-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.R
199 lines (157 loc) · 7.46 KB
/
preprocess.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
library("data.table")
library("DataExplorer")
library("ggplot2")
library("lubridate")
#library("arules") #detach("package:arules", unload = TRUE)
library("tokenizers")
#library("stopwords") #detach("package:stopwords", unload = TRUE)
#library("tm") #detach("package:tm", unload = TRUE)
library(plyr)
library("stringr")
#library("fastrtext")
stopwords <- scan("stopwords.txt", character(), quote = "")
stopwords <- c(stopwords, scan("customstopwords.txt", character(), quote = ""))
stopwords <- c(stopwords, as.character(0:10))
csvData <- fread("gender-classifier.csv", encoding = 'UTF-8')
csvData$tweet_id <- NULL
csvData$profileimage <- NULL
csvData$gender_gold <- NULL
csvData$profile_yn_gold <- NULL
csvData$user_id <- csvData$'_unit_id'
csvData$'_unit_id' <- NULL
csvData <- csvData[csvData$profile_yn == "yes",]
csvData$profile_yn <- NULL
csvData <- csvData[csvData$gender != "unknown",]
#csvData$gender <- as.factor(csvData$gender) #hacerlo a lo ultimo si es necesario
csvData$'_unit_state' <- NULL
csvData$diff_prof_twt <- as.numeric(difftime(mdy_hms(csvData$tweet_created), mdy_hms(csvData$created), units = c("weeks")))
csvData$tweets_per_day <- round(csvData$tweet_count / as.numeric(difftime(now("UTC"), mdy_hms(csvData$created), units = c("days"))))
csvData$tweet_created <- NULL
csvData$created <- NULL
csvData$`_last_judgment_at` <- NULL
csvData$name <- NULL
csvData$tweet_coord <- NULL
csvData$tweet_location <- NULL
csvData$`_golden` <- NULL
csvData$`_trusted_judgments` <- NULL
csvData$text <- str_replace_all(csvData$text, "&", "&");
csvData$gender_confidence <- csvData$`gender:confidence`
csvData$`gender:confidence` <- NULL
csvData$profile_yn_confidence <- csvData$`profile_yn:confidence`
csvData$`profile_yn:confidence` <- NULL
csvData$user_timezone <- NULL
csvData[nchar(csvData$sidebar_color) != 6, "sidebar_color"] <- NA #seteo NA cuando no tienen un color valido
csvData$sidebar_color[!is.na(csvData$sidebar_color)] <- paste0("#", csvData$sidebar_color[!is.na(csvData$sidebar_color)])
csvData[nchar(csvData$link_color) != 6, "link_color"] <- NA #seteo NA cuando no tienen un color valido
csvData$link_color[grep("\\+", csvData$link_color)] <- NA #unos tenian datos raros
csvData$link_color[!is.na(csvData$link_color)] <- paste0("#", csvData$link_color[!is.na(csvData$link_color)])
#https://i.imgur.com/PKjgfFXm.jpg
#mejorar
#hay mucho cyan por #C0DEED
#ver q onda los blancos , negros y que color setear cuando no tiene uno valido
hex2colorname <- function(hexacolor){
if(is.na(hexacolor))
return("indeterminado")
coloresrgb <- col2rgb(hexacolor)[]
hue <- rgb2hsv(coloresrgb[1,],coloresrgb[2,],coloresrgb[3,])["h",1] * 360
if(hue >= 345 | hue < 30)
return("red")
if(hue >= 30 & hue < 45)
return("orange")
if(hue >= 45 & hue < 90)
return("yellow")
if(hue >= 90 & hue < 150)
return("green")
if(hue >= 150 & hue < 225)
return("cyan")
if(hue >= 225 & hue < 270)
return("blue")
if(hue >= 270 & hue < 285)
return("violet")
if(hue >= 285 & hue < 345)
return("magenta")
}
csvData$sidebar_color_cat <- sapply(csvData$sidebar_color, hex2colorname)
ggplot(csvData, aes(sidebar_color_cat)) +
geom_bar(aes(fill = gender), position=position_dodge())
csvData$link_color_cat <- sapply(csvData$link_color, hex2colorname)
ggplot(csvData, aes(link_color_cat)) +
geom_bar(aes(fill = gender), position=position_dodge())
armarVocabularios <- function (genero,columnName){
tokens <- tokenize_tweets(csvData[csvData$gender == genero, columnName, with=FALSE][[columnName]], stopwords = stopwords)
tokens <- unlist(tokens)
tokens <- tokens[is.na(as.numeric(tokens))] #filtro los numeros
tokens <- tokens[!grepl("www.|http:|https:", tokens)] #filtro urls
