust(left=adjust[0], right=adjust[1], top=adjust[2], bottom=adjust[3])
datac = np.median(data, axis=(1,2))
def plot(frame, x, data, datac):
frame.clear()
datas = data.shape
try:
option = gui3.data['option_plot']
except:
option = 0
try:
number_graphs = gui3.data['number_graphs']
except:
number_graphs = 5 # not yet initialised
for number in range(number_graphs):
i, j = np.random.randint(0,datas[1]+1), np.random.randint(0,datas[2]+1) # get random pixel
if option == 0:
frame.plot((data[1:,i,j]-data[0,i,j]), (data[1:,i,j]-data[0,i,j])/(x[1:]-x[0]), label='{0},{1}'.format(i,j) )
elif option == 1:
frame.plot(x, data[:,i,j], label='{0},{1}'.format(i,j) )
elif option == 2:
frame.plot(x, data[:,i,j]/x, label='{0},{1}'.format(i,j) )
elif option == 3:
frame.plot(x[1:], (data[1:,i,j]-data[0,i,j])/(x[1:]-x[0]), label='{0},{1}'.format(i,j) )
if option == 0:
frame.plot((datac[1:]-datac[0]), (datac[1:]-datac[0])/(x[1:]-x[0]), label='all', linewidth=3, color='black' )
elif option == 1:
frame.plot(x, datac[:], label='all', linewidth=3, color='black' )
elif option == 2:
frame.plot(x, datac[:]/x, label='all', linewidth=3, color='black' )
elif option == 3:
frame.plot(x[1:], (datac[1:]-datac[0])/(x[1:]-x[0]), label='all', linewidth=3, color='black' )
#xlabel_text = 'exposure time [s]'
xlabel_text = ['zero-corrected flux [ADU]' , 'exposure time [s]', 'exposure time [s]' , 'exposure time [s]' ]
ylabel_text = ['zero-corrected flux devided by exposure time [ADU/s]', 'flux [ADU]' , 'flux divided by exposure time [ADU/s]' , 'zero-corrected flux divided by exposure time [ADU/s]' ]
frame.set_xlabel(xlabel_text[option], fontsize=14)
frame.set_ylabel(ylabel_text[option], fontsize=14)
frame.set_title(title, fontsize=16)
frame.legend(loc='upper left', bbox_to_anchor=(adjust[4], adjust[5]))
# get kwargs
pkwargs = dict(frame=frame, x=exp_times, data=data, datac=datac)
# run initial update plot function
plot(**pkwargs)
# define valid_function
# input is one variable (the string input)
# return is either:
# True and values
# or
# False and error message
def vfunc_int(xs):
try:
value = int(xs)
return True, value
except:
return False, ('Error, input must be integer')
# define widgets
widgets = dict()
starta = 5
startb = 0
widgets['number_graphs'] = dict(label='Number of{0}Graphs?'.format(os.linesep), comment=None, #'integer',
kind='TextEntry', minval=None, maxval=None,
fmt=str, start=starta, valid_function=vfunc_int,
width=10)
widgets['option_plot'] = dict(label='Option', comment='0, 1, 2, or 3',
kind='TextEntry', minval=None, maxval=None,
fmt=str, start=startb, valid_function=vfunc_int,
width=10)
widgets['accept'] = dict(label='Close', kind='ExitButton', position=Tk.BOTTOM)
widgets['update'] = dict(label='Update', kind='UpdatePlot', position=Tk.BOTTOM)
wprops = dict(orientation='v', position=Tk.RIGHT)
gui3 = tkc.TkCanvas(figure=fig, ax=frame, func=plot, kwargs=pkwargs,
title='Plot flux as funktion of exposure time', widgets=widgets,
widgetprops=wprops)
gui3.master.mainloop()
if __name__ == "__main__":
logger('Info: Starting routine to create a bad pixel map')
log_params(params)
if True: # run everything with and without a badpx mask
calimages['badpx_mask'] = np.ones((params['subframe'][0],params['subframe'][1]))
biases, im_stats = [], []
params['calibs'] = ['subframe', 'badpx_mask']
for i in range_bias:
biases.append(params['raw_data_path']+'Bias-{0}.fit'.format('%4.4i'%i)) # Change the name of the Bias files, if necessary
if 'bias' in show_stats:
im, im_head = read_file_calibration(params, biases[-1])
