forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconjugateGradientMultiDeviceCG.cu
793 lines (640 loc) · 24.2 KB
/
conjugateGradientMultiDeviceCG.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements a conjugate gradient solver on multiple GPU using
* Unified Memory optimized prefetching and usage hints.
*
*/
// includes, system
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <map>
#include <iostream>
#include <set>
#include <utility>
#include <cuda_runtime.h>
// Utilities and system includes
#include <helper_cuda.h> // helper function CUDA error checking and initialization
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
const char *sSDKname = "conjugateGradientMultiDeviceCG";
#define ENABLE_CPU_DEBUG_CODE 0
#define THREADS_PER_BLOCK 512
__device__ double grid_dot_result = 0.0;
/* genTridiag: generate a random tridiagonal symmetric matrix */
void genTridiag(int *I, int *J, float *val, int N, int nz) {
I[0] = 0, J[0] = 0, J[1] = 1;
val[0] = (float)rand() / RAND_MAX + 10.0f;
val[1] = (float)rand() / RAND_MAX;
int start;
for (int i = 1; i < N; i++) {
if (i > 1) {
I[i] = I[i - 1] + 3;
} else {
I[1] = 2;
}
start = (i - 1) * 3 + 2;
J[start] = i - 1;
J[start + 1] = i;
if (i < N - 1) {
J[start + 2] = i + 1;
}
val[start] = val[start - 1];
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
if (i < N - 1) {
val[start + 2] = (float)rand() / RAND_MAX;
}
}
I[N] = nz;
}
// I - contains location of the given non-zero element in the row of the matrix
// J - contains location of the given non-zero element in the column of the
// matrix val - contains values of the given non-zero elements of the matrix
// inputVecX - input vector to be multiplied
// outputVecY - resultant vector
void cpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, float alpha,
float *inputVecX, float *outputVecY) {
for (int i = 0; i < num_rows; i++) {
int num_elems_this_row = I[i + 1] - I[i];
float output = 0.0;
for (int j = 0; j < num_elems_this_row; j++) {
output += alpha * val[I[i] + j] * inputVecX[J[I[i] + j]];
}
outputVecY[i] = output;
}
return;
}
float dotProduct(float *vecA, float *vecB, int size) {
float result = 0.0;
for (int i = 0; i < size; i++) {
result = result + (vecA[i] * vecB[i]);
}
return result;
}
void scaleVector(float *vec, float alpha, int size) {
for (int i = 0; i < size; i++) {
vec[i] = alpha * vec[i];
}
}
void saxpy(float *x, float *y, float a, int size) {
for (int i = 0; i < size; i++) {
y[i] = a * x[i] + y[i];
}
}
void cpuConjugateGrad(int *I, int *J, float *val, float *x, float *Ax, float *p,
float *r, int nnz, int N, float tol) {
int max_iter = 10000;
float alpha = 1.0;
float alpham1 = -1.0;
float r0 = 0.0, b, a, na;
cpuSpMV(I, J, val, nnz, N, alpha, x, Ax);
saxpy(Ax, r, alpham1, N);
float r1 = dotProduct(r, r, N);
int k = 1;
while (r1 > tol * tol && k <= max_iter) {
if (k > 1) {
b = r1 / r0;
scaleVector(p, b, N);
saxpy(r, p, alpha, N);
} else {
for (int i = 0; i < N; i++) p[i] = r[i];
}
cpuSpMV(I, J, val, nnz, N, alpha, p, Ax);
float dot = dotProduct(p, Ax, N);
a = r1 / dot;
saxpy(p, x, a, N);
na = -a;
saxpy(Ax, r, na, N);
r0 = r1;
r1 = dotProduct(r, r, N);
printf("\nCPU code iteration = %3d, residual = %e\n", k, sqrt(r1));
k++;
}
}
// Data filled on CPU needed for MultiGPU operations.
struct MultiDeviceData {
unsigned char *hostMemoryArrivedList;
unsigned int numDevices;
unsigned int deviceRank;
};
// Class used for coordination of multiple devices.
