diff --git a/data-raw/generate_minimal_example_data.R b/data-raw/generate_minimal_example_data.R new file mode 100644 index 0000000..fde3209 --- /dev/null +++ b/data-raw/generate_minimal_example_data.R @@ -0,0 +1,55 @@ +## Here we generate data for the minimal example and for test_generate_commonness_matrix_from_gdm.R + +# library("gdm") + +# create random species composition +set.seed(42) + +nspecies <- 20 +nsites <- 15 +presence_prob <- 0.3 # probability for each species to be present at each site + +get_species_list <- function(nspecies, nsites, presence_prob) +{ + # generate a siteXspecies list with a random set of species presences/absences + # fill list with random species presences + m <- matrix(nrow = nspecies, ncol = nsites, data = 0) + + for (row in 1:ncol(m)) { + for (col in 1:nrow(m)) { + if (runif(1) < presence_prob) { + m[col, row] <- 1 + } + } + } + + mode(m) <- "integer" + + return(m) +} + +# random species composition +species_list <- get_species_list(nspecies = nspecies, nsites = nsites, + presence_prob = presence_prob) + +# calculation of Bray-Curtis dissimilarity with the gdm package: +# bioData is required by the gdm package, but does not affect +# the observed Bray-Curtis dissimilarity we will use later +bioData <- data.frame(site_id = 1:nsites, x_coords = rep(13, nsites), + y_coords = rep(10, nsites)) + +bioData <- cbind(bioData, t(species_list)) + +predData <- data.frame(site_id = 1:nsites, preds = runif(nsites)) + +sitepairs <- gdm::formatsitepair(bioData = bioData, bioFormat = 1, abundance = FALSE, + siteColumn = "site_id", + XColumn = "x_coords", YColumn = "y_coords", + predData = predData) + +alpha_div <- colSums(species_list) +gdm_result <- gdm::gdm(sitepairs, geo = TRUE) + +minimal_example_data <- list(species_list = species_list, alpha_list = alpha_div, beta_list = gdm_result$observed) + +usethis::use_data(minimal_example_data) \ No newline at end of file