Skip to content

Latest commit

 

History

History
92 lines (67 loc) · 2.35 KB

README.md

File metadata and controls

92 lines (67 loc) · 2.35 KB

ROADpp_challenge_ICCV2023

File Tree

├── demo_pic_and_video
├── ROAD_Waymo_Baseline
├── Road-waymo-dataset
├── runs (Save model's weight)
│   ├── action
│   ├── detect
│   └── location
├── Track1
├── Track2
├── utils

Track1 Full Pipeline

demo

Track2 Full Pipeline

demo

Environment Setup

conda create --name ROADpp python>=3.10
conda activate ROADpp
pip install -r requirement.txt

Pre-train Weight

Download Link (release soon)

├── runs (Save model's weight)
│   ├── action
│   ├── detect
│   └── location

Quick Start

You need to first understand how to configure the YAML file for YOLOv8, as well as the dataset format.

Example for Two branch Track1

cd ROADpp_challenge_ICCV2023
python detect.py --video_path 'xxx' --yolo_path 'xxx' --two_branch True --major_path 'xxx' rare_path 'xxx' --pkl_name 'xxx' --save_res 'xxx'

Config

  • mode: Detect mode, only accepts Track1 or Track2.

  • video_path: Path to the video.

  • yolo_path: Path to the YOLO model.

  • two_branch: Indicates whether to use two-branch YOLO.

  • major_path: Path to the major YOLO model.

  • rare_path: Path to the rare YOLO model.

  • devices: GPU number.

  • imgsz: YOLO input size.

  • video_shape: Original video resolution.

  • submit_shape: Final submit shape.

  • pkl_name: Submit file name (*.pkl).

  • save_res: Save submit file.

  • action_detector_path: Path to the action detector model (Track2 only).

  • loc_detector_path: Path to the location detector model (Track2 only).

  • t2_input_shape: Track 2 input shape.

  • windows_size: Sliding windows shape.

ToDo

  • Convert Datasets to YOLO format()
  • Train YOLOv8 on Track1(train_YOLOv8.py)
  • implement Tracklet Function
  • Track2 Pipeline
  • Two branch Yolo Pipeline
  • Implement linear interpolation bbox function
  • Complete quick start guide(config using YMAL file)
  • Fix T2 interpolation bug
  • Two branch T2