class PeerGroup {
const MultiDeviceData &data;
const cg::grid_group &grid;
__device__ unsigned char load_arrived(unsigned char *arrived) const {
#if __CUDA_ARCH__ < 700
return *(volatile unsigned char *)arrived;
#else
unsigned int result;
asm volatile("ld.acquire.sys.global.u8 %0, [%1];"
: "=r"(result)
: "l"(arrived)
: "memory");
return result;
#endif
}
__device__ void store_arrived(unsigned char *arrived,
unsigned char val) const {
#if __CUDA_ARCH__ < 700
*(volatile unsigned char *)arrived = val;
#else
unsigned int reg_val = val;
asm volatile(
"st.release.sys.global.u8 [%1], %0;" ::"r"(reg_val) "l"(arrived)
: "memory");
// Avoids compiler warnings from unused variable val.
(void)(reg_val = reg_val);
#endif
}
public:
__device__ PeerGroup(const MultiDeviceData &data, const cg::grid_group &grid)
: data(data), grid(grid){};
__device__ unsigned int size() const { return data.numDevices * grid.size(); }
__device__ unsigned int thread_rank() const {
return data.deviceRank * grid.size() + grid.thread_rank();
}
__device__ void sync() const {
grid.sync();
// One thread from each grid participates in the sync.
if (grid.thread_rank() == 0) {
if (data.deviceRank == 0) {
// Leader grid waits for others to join and then releases them.
// Other GPUs can arrive in any order, so the leader have to wait for
// all others.
for (int i = 0; i < data.numDevices - 1; i++) {
while (load_arrived(&data.hostMemoryArrivedList[i]) == 0)
;
}
for (int i = 0; i < data.numDevices - 1; i++) {
store_arrived(&data.hostMemoryArrivedList[i], 0);
}
__threadfence_system();
} else {
// Other grids note their arrival and wait to be released.
store_arrived(&data.hostMemoryArrivedList[data.deviceRank - 1], 1);
while (load_arrived(&data.hostMemoryArrivedList[data.deviceRank - 1]) ==
1)
;
}
}
grid.sync();
}
};
__device__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows,
float alpha, float *inputVecX, float *outputVecY,
const PeerGroup &peer_group) {
for (int i = peer_group.thread_rank(); i < num_rows; i += peer_group.size()) {
int row_elem = I[i];
int next_row_elem = I[i + 1];
int num_elems_this_row = next_row_elem - row_elem;
float output = 0.0;
for (int j = 0; j < num_elems_this_row; j++) {
output += alpha * val[row_elem + j] * inputVecX[J[row_elem + j]];
}
outputVecY[i] = output;
}
}
__device__ void gpuSaxpy(float *x, float *y, float a, int size,
const PeerGroup &peer_group) {
for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
y[i] = a * x[i] + y[i];
}
}
__device__ void gpuDotProduct(float *vecA, float *vecB, int size,
const cg::thread_block &cta,
const PeerGroup &peer_group) {
extern __shared__ double tmp[];
double temp_sum = 0.0;
for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
temp_sum += (double)(vecA[i] * vecB[i]);
}
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
temp_sum = cg::reduce(tile32, temp_sum, cg::plus<double>());
if (tile32.thread_rank() == 0) {
tmp[tile32.meta_group_rank()] = temp_sum;
}
cg::sync(cta);
if (tile32.meta_group_rank() == 0) {
temp_sum = tile32.thread_rank() < tile32.meta_group_size()
? tmp[tile32.thread_rank()]
: 0.0;
temp_sum = cg::reduce(tile32, temp_sum, cg::plus<double>());
if (tile32.thread_rank() == 0) {
atomicAdd(&grid_dot_result, temp_sum);
}
}
}
__device__ void gpuCopyVector(float *srcA, float *destB, int size,
const PeerGroup &peer_group) {
for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
destB[i] = srcA[i];
}
}
__device__ void gpuScaleVectorAndSaxpy(float *x, float *y, float a, float scale,
int size, const PeerGroup &peer_group) {
for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
y[i] = a * x[i] + scale * y[i];
}
}
extern "C" __global__ void multiGpuConjugateGradient(
