-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcategorize-transactions.py
executable file
·247 lines (200 loc) · 7.85 KB
/
categorize-transactions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python3
from argparse import ArgumentParser
import csv
from dataclasses import dataclass
from decimal import Decimal
from datetime import date, datetime
import json
import sys
from typing import Dict, List, TextIO
@dataclass
class Transaction:
"""A single transaction from a bank or other statement."""
date: date
description: str
debit_amount: Decimal
credit_amount: Decimal
class Category:
def __init__(self, name: str, description_patterns: List[str]):
self.name = name
self.description_patterns = [pat.lower() for pat in description_patterns]
def matches(self, tx: Transaction):
tx_desc = tx.description.lower()
return any(pat in tx_desc for pat in self.description_patterns)
# Standard columns in a CSV export from Lloyds Bank.
LLOYDS_STATEMENT_COLUMNS = [
"Transaction Date",
"Transaction Type",
"Sort Code",
"Account Number",
"Transaction Description",
"Debit Amount",
"Credit Amount",
"Balance",
]
def parse_lloyds_statement(statement_csv_file: TextIO) -> List[Transaction]:
"""
Parse a transaction CSV file in the format exported by Lloyds Bank.
The expected set of fields is:
Date, Type, Sort Code, Account Number, Description, Debit Amount, Credit Amount, Balance
"""
transactions = []
tx_reader = csv.reader(statement_csv_file)
header_row = next(tx_reader)
if header_row != LLOYDS_STATEMENT_COLUMNS:
raise Exception("Statement header columns do not match expected columns")
for row in tx_reader:
(
date,
type_,
sort_code,
account_code,
desc,
debit_amount,
credit_amount,
balance,
) = row
parsed_date = datetime.strptime(date, "%d/%m/%Y").date()
tx = Transaction(
date=parsed_date,
description=desc,
debit_amount=Decimal(debit_amount) if debit_amount else Decimal(),
credit_amount=Decimal(credit_amount) if credit_amount else Decimal(),
)
transactions.append(tx)
return transactions
def parse_categories(categories_json: TextIO) -> List[Category]:
category_rules = json.load(categories_json)["categories"]
categories = []
for cat_json in category_rules:
cat = Category(
name=cat_json["category"], description_patterns=cat_json["description"]
)
categories.append(cat)
return categories
def category_matches(transaction: Transaction, categories: List[Category]):
return [cat for cat in categories if cat.matches(transaction)]
if __name__ == "__main__":
parser = ArgumentParser(description="Bank transaction analyzer")
parser.add_argument("categories", help="JSON file containing categories")
parser.add_argument("transactions", help="CSV file containing transactions")
parser.add_argument(
"--list-categories",
dest="list_categories",
action="store_true",
help="List transaction categories",
)
parser.add_argument(
"--select-categories",
dest="select_categories",
type=str,
help="Comma-separated list of transaction categories to include",
)
parser.add_argument(
"--tx-details",
dest="tx_details",
action="store_true",
help="Print details of matching transactions",
)
args = parser.parse_args()
transactions = parse_lloyds_statement(open(args.transactions))
categories = parse_categories(open(args.categories))
category_from_name = {}
for cat in categories:
category_from_name[cat.name] = cat
if args.list_categories:
cat_names = sorted(cat.name for cat in categories)
for name in cat_names:
print(name)
sys.exit(0)
# Filter transactions by category if `--select-categories` is specified.
if args.select_categories:
filter_categories = set(
category_from_name[cat] for cat in args.select_categories.split(",")
)
transactions = [
tx
for tx in transactions
if set(category_matches(tx, categories)) & filter_categories
]
# Re-sort transactions in date order ascending.
#
# Lloyds CSV export sorts them in date order descending.
transactions = sorted(transactions, key=lambda tx: tx.date)
# Classify transactions.
category_transactions: Dict[str, List[Transaction]] = {}
unknown_tx_descriptions: Dict[str, List[Transaction]] = {}
multiple_category_tx_descriptions: Dict[str, List[Category]] = {}
if args.tx_details:
print("Matched transactions:")
for tx in transactions:
tx_cats = category_matches(tx, categories)
if len(tx_cats) > 1:
multiple_category_tx_descriptions[tx.description] = tx_cats
if not len(tx_cats):
cat_name = "Unknown"
if not tx.description in unknown_tx_descriptions:
unknown_tx_descriptions[tx.description] = []
unknown_tx_descriptions[tx.description].append(tx)
else:
cat_name = tx_cats[0].name
if not cat_name in category_transactions:
category_transactions[cat_name] = []
category_transactions[cat_name].append(tx)
if args.tx_details:
print(f" {tx.date},{tx.description},{tx.debit_amount},{tx.credit_amount}")
# List transactions that could not be categorized.
if len(multiple_category_tx_descriptions):
print(
f"\n{len(multiple_category_tx_descriptions)} transactions matched multiple categories:"
)
for desc in sorted(multiple_category_tx_descriptions.keys()):
cat_list = ", ".join(
c.name for c in multiple_category_tx_descriptions[desc]
)
print(f" {desc}: {cat_list}")
if len(unknown_tx_descriptions):
print(f"\n{len(unknown_tx_descriptions)} transactions with unknown category:")
for desc in sorted(unknown_tx_descriptions.keys()):
txs = unknown_tx_descriptions[desc]
debit_total = sum(tx.debit_amount for tx in txs)
credit_total = sum(tx.credit_amount for tx in txs)
totals = []
if debit_total > 0:
totals.append(f"{debit_total} out")
if credit_total > 0:
totals.append(f"{credit_total} in")
print(f" {desc}: {', '.join(totals)}")
# Print transaction totals.
print(f"\nTransaction totals by sender/receiver:")
tx_descriptions = set(tx.description for tx in transactions)
for desc in sorted(tx_descriptions):
txs = [tx for tx in transactions if tx.description == desc]
txs = sorted(txs, key=lambda tx: tx.date)
debit_total = sum(tx.debit_amount for tx in txs)
credit_total = sum(tx.credit_amount for tx in txs)
totals = []
if debit_total > 0:
totals.append(f"{debit_total} out")
if credit_total > 0:
totals.append(f"{credit_total} in")
first_tx_date = txs[0].date.strftime("%d/%m/%y")
last_tx_date = txs[-1].date.strftime("%d/%m/%y")
if first_tx_date == last_tx_date:
date_range = first_tx_date
else:
date_range = f"{first_tx_date}-{last_tx_date}"
print(f" {desc} ({len(txs)}): {', '.join(totals)}. {date_range}")
# Print category totals.
print(f"\nCategory totals:")
cat_names = sorted(category_transactions.keys())
for cat_name in cat_names:
cat_txs = category_transactions[cat_name]
debit_total = sum(tx.debit_amount for tx in cat_txs)
credit_total = sum(tx.credit_amount for tx in cat_txs)
totals = []
if debit_total > 0:
totals.append(f"{debit_total} out")
if credit_total > 0:
totals.append(f"{credit_total} in")
print(f" {cat_name}: {', '.join(totals)}")