-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
202 lines (172 loc) · 5.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import json
from tensorflow import keras
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
from settings_train import (
BATCH_SIZE,
CNN_MODEL,
DATE_NOW,
EMBED_DIM,
EPOCHS,
FF_DIM,
IMAGE_SIZE,
NUM_HEADS,
NUM_TRAIN_IMG,
NUM_VALID_IMG,
TRAIN_SET_AUG,
VALID_SET_AUG,
SAVE_DIR,
SHUFFLE_DIM,
train_data_json_path,
valid_data_json_path,
captions_data_json_path,
REDUCE_DATASET,
MAX_VOCAB_SIZE,
SEQ_LENGTH,
EARLY_STOPPING,
KEY_DIM,
VALUE_DIM,
)
from datasets import (
make_dataset,
custom_standardization,
reduce_dataset,
valid_test_split,
)
from custom_schedule import custom_schedule
from utils import save_tokenizer
from models import (
ImageCaptioningModel,
)
# load dataset
with open(train_data_json_path) as json_file:
train_data = json.load(json_file)
with open(valid_data_json_path) as json_file:
valid_data = json.load(json_file)
with open(captions_data_json_path) as json_file:
captions_data = json.load(json_file)
# for reduce number of images in the dataset (default = False)
if REDUCE_DATASET:
train_data, valid_data = reduce_dataset(train_data, valid_data)
print("\n\nNumber of training samples: ", len(train_data))
print("Number of validation samples: ", len(valid_data))
# define tokeziner / vectorized layer
tokenizer = TextVectorization(
standardize=custom_standardization,
output_sequence_length=SEQ_LENGTH,
max_tokens=MAX_VOCAB_SIZE,
output_mode="int",
)
# adapt tokenizer to create the vocabulary
tokenizer.adapt(captions_data)
# define vocabulary size of the vocabulary
vocab_size = len(tokenizer.get_vocabulary())
# split dataset to valid and test set
valid_data, test_data = valid_test_split(valid_data)
print("\n\nVocab size: ", vocab_size)
print("Validation data after splitting with test set: ", len(valid_data))
print("Test data: ", len(test_data))
config_train = {
"CNN_MODEL": CNN_MODEL,
"EARLY_STOPPING": EARLY_STOPPING,
"IMAGE_SIZE": IMAGE_SIZE,
"MAX_VOCAB_SIZE": MAX_VOCAB_SIZE,
"SEQ_LENGTH": SEQ_LENGTH,
"EMBED_DIM": EMBED_DIM,
"NUM_HEADS": NUM_HEADS,
"FF_DIM": FF_DIM,
"SHUFFLE_DIM": SHUFFLE_DIM,
"BATCH_SIZE": BATCH_SIZE,
"EPOCHS": EPOCHS,
"VOCAB_SIZE": vocab_size,
"KEY_DIM": KEY_DIM,
"VALUE_DIM": VALUE_DIM,
"NUM_TRAIN_IMG": NUM_TRAIN_IMG,
"NUM_VALID_IMG": NUM_VALID_IMG,
"NUM_TEST_IMG": len(test_data),
}
print(config_train)
# setting batch dataset
train_dataset = make_dataset(
images=list(train_data.keys()), # key: path to images
captions=list(train_data.values()), # value: list of captions
data_aug=TRAIN_SET_AUG,
tokenizer=tokenizer,
)
valid_dataset = make_dataset(
images=list(valid_data.keys()),
captions=list(valid_data.values()),
data_aug=VALID_SET_AUG,
tokenizer=tokenizer,
)
test_dataset = make_dataset(
images=list(test_data.keys()),
captions=list(test_data.values()),
data_aug=False,
tokenizer=tokenizer,
)
print("TRAIN DATA", train_dataset)
# get model
model = ImageCaptioningModel(
cnn_model=CNN_MODEL,
embed_dim=EMBED_DIM,
ff_dim=FF_DIM,
num_heads=NUM_HEADS,
key_dim=KEY_DIM,
value_dim=VALUE_DIM,
seq_length=SEQ_LENGTH,
vocab_size=vocab_size,
)
# define the loss function
cross_entropy = keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="none"
)
# early stopping
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=4, restore_best_weights=True
)
# create a learning rate schedule
lr_scheduler = custom_schedule(EMBED_DIM)
optimizer = keras.optimizers.Adam(
learning_rate=lr_scheduler, beta_1=0.9, beta_2=0.98, epsilon=1e-9
)
# compile the model
model.compile(optimizer=optimizer, loss=cross_entropy)
# fit the model
history = model.fit(
train_dataset,
epochs=EPOCHS,
validation_data=valid_dataset,
callbacks=[early_stopping] if EARLY_STOPPING else None,
)
# compute definitive metrics on train/valid/test set
# train_metrics = model.evaluate(train_dataset, batch_size=BATCH_SIZE)
# valid_metrics = model.evaluate(valid_dataset, batch_size=BATCH_SIZE)
# test_metrics = model.evaluate(test_dataset, batch_size=BATCH_SIZE)
# create new directory for saving model
NEW_DIR = SAVE_DIR + DATE_NOW
os.mkdir(NEW_DIR)
# save training history under the form of a json file
history_dict = history.history
json.dump(history_dict, open(SAVE_DIR + "{}/history.json".format(DATE_NOW), "w"))
# save weights model
model.save_weights(SAVE_DIR + "{}/model_weights_coco.h5".format(DATE_NOW))
# print metric results
# metrics_results = {
# "TRAIN_SET": "Train Loss = %.4f - Train Accuracy = %.4f"
# % (train_metrics[0], train_metrics[1]),
# "VALID_SET": "Valid Loss = %.4f - Valid Accuracy = %.4f"
# % (valid_metrics[0], valid_metrics[1]),
# "TEST_SET": "Test Loss = %.4f - Test Accuracy = %.4f"
# % (test_metrics[0], test_metrics[1]),
# }
# print(metrics_results)
# save metric results
# json.dump(
# metrics_results, open(SAVE_DIR + "{}/metrics_results.json".format(DATE_NOW), "w")
# )
# save model train configuration
json.dump(config_train, open(SAVE_DIR + "{}/config_train.json".format(DATE_NOW), "w"))
# save tokenizer
save_tokenizer(tokenizer, NEW_DIR)