int *I, int *J, float *val, float *x, float *Ax, float *p, float *r,
double *dot_result, int nnz, int N, float tol,
MultiDeviceData multi_device_data) {
cg::thread_block cta = cg::this_thread_block();
cg::grid_group grid = cg::this_grid();
PeerGroup peer_group(multi_device_data, grid);
const int max_iter = 10000;
float alpha = 1.0;
float alpham1 = -1.0;
float r0 = 0.0, r1, b, a, na;
for (int i = peer_group.thread_rank(); i < N; i += peer_group.size()) {
r[i] = 1.0;
x[i] = 0.0;
}
cg::sync(grid);
gpuSpMV(I, J, val, nnz, N, alpha, x, Ax, peer_group);
cg::sync(grid);
gpuSaxpy(Ax, r, alpham1, N, peer_group);
cg::sync(grid);
gpuDotProduct(r, r, N, cta, peer_group);
cg::sync(grid);
if (grid.thread_rank() == 0) {
atomicAdd_system(dot_result, grid_dot_result);
grid_dot_result = 0.0;
}
peer_group.sync();
r1 = *dot_result;
int k = 1;
while (r1 > tol * tol && k <= max_iter) {
if (k > 1) {
b = r1 / r0;
gpuScaleVectorAndSaxpy(r, p, alpha, b, N, peer_group);
} else {
gpuCopyVector(r, p, N, peer_group);
}
peer_group.sync();
gpuSpMV(I, J, val, nnz, N, alpha, p, Ax, peer_group);
if (peer_group.thread_rank() == 0) {
*dot_result = 0.0;
}
peer_group.sync();
gpuDotProduct(p, Ax, N, cta, peer_group);
cg::sync(grid);
if (grid.thread_rank() == 0) {
atomicAdd_system(dot_result, grid_dot_result);
grid_dot_result = 0.0;
}
peer_group.sync();
a = r1 / *dot_result;
gpuSaxpy(p, x, a, N, peer_group);
na = -a;
gpuSaxpy(Ax, r, na, N, peer_group);
r0 = r1;
peer_group.sync();
if (peer_group.thread_rank() == 0) {
*dot_result = 0.0;
}
peer_group.sync();
gpuDotProduct(r, r, N, cta, peer_group);
cg::sync(grid);
if (grid.thread_rank() == 0) {
atomicAdd_system(dot_result, grid_dot_result);
grid_dot_result = 0.0;
}
peer_group.sync();
r1 = *dot_result;
k++;
}
}
// Map of device version to device number
std::multimap<std::pair<int, int>, int> getIdenticalGPUs() {
int numGpus = 0;
checkCudaErrors(cudaGetDeviceCount(&numGpus));
std::multimap<std::pair<int, int>, int> identicalGpus;
for (int i = 0; i < numGpus; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
// Filter unsupported devices
if (deviceProp.cooperativeLaunch && deviceProp.concurrentManagedAccess) {
identicalGpus.emplace(std::make_pair(deviceProp.major, deviceProp.minor),
i);
}
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i,
deviceProp.name, deviceProp.major, deviceProp.minor);
}
return identicalGpus;
}
int main(int argc, char **argv) {
constexpr size_t kNumGpusRequired = 2;
int N = 0, nz = 0, *I = NULL, *J = NULL;
float *val = NULL;
const float tol = 1e-5f;
float *x;
float rhs = 1.0;
float r1;
float *r, *p, *Ax;
printf("Starting [%s]...\n", sSDKname);
auto gpusByArch = getIdenticalGPUs();
auto it = gpusByArch.begin();
auto end = gpusByArch.end();
auto bestFit = std::make_pair(it, it);
// use std::distance to find the largest number of GPUs amongst architectures
auto distance = [](decltype(bestFit) p) {
return std::distance(p.first, p.second);
};
// Read each unique key/pair element in order
for (; it != end; it = gpusByArch.upper_bound(it->first)) {
// first and second are iterators bounded within the architecture group
auto testFit = gpusByArch.equal_range(it->first);
// Always use devices with highest architecture version or whichever has the
// most devices available
if (distance(bestFit) <= distance(testFit)) bestFit = testFit;
}
if (distance(bestFit) < kNumGpusRequired) {
printf(
"No two or more GPUs with same architecture capable of "
"concurrentManagedAccess found. "
"\nWaiving the sample\n");
exit(EXIT_WAIVED);
}
std::set<int> bestFitDeviceIds;
// Check & select peer-to-peer access capable GPU devices as enabling p2p
// access between participating GPUs gives better performance.