tokens <- tokens[str_length(tokens) > 2] #filtro palabras menores a 3
dftokens <- count(tokens)
names(dftokens) <- c("word", "freq")
dftokensMost <- head(dftokens[order(-dftokens$freq),], 15) #15 palabras de bow para cada genero
dftokensMost$relative <- dftokensMost$freq / sum(dftokensMost$freq) * 100
dftokensMost$freq <- NULL
return(dftokensMost)
}
vocabularios <- lapply(unique(csvData$gender), armarVocabularios, columnName="text")
vocabularios.male <- vocabularios[[1]]
vocabularios.female <- vocabularios[[2]]
vocabularios.brand <- vocabularios[[3]]
vocabulariosBio <- lapply(unique(csvData$gender), armarVocabularios, columnName="description")
vocabulariosBio.male <- vocabulariosBio[[1]]
vocabulariosBio.female <- vocabulariosBio[[2]]
vocabulariosBio.brand <- vocabulariosBio[[3]]
#tmp <- csvData[order(csvData$gender,csvData$diff_prof_twt),]
tmp <- csvData[order(csvData$gender),]
ggplot(data=tmp,aes(x=seq_along(tmp$diff_prof_twt), y=diff_prof_twt, color=gender)) +
geom_point( )
tmp2 <- csvData[order(csvData$gender),]
ggplot(data=tmp2,aes(x=seq_along(tmp2$tweets_per_day), y=tweets_per_day, color=gender)) +
geom_point( )
calculateVocabularyScore <- function(tweet_tokens, vocabulary){
return(sum(vocabulary[match(tweet_tokens, vocabulary$word), "relative"], na.rm = TRUE))
}
tweets_tokens <- tokenize_tweets(csvData$text, stopwords = stopwords)
csvData$score_vocab_brand <- sapply(tweets_tokens, calculateVocabularyScore, vocabulary = vocabularios.brand)
csvData$score_vocab_male <- sapply(tweets_tokens, calculateVocabularyScore, vocabulary = vocabularios.male)
csvData$score_vocab_female <- sapply(tweets_tokens, calculateVocabularyScore, vocabulary = vocabularios.female)
description_tokens <- tokenize_tweets(csvData$description, stopwords = stopwords)
csvData$score_vocabio_brand <- sapply(description_tokens, calculateVocabularyScore, vocabulary = vocabulariosBio.brand)
csvData$score_vocabio_male <- sapply(description_tokens, calculateVocabularyScore, vocabulary = vocabulariosBio.male)
csvData$score_vocabio_female <- sapply(description_tokens, calculateVocabularyScore, vocabulary = vocabulariosBio.female)
predictOnScore <- function(score_vocab_brand, score_vocab_male, score_vocab_female){
if(score_vocab_brand > score_vocab_male & score_vocab_brand > score_vocab_female)
return("brand")
if(score_vocab_male > score_vocab_brand & score_vocab_male > score_vocab_female)
return("male")
if(score_vocab_female > score_vocab_brand & score_vocab_female > score_vocab_male)
return("female")
return(NA)
}
#gender_predicts <- mapply(predictOnScore, csvData$score_vocab_brand,csvData$score_vocab_male,csvData$score_vocab_female)
#pred <- data.frame(gender_predicts,csvData$gender)
#pred <- pred[!is.na(pred$gender_predicts),]
#table(pred)
#mean(pred$gender_predicts == pred$csvData.gender)
#na.omit(gender_predicts == csvData$gender)
csvData$sidebar_color <- NULL
csvData$link_color <- NULL
csvData$description <- NULL
csvData$text <- NULL
str(csvData)
plot_missing(csvData)
plot_histogram(csvData)
plot_bar(csvData)
plot_boxplot(csvData, by = "gender")
#create_report(csvData)
summary(csvData$profile_yn)
unique(csvData$gender_gold)
qplot(csvData$gender_gold)
table(csvData$'profile_yn:confidence')
table(csvData$profile_yn_gold) / sum(table(csvData$profile_yn_gold))
set.seed(unclass(Sys.time()))
ids <- sample(nrow(csvData), replace = FALSE)
idsScore <- sample(length(ids), 400, replace = FALSE)
ids <- setdiff(ids, idsScore) #saco los id para scoring
#idsTrain <- sample(length(ids), round(0.8 * length(ids)), replace = FALSE)
fwrite(csvData[idsScore,], "data-score.csv", quote = TRUE)
#fwrite(csvData[idsTrain,-c("user_id")], "data-train.csv", quote = TRUE)
#fwrite(csvData[-idsTrain,-c("user_id")], "data-test.csv", quote = TRUE)
fwrite(csvData[ids,-c("user_id")], "data.csv", quote = TRUE)