forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontainer.hpp
98 lines (85 loc) · 3.38 KB
/
container.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
////////////////////////////////////////////////////////////////////////////////
//
// Container parent class.
//
////////////////////////////////////////////////////////////////////////////////
template <class T>
class Container {
public:
__device__ Container() { ; }
__device__ virtual ~Container() { ; }
__device__ virtual void push(T e) = 0;
__device__ virtual bool pop(T& e) = 0;
};
////////////////////////////////////////////////////////////////////////////////
//
// Vector class derived from Container class using linear memory as data storage
// NOTE: This education purpose implementation has restricted functionality.
// For example, concurrent push and pop operations will not work
// correctly.
//
////////////////////////////////////////////////////////////////////////////////
template <class T>
class Vector : public Container<T> {
public:
// Constructor, data is allocated on the heap
// NOTE: This must be called from only one thread
__device__ Vector(int max_size) : m_top(-1) { m_data = new T[max_size]; }
// Constructor, data uses preallocated buffer via placement new
__device__ Vector(int max_size, T* preallocated_buffer) : m_top(-1) {
m_data = new (preallocated_buffer) T[max_size];
}
// Destructor, data is freed
// NOTE: This must be called from only one thread
__device__ ~Vector() {
if (m_data) delete[] m_data;
}
__device__ virtual void push(T e) {
if (m_data) {
// Atomically increment the top idx
int idx = atomicAdd(&(this->m_top), 1);
m_data[idx + 1] = e;
}
}
__device__ virtual bool pop(T& e) {
if (m_data && m_top >= 0) {
// Atomically decrement the top idx
int idx = atomicAdd(&(this->m_top), -1);
if (idx >= 0) {
e = m_data[idx];
return true;
}
}
return false;
}
private:
int m_size;
T* m_data;
int m_top;
};