for (auto itr = bestFit.first; itr != bestFit.second; itr++) {
int deviceId = itr->second;
checkCudaErrors(cudaSetDevice(deviceId));
std::for_each(
itr, bestFit.second,
[&deviceId, &bestFitDeviceIds,
&kNumGpusRequired](decltype(*itr) mapPair) {
if (deviceId != mapPair.second) {
int access = 0;
checkCudaErrors(
cudaDeviceCanAccessPeer(&access, deviceId, mapPair.second));
printf("Device=%d %s Access Peer Device=%d\n", deviceId,
access ? "CAN" : "CANNOT", mapPair.second);
if (access && bestFitDeviceIds.size() < kNumGpusRequired) {
bestFitDeviceIds.emplace(deviceId);
bestFitDeviceIds.emplace(mapPair.second);
} else {
printf("Ignoring device %i (max devices exceeded)\n",
mapPair.second);
}
}
});
if (bestFitDeviceIds.size() >= kNumGpusRequired) {
printf("Selected p2p capable devices - ");
for (auto devicesItr = bestFitDeviceIds.begin();
devicesItr != bestFitDeviceIds.end(); devicesItr++) {
printf("deviceId = %d ", *devicesItr);
}
printf("\n");
break;
}
}
// if bestFitDeviceIds.size() == 0 it means the GPUs in system are not p2p
// capable, hence we add it without p2p capability check.
if (!bestFitDeviceIds.size()) {
printf("Devices involved are not p2p capable.. selecting %zu of them\n",
kNumGpusRequired);
std::for_each(bestFit.first, bestFit.second,
[&bestFitDeviceIds,
&kNumGpusRequired](decltype(*bestFit.first) mapPair) {
if (bestFitDeviceIds.size() < kNumGpusRequired) {
bestFitDeviceIds.emplace(mapPair.second);
} else {
printf("Ignoring device %i (max devices exceeded)\n",
mapPair.second);
}
// Insert the sequence into the deviceIds set
});
} else {
// perform cudaDeviceEnablePeerAccess in both directions for all
// participating devices.
for (auto p1_itr = bestFitDeviceIds.begin();
p1_itr != bestFitDeviceIds.end(); p1_itr++) {
checkCudaErrors(cudaSetDevice(*p1_itr));
for (auto p2_itr = bestFitDeviceIds.begin();
p2_itr != bestFitDeviceIds.end(); p2_itr++) {
if (*p1_itr != *p2_itr) {
checkCudaErrors(cudaDeviceEnablePeerAccess(*p2_itr, 0));
checkCudaErrors(cudaSetDevice(*p1_itr));
}
}
}
}
/* Generate a random tridiagonal symmetric matrix in CSR format */
N = 10485760 * 2;
nz = (N - 2) * 3 + 4;
checkCudaErrors(cudaMallocManaged((void **)&I, sizeof(int) * (N + 1)));
checkCudaErrors(cudaMallocManaged((void **)&J, sizeof(int) * nz));
checkCudaErrors(cudaMallocManaged((void **)&val, sizeof(float) * nz));
float *val_cpu = (float *)malloc(sizeof(float) * nz);
genTridiag(I, J, val_cpu, N, nz);
memcpy(val, val_cpu, sizeof(float) * nz);
checkCudaErrors(
cudaMemAdvise(I, sizeof(int) * (N + 1), cudaMemAdviseSetReadMostly, 0));
checkCudaErrors(
cudaMemAdvise(J, sizeof(int) * nz, cudaMemAdviseSetReadMostly, 0));
checkCudaErrors(
cudaMemAdvise(val, sizeof(float) * nz, cudaMemAdviseSetReadMostly, 0));
checkCudaErrors(cudaMallocManaged((void **)&x, sizeof(float) * N));
double *dot_result;
checkCudaErrors(cudaMallocManaged((void **)&dot_result, sizeof(double)));
checkCudaErrors(cudaMemset(dot_result, 0, sizeof(double)));
// temp memory for ConjugateGradient
checkCudaErrors(cudaMallocManaged((void **)&r, N * sizeof(float)));
checkCudaErrors(cudaMallocManaged((void **)&p, N * sizeof(float)));
checkCudaErrors(cudaMallocManaged((void **)&Ax, N * sizeof(float)));
std::cout << "\nRunning on GPUs = " << kNumGpusRequired << std::endl;
cudaStream_t nStreams[kNumGpusRequired];
int sMemSize = sizeof(double) * ((THREADS_PER_BLOCK / 32) + 1);
int numBlocksPerSm = INT_MAX;
