forked from foundation-model-stack/fms-hf-tuning
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathquantized_lora_config.py
72 lines (51 loc) · 2.04 KB
/
quantized_lora_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright The FMS HF Tuning Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Standard
from dataclasses import dataclass
from typing import List
# Local
from .utils import ensure_nested_dataclasses_initialized, parsable_dataclass
@parsable_dataclass
@dataclass
class AutoGPTQLoraConfig:
# auto_gptq supports various kernels, to select the kernel to use.
kernel: str = "triton_v2"
# allow auto_gptq to quantize a model before training commences.
# NOTE: currently this is not allowed.
from_quantized: bool = True
def __post_init__(self):
if self.kernel != "triton_v2":
raise ValueError("only 'triton_v2' kernel currently supported.")
if not self.from_quantized:
raise ValueError("only 'from_quantized' == True currently supported.")
@parsable_dataclass
@dataclass
class BNBQLoraConfig(List):
# type of quantization applied
quant_type: str = "nf4"
# if we only want to quantize the base layer, and defer to the
# huggingface to prepare the peft (i.e. lora) model
no_peft_model: bool = False
def __post_init__(self):
if self.quant_type not in ["nf4", "fp4"]:
raise ValueError("quant_type can only be either 'nf4' or 'fp4.")
@dataclass
class QuantizedLoraConfig:
# to use auto_gptq 4bit lora base layers
auto_gptq: AutoGPTQLoraConfig = None
# to use auto_gptq 4bit lora base layers
bnb_qlora: BNBQLoraConfig = None
def __post_init__(self):
# ensure nested dataclasses initialized
ensure_nested_dataclasses_initialized(self)