forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpleCUFFT_2d_MGPU.cu
380 lines (325 loc) · 12.1 KB
/
simpleCUFFT_2d_MGPU.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
////////////////////////////////////////////////////////////////////////////////
//
// simpleCUFFT_2d_MGPU.cu
//
// This sample code demonstrate the use of CUFFT library for 2D data on multiple GPU.
// Example showing the use of CUFFT for solving 2D-POISSON equation using FFT on multiple GPU.
// For reference we have used the equation given in http://www.bu.edu/pasi/files/2011/07/
// Lecture83.pdf
//
////////////////////////////////////////////////////////////////////////////////
// System includes
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// CUDA runtime
#include <cuda_runtime.h>
//CUFFT Header file
#include <cufftXt.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
// Complex data type
typedef float2 Complex;
// Data configuration
const int GPU_COUNT = 2;
const int BSZ_Y = 4;
const int BSZ_X = 4;
// Forward Declaration
void solvePoissonEquation(cudaLibXtDesc *, cudaLibXtDesc *, float **, int, int);
__global__ void solvePoisson(cufftComplex *, cufftComplex *, float *, int, int,
int n_gpu);
///////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf(
"\nPoisson equation using CUFFT library on Multiple GPUs is "
"starting...\n\n");
int GPU_N;
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
if (GPU_N < GPU_COUNT) {
printf("No. of GPU on node %d\n", GPU_N);
printf("Two GPUs are required to run simpleCUFFT_2d_MGPU sample code\n");
exit(EXIT_WAIVED);
}
int *major_minor = (int *)malloc(sizeof(int) * GPU_N * 2);
int found2IdenticalGPUs = 0;
int nGPUs = 2;
int *whichGPUs;
whichGPUs = (int *)malloc(sizeof(int) * nGPUs);
for (int i = 0; i < GPU_N; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
major_minor[i * 2] = deviceProp.major;
major_minor[i * 2 + 1] = deviceProp.minor;
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i,
deviceProp.name, deviceProp.major, deviceProp.minor);
}
for (int i = 0; i < GPU_N; i++) {
for (int j = i + 1; j < GPU_N; j++) {
if ((major_minor[i * 2] == major_minor[j * 2]) &&
(major_minor[i * 2 + 1] == major_minor[j * 2 + 1])) {
whichGPUs[0] = i;
whichGPUs[1] = j;
found2IdenticalGPUs = 1;
break;
}
}
if (found2IdenticalGPUs) {
break;
}
}
free(major_minor);
if (!found2IdenticalGPUs) {
printf(
"No Two GPUs with same architecture found\nWaiving simpleCUFFT_2d_MGPU "
"sample\n");
exit(EXIT_WAIVED);
}
int N = 64;
float xMAX = 1.0f, xMIN = 0.0f, yMIN = 0.0f, h = (xMAX - xMIN) / ((float)N),
s = 0.1f, s2 = s * s;
float *x, *y, *f, *u_a, r2;
x = (float *)malloc(sizeof(float) * N * N);
y = (float *)malloc(sizeof(float) * N * N);
f = (float *)malloc(sizeof(float) * N * N);
u_a = (float *)malloc(sizeof(float) * N * N);
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++) {
x[N * j + i] = xMIN + i * h;
y[N * j + i] = yMIN + j * h;
r2 = (x[N * j + i] - 0.5f) * (x[N * j + i] - 0.5f) +
(y[N * j + i] - 0.5f) * (y[N * j + i] - 0.5f);
f[N * j + i] = (r2 - 2 * s2) / (s2 * s2) * exp(-r2 / (2 * s2));
u_a[N * j + i] = exp(-r2 / (2 * s2)); // analytical solution
}
float *k, *d_k[GPU_COUNT];
k = (float *)malloc(sizeof(float) * N);
