-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexsheets.tex
95 lines (80 loc) · 2.8 KB
/
exsheets.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
\documentclass[a4paper,12pt]{article}
\usepackage{amsmath}
\usepackage{exsheets} % Import the exsheets package for creating exercises
\usepackage{geometry}
\geometry{margin=1in}
\usepackage{lmodern} % Enhanced font readability
% Setup for exsheets
\SetupExSheets{
headings=runin,
solution/print=true, % Uncomment this line if you want solutions printed
solution/pre-hook={\par\textbf{Solution:}~}
}
\title{LC Ordinary Level Algebra}
\author{Ronan}
\date{\today}
\begin{document}
\maketitle
\section*{Introduction}
This worksheet covers essential topics in Ordinary Level Leaving Certificate Algebra. Each question is designed to help students build confidence and proficiency in algebraic manipulation and problem-solving.
\section{Linear Equations}
\begin{question}
Solve the following linear equations for \( x \):
\begin{enumerate}
\item \( 2x + 5 = 15 \)
\item \( 4x - 3 = 13 \)
\item \( \frac{x}{2} + 7 = 10 \)
\end{enumerate}
\end{question}
\begin{solution}
\begin{enumerate}
\item \( 2x + 5 = 15 \Rightarrow 2x = 10 \Rightarrow x = 5 \)
\item \( 4x - 3 = 13 \Rightarrow 4x = 16 \Rightarrow x = 4 \)
\item \( \frac{x}{2} + 7 = 10 \Rightarrow \frac{x}{2} = 3 \Rightarrow x = 6 \)
\end{enumerate}
\end{solution}
\section{Quadratic Equations}
\begin{question}
Solve the following quadratic equations:
\begin{enumerate}
\item \( x^2 - 5x + 6 = 0 \)
\item \( x^2 + 4x - 12 = 0 \)
\end{enumerate}
\end{question}
\begin{solution}
\begin{enumerate}
\item \( x^2 - 5x + 6 = 0 \Rightarrow (x - 2)(x - 3) = 0 \Rightarrow x = 2, x = 3 \)
\item \( x^2 + 4x - 12 = 0 \Rightarrow (x + 6)(x - 2) = 0 \Rightarrow x = -6, x = 2 \)
\end{enumerate}
\end{solution}
\section{Simultaneous Equations}
\begin{question}
Solve the following simultaneous equations:
\begin{enumerate}
\item \( 2x + y = 7 \)
\item \( 3x - y = 8 \)
\end{enumerate}
\end{question}
\begin{solution}
Adding the two equations: \\
\( (2x + y) + (3x - y) = 7 + 8 \Rightarrow 5x = 15 \Rightarrow x = 3 \).\\
Substitute \( x = 3 \) into \( 2x + y = 7 \Rightarrow 2(3) + y = 7 \Rightarrow y = 1 \).\\
Thus, the solution is \( x = 3, y = 1 \).
\end{solution}
\section{Algebraic Fractions}
\begin{question}
Simplify the following algebraic fractions:
\begin{enumerate}
\item \( \frac{2x^2 - 8}{4x} \)
\item \( \frac{x^2 - 9}{x + 3} \)
\end{enumerate}
\end{question}
\begin{solution}
\begin{enumerate}
\item \( \frac{2x^2 - 8}{4x} = \frac{2(x^2 - 4)}{4x} = \frac{2(x - 2)(x + 2)}{4x} = \frac{(x - 2)(x + 2)}{2x} \)
\item \( \frac{x^2 - 9}{x + 3} = \frac{(x - 3)(x + 3)}{x + 3} = x - 3 \) (for \( x \neq -3 \))
\end{enumerate}
\end{solution}
\section*{Conclusion}
This worksheet covered a range of algebraic topics. Students should ensure they understand each solution step-by-step before moving on to more complex problems.
\end{document}