im_stats.append(im)
params['bias_rawfiles'] = biases
params['bias_calibs_create'] = ['subframe', 'badpx_mask']
params['master_bias_filename'] = 'master_bias.fits'
im_bias, im_head_bias = create_image_general(params, 'bias')
find_stats(im_stats)
if len(get_statistics) > 0:
#params['subframe'] = [48,48,1000,1000] # measure the gain in a subwindow
params['calibs'] = ['subframe', 'badpx_mask']
images = []
for image in get_statistics:
images.append(params['raw_data_path']+image)
im, im_head = read_file_calibration(params, images[-1])
im_stats.append(im)
find_stats(im_stats)
im_flats = []
for exptime in params['exptimes']:
expname = str(exptime)
expname = expname.replace('.','p')
flats, darks, im_stats = [], [], []
for i in range_dark:
darks.append(params['raw_data_path']+'Dark-{0}_{1}s.fit'.format('%4.4i'%i, expname)) # Change the name of the Dark files, if necessary
if 'dark' in show_stats:
params['calibs'] = ['subframe', 'badpx_mask']
im, im_head = read_file_calibration(params, darks[-1])
im_stats.append(im)
params['dark{0}_rawfiles'.format(exptime)] = darks
params['master_dark{0}_filename'.format(exptime)] = 'master_dark_{0}s.fits'.format(expname) # Change the name of the Flat files, if necessary
#im_dark, im_head_dark = create_image_general(params, 'dark{0}'.format(exptime)) # if you need the master dark files
find_stats(im_stats)
if len(range_flat) == 0:
continue
for i in range_flat:
flats.append(params['raw_data_path']+'Flat-{0}_{1}s.fit'.format('%4.4i'%i, expname))
if 'flat' in show_stats:
params['calibs'] = ['subframe', 'badpx_mask'] # is overwritten, if a dark is loaded
im, im_head = read_file_calibration(params, flats[-1]) # disable, if only darks should be checked and flats with this exposure time don't exist
im_stats.append(im)
params['flatexp_rawfiles'] = flats # don't use flat_rawfiles, as this will overwrite the standard flat
params['flatexp_calibs_create'] = ['subframe', 'badpx_mask', 'normalise']
params['master_flatexp_filename'] = 'master_flat_{0}s.fits'.format(expname)
im_flat, im_head_flat = create_image_general(params, 'flatexp') # disable this and the following 7 lines, if only darks should be checked and flats with this exposure time don't exist
ims = im_flat.shape
ims = np.insert(ims, 0, 1) #Add one dimension, to append the files
im_flat.shape = ims
if len(im_flats) == 0:
im_flats = im_flat
else:
im_flats = np.append(im_flats, im_flat, axis=0)
find_stats(im_stats)
#exit(100)
exptimes = np.array(params['exptimes'],dtype=float)
badpx_mask = calimages['badpx_mask']
try:
im_head_bias
except:
im_head_bias = im_head
# Check the gain and zeropoint for different max_good_values to check the linearity
print('Check for linearity')
# Create the data as Mugrauer 2010
datac = np.median(im_flats, axis=(1,2))
# Plot the data
plot_linearity_UI(exptimes, im_flats)
for max_value in [1200,2500,10000,13000,20000,30000,40000,50000,55000,60000,61000,62000,630000,640000]:
gains = copy.copy(badpx_mask)*0
zerop = copy.copy(badpx_mask)*0
for i in tqdm(range(params['subframe'][0]), desc='determine the gain for each pixel for up to {0} ADU: maximum flux, gain, zeropoint'.format(max_value)):
for j in range(params['subframe'][1]):
exp_range = (im_flats[:,i,j] < max_value)# & (im_flats[:,i,j] > 100)
fit = np.polyfit(exptimes[exp_range], im_flats[exp_range,i,j],1)
gains[i,j] = fit[0]
zerop[i,j] = fit[1]
print(max_value, np.median(gains), np.median(zerop))
if os.path.isfile(params['result_path']+params['gains']) == True and os.path.isfile(params['result_path']+params['zerop']) == True:
params['calibs'] = ['subframe', 'badpx_mask']
#gains, im_head = read_file(params, params['result_path']+params['gains'])
#zerop, im_head = read_file(params, params['result_path']+params['zerop'])
gains, im_head = read_file_calibration(params, params['result_path']+params['gains'])
zerop, im_head = read_file_calibration(params, params['result_path']+params['zerop'])
else:
gains = copy.copy(badpx_mask)*0
zerop = copy.copy(badpx_mask)*0
for i in tqdm(range(params['subframe'][0]), desc='determine the gain for each pixel'):
for j in range(params['subframe'][1]):
exp_range = (im_flats[:,i,j] < params['max_good_value'])# & (im_flats[:,i,j] > 100)
fit = np.polyfit(exptimes[exp_range], im_flats[exp_range,i,j],1) # linear fit
gains[i,j] = fit[0]
zerop[i,j] = fit[1]
save_im_fits(params, gains, im_head_bias, params['result_path']+params['gains'])
save_im_fits(params, zerop, im_head_bias, params['result_path']+params['zerop'])
gain_fit = fit_2d_image(gains, params['xord'], params['yord'])
gain_diff = gains - gain_fit
plot_img_spec.plot_image(gain_diff, ['savepaths'], 1, True, [0.05,0.95,0.95,0.05], 'residuals between fit of the gain and the gain')
plot_img_spec.plot_image(gains, ['savepaths'], 1, True, [0.05,0.95,0.95,0.05], 'gain')
plot_img_spec.plot_image(gain_fit, ['savepaths'], 1, True, [0.05,0.95,0.95,0.05], 'fit of the gain')
plot_img_spec.plot_image(gain_diff, ['savepaths'], 1, True, [0.05,0.95,0.95,0.05], 'residuals between fit of the gain and the gain')
""" # old solution without fit
gain80pctl = percentile_list(sum(gains.tolist(),[]),0.1)
gain, gain_std = np.mean(gain80pctl), np.std(gain80pctl)
logger('Info: The gain is {0} +- {1} ADU/s'.format(round(gain,2), round(gain_std,2)))
for sigm in [1,2,3,3.5,4,4.5,5,5.5,6,7,8]:
print 'With {0} Sigma, {1} pixel would be marked as bad'.format(sigm, np.sum(abs(gains - gain) > sigm * gain_std))
"""
gain95pctl = percentile_list(gain_diff.flatten(), 0.025)
average, gain_std = np.mean(gain95pctl), np.std(gain95pctl)
logger('Info: The average offset between fit and data is {0} ADU/s. The noise of the sensitivity is {1} ADU/s'.format(round(average,2), round(gain_std,2)))
sigm, badpx = 1., 1
while badpx > 0:
badpx = np.sum(abs(gain_diff - average) > sigm * gain_std)
print('With {0} Sigma, {1} pixel would be marked as bad'.format(sigm, badpx))
sigm +=.5
sigma = float(raw_input('What Sigma to use?{0}>> '.format(os.linesep)))
badpx_mask[abs(gain_diff - average) > sigma * gain_std] = 0
for fname in ['investigation_badpx.cvs', 'investigation_goodpx.cvs']:
exptimes = params['exptimes']
text = ['x+1','y+1','gain','zerop']
for i in exptimes:
text.append(str(i))
coords = []
if fname == 'investigation_badpx.cvs':
coord = np.where(badpx_mask == 0)
for i in range(coord[0].shape[0]):
coords.append([coord[0][i],coord[1][i]])
else:
while len(coords)<50:
i,j = random.randint(0,params['subframe'][0]), random.randint(0,params['subframe'][1])
if badpx_mask[i,j] != 0:
coords.append([i,j])
for [i,j] in coords:
text[0] += '\t%1.1i'%(i+1)
text[1] += '\t%1.1i'%(j+1)
text[2] += '\t%1.1f'%gains[i,j]
text[3] += '\t%1.1f'%zerop[i,j]
for k in range(len(exptimes)):
text[k+4] += '\t'
if im_flats[k,i,j] < params['max_good_value']:
text[k+4] += '%1.1f'%im_flats[k,i,j]
file = open(fname,'w')
for line in text:
file.write(line+os.linesep)
file.close()
save_im_fits(params, badpx_mask, im_head_bias, params['badpx_mask_filename'].rsplit('/',1)[1])
log_params(params)
logger('Info: Finished creating the bad pixel mask')