for (int i = 0; i <= N / 2; i++) {
k[i] = i * 2 * (float)M_PI;
}
for (int i = N / 2 + 1; i < N; i++) {
k[i] = (i - N) * 2 * (float)M_PI;
}
// Create a complex variable on host
Complex *h_f = (Complex *)malloc(sizeof(Complex) * N * N);
// Initialize the memory for the signal
for (int i = 0; i < (N * N); i++) {
h_f[i].x = f[i];
h_f[i].y = 0.0f;
}
// cufftCreate() - Create an empty plan
cufftResult result;
cufftHandle planComplex;
result = cufftCreate(&planComplex);
if (result != CUFFT_SUCCESS) {
printf("cufftCreate failed\n");
exit(EXIT_FAILURE);
}
// cufftXtSetGPUs() - Define which GPUs to use
result = cufftXtSetGPUs(planComplex, nGPUs, whichGPUs);
if (result == CUFFT_INVALID_DEVICE) {
printf("This sample requires two GPUs on the same board.\n");
printf("No such board was found. Waiving sample.\n");
exit(EXIT_WAIVED);
} else if (result != CUFFT_SUCCESS) {
printf("cufftXtSetGPUs failed\n");
exit(EXIT_FAILURE);
}
// Print the device information to run the code
printf("\nRunning on GPUs\n");
for (int i = 0; i < 2; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, whichGPUs[i]));
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n",
whichGPUs[i], deviceProp.name, deviceProp.major, deviceProp.minor);
}
size_t *worksize;
worksize = (size_t *)malloc(sizeof(size_t) * nGPUs);
// cufftMakePlan2d() - Create the plan
result = cufftMakePlan2d(planComplex, N, N, CUFFT_C2C, worksize);
if (result != CUFFT_SUCCESS) {
printf("*MakePlan* failed\n");
exit(EXIT_FAILURE);
}
for (int i = 0; i < nGPUs; i++) {
cudaSetDevice(whichGPUs[i]);
cudaMalloc((void **)&d_k[i], sizeof(float) * N);
cudaMemcpy(d_k[i], k, sizeof(float) * N, cudaMemcpyHostToDevice);
}
// Create a variable on device
// d_f - variable on device to store the input data
// d_d_f - variable that store the natural order of d_f data
// d_out - device output
cudaLibXtDesc *d_f, *d_d_f, *d_out;
// cufftXtMalloc() - Malloc data on multiple GPUs
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_f,
CUFFT_XT_FORMAT_INPLACE);
if (result != CUFFT_SUCCESS) {
printf("*XtMalloc failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_d_f,
CUFFT_XT_FORMAT_INPLACE);
if (result != CUFFT_SUCCESS) {
printf("*XtMalloc failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtMalloc(planComplex, (cudaLibXtDesc **)&d_out,
CUFFT_XT_FORMAT_INPLACE);
if (result != CUFFT_SUCCESS) {
printf("*XtMalloc failed\n");
exit(EXIT_FAILURE);
}
// cufftXtMemcpy() - Copy the data from host to device
result = cufftXtMemcpy(planComplex, d_f, h_f, CUFFT_COPY_HOST_TO_DEVICE);
if (result != CUFFT_SUCCESS) {
printf("*XtMemcpy failed\n");
exit(EXIT_FAILURE);
}
// cufftXtExecDescriptorC2C() - Execute FFT on data on multiple GPUs
printf("Forward 2d FFT on multiple GPUs\n");
result = cufftXtExecDescriptorC2C(planComplex, d_f, d_f, CUFFT_FORWARD);
if (result != CUFFT_SUCCESS) {
printf("*XtExecC2C failed\n");
exit(EXIT_FAILURE);
}
// cufftXtMemcpy() - Copy the data to natural order on GPUs
result = cufftXtMemcpy(planComplex, d_d_f, d_f, CUFFT_COPY_DEVICE_TO_DEVICE);
if (result != CUFFT_SUCCESS) {
printf("*XtMemcpy failed\n");
exit(EXIT_FAILURE);
}
printf("Solve Poisson Equation\n");
solvePoissonEquation(d_d_f, d_out, d_k, N, nGPUs);
printf("Inverse 2d FFT on multiple GPUs\n");
