This plugin uses a query on the
nvidia-smi
binary to pull GPU stats including memory and GPU usage, temp and other.
In addition to the plugin-specific configuration settings, plugins support additional global and plugin configuration settings. These settings are used to modify metrics, tags, and field or create aliases and configure ordering, etc. See the CONFIGURATION.md for more details.
In addition to the plugin-specific and global configuration settings the plugin
supports options for specifying the behavior when experiencing startup errors
using the startup_error_behavior
setting. Available values are:
error
: Telegraf with stop and exit in case of startup errors. This is the default behavior.ignore
: Telegraf will ignore startup errors for this plugin and disables it but continues processing for all other plugins.retry
: NOT AVAILABLE
# Pulls statistics from nvidia GPUs attached to the host
[[inputs.nvidia_smi]]
## Optional: path to nvidia-smi binary, defaults "/usr/bin/nvidia-smi"
## We will first try to locate the nvidia-smi binary with the explicitly specified value (or default value),
## if it is not found, we will try to locate it on PATH(exec.LookPath), if it is still not found, an error will be returned
# bin_path = "/usr/bin/nvidia-smi"
## Optional: timeout for GPU polling
# timeout = "5s"
On Linux, nvidia-smi
is generally located at /usr/bin/nvidia-smi
On Windows, nvidia-smi
is generally located at C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi.exe
On Windows 10, you may also find this located
here C:\Windows\System32\nvidia-smi.exe
You'll need to escape the \
within the telegraf.conf
like this: C:\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe
- measurement:
nvidia_smi
- tags
name
(type of GPU e.g.GeForce GTX 1070 Ti
)compute_mode
(The compute mode of the GPU e.g.Default
)index
(The port index where the GPU is connected to the motherboard e.g.1
)pstate
(Overclocking state for the GPU e.g.P0
)uuid
(A unique identifier for the GPU e.g.GPU-f9ba66fc-a7f5-94c5-da19-019ef2f9c665
)
- fields
fan_speed
(integer, percentage)fbc_stats_session_count
(integer)fbc_stats_average_fps
(integer)fbc_stats_average_latency
(integer)memory_free
(integer, MiB)memory_used
(integer, MiB)memory_total
(integer, MiB)memory_reserved
(integer, MiB)retired_pages_multiple_single_bit
(integer)retired_pages_double_bit
(integer)retired_pages_blacklist
(string)retired_pages_pending
(string)remapped_rows_correctable
(int)remapped_rows_uncorrectable
(int)remapped_rows_pending
(string)remapped_rows_pending
(string)remapped_rows_failure
(string)power_draw
(float, W)temperature_gpu
(integer, degrees C)utilization_gpu
(integer, percentage)utilization_memory
(integer, percentage)utilization_encoder
(integer, percentage)utilization_decoder
(integer, percentage)pcie_link_gen_current
(integer)pcie_link_width_current
(integer)encoder_stats_session_count
(integer)encoder_stats_average_fps
(integer)encoder_stats_average_latency
(integer)clocks_current_graphics
(integer, MHz)clocks_current_sm
(integer, MHz)clocks_current_memory
(integer, MHz)clocks_current_video
(integer, MHz)driver_version
(string)cuda_version
(string)
- tags
The below query could be used to alert on the average temperature of the your GPUs over the last minute
SELECT mean("temperature_gpu") FROM "nvidia_smi" WHERE time > now() - 5m GROUP BY time(1m), "index", "name", "host"
Check the full output by running nvidia-smi
binary manually.
Linux:
sudo -u telegraf -- /usr/bin/nvidia-smi -q -x
Windows:
"C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi.exe" -q -x
Please include the output of this command if opening an GitHub issue.
nvidia_smi,compute_mode=Default,host=8218cf,index=0,name=GeForce\ GTX\ 1070,pstate=P2,uuid=GPU-823bc202-6279-6f2c-d729-868a30f14d96 fan_speed=100i,memory_free=7563i,memory_total=8112i,memory_used=549i,temperature_gpu=53i,utilization_gpu=100i,utilization_memory=90i 1523991122000000000
nvidia_smi,compute_mode=Default,host=8218cf,index=1,name=GeForce\ GTX\ 1080,pstate=P2,uuid=GPU-f9ba66fc-a7f5-94c5-da19-019ef2f9c665 fan_speed=100i,memory_free=7557i,memory_total=8114i,memory_used=557i,temperature_gpu=50i,utilization_gpu=100i,utilization_memory=85i 1523991122000000000
nvidia_smi,compute_mode=Default,host=8218cf,index=2,name=GeForce\ GTX\ 1080,pstate=P2,uuid=GPU-d4cfc28d-0481-8d07-b81a-ddfc63d74adf fan_speed=100i,memory_free=7557i,memory_total=8114i,memory_used=557i,temperature_gpu=58i,utilization_gpu=100i,utilization_memory=86i 1523991122000000000
Note that there seems to be an issue with getting current memory clock values when the memory is overclocked. This may or may not apply to everyone but it's confirmed to be an issue on an EVGA 2080 Ti.
NOTE: For use with docker either generate your own custom docker image based on nvidia/cuda which also installs a telegraf package or use volume mount binding to inject the required binary into the docker container. In particular you will need to pass through the /dev/nvidia* devices, the nvidia-smi binary and the nvidia libraries. An minimal docker-compose example of how to do this is:
telegraf:
image: telegraf
runtime: nvidia
devices:
- /dev/nvidiactl:/dev/nvidiactl
- /dev/nvidia0:/dev/nvidia0
volumes:
- ./telegraf/etc/telegraf.conf:/etc/telegraf/telegraf.conf:ro
- /usr/bin/nvidia-smi:/usr/bin/nvidia-smi:ro
- /usr/lib/x86_64-linux-gnu/nvidia:/usr/lib/x86_64-linux-gnu/nvidia:ro
environment:
- LD_PRELOAD=/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so