forked from caow13/BRITS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
123 lines (83 loc) · 3.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import numpy as np
import time
import utils
import models
import argparse
import data_loader
import pandas as pd
import ujson as json
from sklearn import metrics
from ipdb import set_trace
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--model', type=str)
parser.add_argument('--hid_size', type=int)
parser.add_argument('--impute_weight', type=float)
parser.add_argument('--label_weight', type=float)
args = parser.parse_args()
def train(model):
optimizer = optim.Adam(model.parameters(), lr=1e-3)
data_iter = data_loader.get_loader(batch_size=args.batch_size)
for epoch in range(args.epochs):
model.train()
run_loss = 0.0
for idx, data in enumerate(data_iter):
data = utils.to_var(data)
ret = model.run_on_batch(data, optimizer, epoch)
run_loss += ret['loss'].item()
print '\r Progress epoch {}, {:.2f}%, average loss {}'.format(epoch, (idx + 1) * 100.0 / len(data_iter), run_loss / (idx + 1.0)),
evaluate(model, data_iter)
def evaluate(model, val_iter):
model.eval()
labels = []
preds = []
evals = []
imputations = []
save_impute = []
save_label = []
for idx, data in enumerate(val_iter):
data = utils.to_var(data)
ret = model.run_on_batch(data, None)
# save the imputation results which is used to test the improvement of traditional methods with imputed values
save_impute.append(ret['imputations'].data.cpu().numpy())
save_label.append(ret['labels'].data.cpu().numpy())
pred = ret['predictions'].data.cpu().numpy()
label = ret['labels'].data.cpu().numpy()
is_train = ret['is_train'].data.cpu().numpy()
eval_masks = ret['eval_masks'].data.cpu().numpy()
eval_ = ret['evals'].data.cpu().numpy()
imputation = ret['imputations'].data.cpu().numpy()
evals += eval_[np.where(eval_masks == 1)].tolist()
imputations += imputation[np.where(eval_masks == 1)].tolist()
# collect test label & prediction
pred = pred[np.where(is_train == 0)]
label = label[np.where(is_train == 0)]
labels += label.tolist()
preds += pred.tolist()
labels = np.asarray(labels).astype('int32')
preds = np.asarray(preds)
print 'AUC {}'.format(metrics.roc_auc_score(labels, preds))
evals = np.asarray(evals)
imputations = np.asarray(imputations)
print 'MAE', np.abs(evals - imputations).mean()
print 'MRE', np.abs(evals - imputations).sum() / np.abs(evals).sum()
save_impute = np.concatenate(save_impute, axis=0)
save_label = np.concatenate(save_label, axis=0)
np.save('./result/{}_data'.format(args.model), save_impute)
np.save('./result/{}_label'.format(args.model), save_label)
def run():
model = getattr(models, args.model).Model(args.hid_size, args.impute_weight, args.label_weight)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Total params is {}'.format(total_params))
if torch.cuda.is_available():
model = model.cuda()
train(model)
if __name__ == '__main__':
run()