int numThreads = THREADS_PER_BLOCK;
int numSms = INT_MAX;
auto deviceId = bestFitDeviceIds.begin();
// set numSms & numBlocksPerSm to be lowest of 2 devices
while (deviceId != bestFitDeviceIds.end()) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaSetDevice(*deviceId));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, *deviceId));
int numBlocksPerSm_current = 0;
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&numBlocksPerSm_current, multiGpuConjugateGradient, numThreads,
sMemSize));
if (numBlocksPerSm > numBlocksPerSm_current) {
numBlocksPerSm = numBlocksPerSm_current;
}
if (numSms > deviceProp.multiProcessorCount) {
numSms = deviceProp.multiProcessorCount;
}
deviceId++;
}
if (!numBlocksPerSm) {
printf(
"Max active blocks per SM is returned as 0.\n Hence, Waiving the "
"sample\n");
exit(EXIT_WAIVED);
}
int device_count = 0;
int totalThreadsPerGPU = numSms * numBlocksPerSm * THREADS_PER_BLOCK;
deviceId = bestFitDeviceIds.begin();
while (deviceId != bestFitDeviceIds.end()) {
checkCudaErrors(cudaSetDevice(*deviceId));
checkCudaErrors(cudaStreamCreate(&nStreams[device_count]));
int perGPUIter = N / (totalThreadsPerGPU * kNumGpusRequired);
int offset_Ax = device_count * totalThreadsPerGPU;
int offset_r = device_count * totalThreadsPerGPU;
int offset_p = device_count * totalThreadsPerGPU;
int offset_x = device_count * totalThreadsPerGPU;
checkCudaErrors(cudaMemPrefetchAsync(I, sizeof(int) * N, *deviceId,
nStreams[device_count]));
checkCudaErrors(cudaMemPrefetchAsync(val, sizeof(float) * nz, *deviceId,
nStreams[device_count]));
checkCudaErrors(cudaMemPrefetchAsync(J, sizeof(float) * nz, *deviceId,
nStreams[device_count]));
if (offset_Ax <= N) {
for (int i = 0; i < perGPUIter; i++) {
cudaMemAdvise(Ax + offset_Ax, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetPreferredLocation, *deviceId);
cudaMemAdvise(r + offset_r, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetPreferredLocation, *deviceId);
cudaMemAdvise(x + offset_x, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetPreferredLocation, *deviceId);
cudaMemAdvise(p + offset_p, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetPreferredLocation, *deviceId);
cudaMemAdvise(Ax + offset_Ax, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetAccessedBy, *deviceId);
cudaMemAdvise(r + offset_r, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetAccessedBy, *deviceId);
cudaMemAdvise(p + offset_p, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetAccessedBy, *deviceId);
cudaMemAdvise(x + offset_x, sizeof(float) * totalThreadsPerGPU,
cudaMemAdviseSetAccessedBy, *deviceId);
offset_Ax += totalThreadsPerGPU * kNumGpusRequired;
offset_r += totalThreadsPerGPU * kNumGpusRequired;
offset_p += totalThreadsPerGPU * kNumGpusRequired;
offset_x += totalThreadsPerGPU * kNumGpusRequired;
if (offset_Ax >= N) {
break;
}
}
}
device_count++;
deviceId++;
}
#if ENABLE_CPU_DEBUG_CODE
float *Ax_cpu = (float *)malloc(sizeof(float) * N);
float *r_cpu = (float *)malloc(sizeof(float) * N);
float *p_cpu = (float *)malloc(sizeof(float) * N);
float *x_cpu = (float *)malloc(sizeof(float) * N);
for (int i = 0; i < N; i++) {
r_cpu[i] = 1.0;
Ax_cpu[i] = x_cpu[i] = 0.0;
}
#endif
printf("Total threads per GPU = %d numBlocksPerSm = %d\n",
numSms * numBlocksPerSm * THREADS_PER_BLOCK, numBlocksPerSm);
dim3 dimGrid(numSms * numBlocksPerSm, 1, 1),
dimBlock(THREADS_PER_BLOCK, 1, 1);
// Structure used for cross-grid synchronization.