// cufftXtExecDescriptorC2C() - Execute inverse FFT on data on multiple GPUs
result = cufftXtExecDescriptorC2C(planComplex, d_out, d_out, CUFFT_INVERSE);
if (result != CUFFT_SUCCESS) {
printf("*XtExecC2C failed\n");
exit(EXIT_FAILURE);
}
// Create a variable on host to copy the data from device
// h_d_out - variable store the output of device
Complex *h_d_out = (Complex *)malloc(sizeof(Complex) * N * N);
// cufftXtMemcpy() - Copy data from multiple GPUs to host
result =
cufftXtMemcpy(planComplex, h_d_out, d_out, CUFFT_COPY_DEVICE_TO_HOST);
if (result != CUFFT_SUCCESS) {
printf("*XtMemcpy failed\n");
exit(EXIT_FAILURE);
}
float *out = (float *)malloc(sizeof(float) * N * N);
float constant = h_d_out[0].x / N * N;
for (int i = 0; i < N * N; i++) {
// subtract u[0] to force the arbitrary constant to be 0
out[i] = (h_d_out[i].x / (N * N)) - constant;
}
// cleanup memory
free(h_f);
free(k);
free(out);
free(h_d_out);
free(x);
free(whichGPUs);
free(y);
free(f);
free(u_a);
free(worksize);
// cudaXtFree() - Free GPU memory
for (int i = 0; i < GPU_COUNT; i++) {
cudaFree(d_k[i]);
}
result = cufftXtFree(d_out);
if (result != CUFFT_SUCCESS) {
printf("*XtFree failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtFree(d_f);
if (result != CUFFT_SUCCESS) {
printf("*XtFree failed\n");
exit(EXIT_FAILURE);
}
result = cufftXtFree(d_d_f);
if (result != CUFFT_SUCCESS) {
printf("*XtFree failed\n");
exit(EXIT_FAILURE);
}
// cufftDestroy() - Destroy FFT plan
result = cufftDestroy(planComplex);
if (result != CUFFT_SUCCESS) {
printf("cufftDestroy failed: code %d\n", (int)result);
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
////////////////////////////////////////////////////////////////////////////////////
// Launch kernel on multiple GPU
///////////////////////////////////////////////////////////////////////////////////
void solvePoissonEquation(cudaLibXtDesc *d_ft, cudaLibXtDesc *d_ft_k, float **k,
int N, int nGPUs) {
int device;
dim3 dimGrid(int(N / BSZ_X), int((N / 2) / BSZ_Y));
dim3 dimBlock(BSZ_X, BSZ_Y);
for (int i = 0; i < nGPUs; i++) {
device = d_ft_k->descriptor->GPUs[i];
cudaSetDevice(device);
solvePoisson<<<dimGrid, dimBlock>>>(
(cufftComplex *)d_ft->descriptor->data[i],
(cufftComplex *)d_ft_k->descriptor->data[i], k[i], N, i, nGPUs);
}
// Wait for device to finish all operation
for (int i = 0; i < nGPUs; i++) {
device = d_ft_k->descriptor->GPUs[i];
cudaSetDevice(device);
cudaDeviceSynchronize();
// Check if kernel execution generated and error
getLastCudaError("Kernel execution failed [ solvePoisson ]");
}
}
////////////////////////////////////////////////////////////////////////////////
// Kernel for Solving Poisson equation on GPU
////////////////////////////////////////////////////////////////////////////////
__global__ void solvePoisson(cufftComplex *ft, cufftComplex *ft_k, float *k,
int N, int gpu_id, int n_gpu) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
int index = j * N + i;
if (i < N && j < N / n_gpu) {
float k2 =
k[i] * k[i] + k[j + gpu_id * N / n_gpu] * k[j + gpu_id * N / n_gpu];
if (i == 0 && j == 0 && gpu_id == 0) {
k2 = 1.0f;
}
ft_k[index].x = -ft[index].x * 1 / k2;
ft_k[index].y = -ft[index].y * 1 / k2;
}
}