forked from lancedb/vectordb-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
130 lines (106 loc) · 4.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import openai
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.tools import tool
from pydantic import BaseModel, Field
import argparse
import lancedb
def embed_func(c):
rs = openai.Embedding.create(input=c, engine=EMBEDDINGS_MODEL)
return [record["embedding"] for record in rs["data"]]
class InsertCritiquesInput(BaseModel):
info: str = Field(
description="should be demographics or interests or other information about the exercise request provided by the user"
)
actions: str = Field(
description="numbered list of langchain agent actions taken (searched for, gave this response, etc.)"
)
critique: str = Field(
description="negative constructive feedback on the actions you took, limitations, potential biases, and more"
)
@tool("insert_critiques", args_schema=InsertCritiquesInput)
def insert_critiques(info: str, actions: str, critique: str) -> str:
"Insert actions and critiques for similar exercise requests in the future." ""
table_name = "exercise-routine"
if table_name not in db.table_names():
tbl = db.create_table(
table_name,
[{"vector": embed_func(info)[0], "actions": actions, "critique": critique}],
)
else:
tbl = db.open_table(table_name)
tbl.add(
[{"vector": embed_func(info)[0], "actions": actions, "critique": critique}]
)
return "Inserted and done."
class RetrieveCritiquesInput(BaseModel):
query: str = Field(
description="should be demographics or interests or other information about the exercise request provided by the user"
)
@tool("retrieve_critiques", args_schema=RetrieveCritiquesInput)
def retrieve_critiques(query: str) -> str:
"Retrieve actions and critiques for similar exercise requests." ""
table_name = "exercise-routine"
if table_name in db.table_names():
tbl = db.open_table(table_name)
results = (
tbl.search(embed_func(query)[0])
.limit(5)
.select(["actions", "critique"])
.to_df()
)
results_list = results.drop("vector", axis=1).values.tolist()
return (
"Continue with the list with relevant actions and critiques which are in the format [[action, critique], ...]:\n"
+ str(results_list)
)
else:
return "No info, but continue."
def create_prompt(info: str) -> str:
prompt_start = (
"Please execute actions as a fitness trainer based on the information about the user and their interests below.\n\n"
+ "Info from the user:\n\n"
)
prompt_end = (
"\n\n1. Retrieve using user info and review the past actions and critiques if there is any\n"
+ "2. Keep past actions and critiques in mind while researching for an exercise routine with steps which we respond to the user\n"
+ "3. Before returning the response, it is of upmost importance to insert the actions you took (numbered list: searched for, found this, etc.) and critiques (negative feedback: limitations, potential biases, and more) into the database for getting better exercise routines in the future. \n"
)
return prompt_start + info + prompt_end
def run_agent(info):
agent = initialize_agent(
tools,
llm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
agent.run(input=create_prompt(info))
def args_parse():
default_query = "university student, loves running"
global EMBEDDINGS_MODEL
parser = argparse.ArgumentParser(description="Reducing Hallucinations in AI Agents")
parser.add_argument(
"--query", type=str, default=default_query, help="query to search"
)
parser.add_argument(
"--llm", type=str, default="gpt-3.5-turbo-0613", help="OpenAI LLM"
)
parser.add_argument(
"--embeddings",
type=str,
default="text-embedding-ada-002",
help="OpenAI Embeddings Model",
)
args = parser.parse_args()
EMBEDDINGS_MODEL = args.embeddings
return args
if __name__ == "__main__":
args = args_parse()
global db
db = lancedb.connect("data/agent-lancedb")
llm = ChatOpenAI(temperature=0, model=args.llm)
tools = load_tools(["serpapi"], llm=llm)
tools.extend([insert_critiques, retrieve_critiques])
run_agent(args.query)