MultiDeviceData multi_device_data;
checkCudaErrors(cudaHostAlloc(
&multi_device_data.hostMemoryArrivedList,
(kNumGpusRequired - 1) * sizeof(*multi_device_data.hostMemoryArrivedList),
cudaHostAllocPortable));
memset(multi_device_data.hostMemoryArrivedList, 0,
(kNumGpusRequired - 1) *
sizeof(*multi_device_data.hostMemoryArrivedList));
multi_device_data.numDevices = kNumGpusRequired;
multi_device_data.deviceRank = 0;
void *kernelArgs[] = {
(void *)&I, (void *)&J, (void *)&val, (void *)&x,
(void *)&Ax, (void *)&p, (void *)&r, (void *)&dot_result,
(void *)&nz, (void *)&N, (void *)&tol, (void *)&multi_device_data,
};
printf("Launching kernel\n");
deviceId = bestFitDeviceIds.begin();
device_count = 0;
while (deviceId != bestFitDeviceIds.end()) {
checkCudaErrors(cudaSetDevice(*deviceId));
checkCudaErrors(cudaLaunchCooperativeKernel(
(void *)multiGpuConjugateGradient, dimGrid, dimBlock, kernelArgs,
sMemSize, nStreams[device_count++]));
multi_device_data.deviceRank++;
deviceId++;
}
checkCudaErrors(cudaMemPrefetchAsync(x, sizeof(float) * N, cudaCpuDeviceId));
checkCudaErrors(
cudaMemPrefetchAsync(dot_result, sizeof(double), cudaCpuDeviceId));
deviceId = bestFitDeviceIds.begin();
device_count = 0;
while (deviceId != bestFitDeviceIds.end()) {
checkCudaErrors(cudaSetDevice(*deviceId));
checkCudaErrors(cudaStreamSynchronize(nStreams[device_count++]));
deviceId++;
}
r1 = (float)*dot_result;
printf("GPU Final, residual = %e \n ", sqrt(r1));
#if ENABLE_CPU_DEBUG_CODE
cpuConjugateGrad(I, J, val, x_cpu, Ax_cpu, p_cpu, r_cpu, nz, N, tol);
#endif
float rsum, diff, err = 0.0;
for (int i = 0; i < N; i++) {
rsum = 0.0;
for (int j = I[i]; j < I[i + 1]; j++) {
rsum += val_cpu[j] * x[J[j]];
}
diff = fabs(rsum - rhs);
if (diff > err) {
err = diff;
}
}
checkCudaErrors(cudaFreeHost(multi_device_data.hostMemoryArrivedList));
checkCudaErrors(cudaFree(I));
checkCudaErrors(cudaFree(J));
checkCudaErrors(cudaFree(val));
checkCudaErrors(cudaFree(x));
checkCudaErrors(cudaFree(r));
checkCudaErrors(cudaFree(p));
checkCudaErrors(cudaFree(Ax));
checkCudaErrors(cudaFree(dot_result));
free(val_cpu);
#if ENABLE_CPU_DEBUG_CODE
free(Ax_cpu);
free(r_cpu);
free(p_cpu);
free(x_cpu);
#endif
printf("Test Summary: Error amount = %f \n", err);
fprintf(stdout, "&&&& conjugateGradientMultiDeviceCG %s\n",
(sqrt(r1) < tol) ? "PASSED" : "FAILED");
exit((sqrt(r1) < tol) ? EXIT_SUCCESS : EXIT_FAILURE);
}