diff --git a/examples/pytorch/yolov5/test.py b/examples/pytorch/yolov5/test.py index 8c57244..045d414 100644 --- a/examples/pytorch/yolov5/test.py +++ b/examples/pytorch/yolov5/test.py @@ -14,7 +14,8 @@ BOX_THRESH = 0.5 NMS_THRESH = 0.6 IMG_SIZE = (640, 640) # (width, height), such as (1280, 736) - +SHAPES =((0.0, 0.0), (0.0, 0.0)) # scale_coords: such as ((0.33, 0.33), (0.0, 140.0)) +SHAPE =(0,0)# scale_coords: such as (1080, 1920) CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light", "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant", "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite", @@ -168,6 +169,7 @@ def yolov5_post_process(input_data): return None, None, None boxes = np.concatenate(nboxes) + scale_coords(IMG_SIZE, boxes, SHAPE, SHAPES) classes = np.concatenate(nclasses) scores = np.concatenate(nscores) @@ -222,6 +224,25 @@ def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)): im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return im, ratio, (dw, dh) +def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): + # Rescale coords (xyxy) from img1_shape to img0_shape + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + coords[:, [0, 2]] -= pad[0] # x padding + coords[:, [1, 3]] -= pad[1] # y padding + coords[:, :4] /= gain + clip_coords(coords, img0_shape) + return coords + +def clip_coords(boxes, shape): + # Clip bounding xyxy bounding boxes to image shape (height, width) + boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 + boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 if __name__ == '__main__': @@ -282,8 +303,10 @@ def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)): print('done') # Set inputs - img = cv2.imread(IMG_PATH) - img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE[1], IMG_SIZE[0])) + original_img = cv2.imread(IMG_PATH) + img, ratio, pad = letterbox(original_img, new_shape=(IMG_SIZE[1], IMG_SIZE[0])) + SHAPES=(ratio,pad) + SHAPE=(original_img.shape[0],original_img.shape[1]) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Inference @@ -306,10 +329,9 @@ def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)): boxes, classes, scores = yolov5_post_process(input_data) - img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if boxes is not None: - draw(img_1, boxes, scores, classes) - cv2.imshow("post process result", img_1) + draw(original_img, boxes, scores, classes) + cv2.imshow("post process result", original_img) cv2.waitKeyEx(0) rknn.release()