-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
44 lines (38 loc) · 1.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import training.utils as utils
from training.train_model import train_arm_model
import os
import json
import wandb
from datetime import datetime
if __name__ == '__main__':
params = utils.read_params()
utils.set_random_seed(params.seed)
# Data
dataloaders_dict = utils.make_dataloaders(params, training_proportion=0.8)
# Model
model, model_name = utils.make_model(params)
# Logistics
now = datetime.now()
since = now.strftime("%m-%d-%H-%M")
experiment_name = f"{model_name}_lr{params.lr}_eikonal{params.eikonal}_{since}"
wandb.init(project='SDF RTD', name=experiment_name, group=params.wandb_group_name)
experiment_name = "runs/" + experiment_name
if not os.path.exists(experiment_name):
if not os.path.exists('runs/'):
os.mkdir('runs/')
os.mkdir(experiment_name)
with open(os.path.join(experiment_name, "training_setting.json"), 'w') as f:
json.dump(params.__dict__, f, indent=4)
print(f"Launching experiment with config {params.__dict__}")
device = torch.device(f"cuda:{params.device}" if torch.cuda.is_available() else "cpu")
wandb.config.update(params)
print(f"Starting experiment {experiment_name} using device {device}")
# Learning
optimizer = torch.optim.AdamW(model.parameters(), lr=params.lr, betas=(params.beta1, params.beta2), weight_decay=params.weight_decay)
if params.robot == 'arm':
best_model, best_loss = train_arm_model(model, dataloaders_dict, optimizer, num_epochs=params.num_epochs, device=device, experiment_name=experiment_name, params=params)
else:
raise NotImplementedError(f"Such training is not implemented yet for {params.robot}")
print(f"Training ends with best loss = {best_loss}")
wandb.finish()