From 48b978b6dd7774e754abc04529bfd9d041284587 Mon Sep 17 00:00:00 2001 From: Roger Bivand Date: Tue, 6 Feb 2024 13:34:13 +0100 Subject: [PATCH] update docs --- docs/articles/CO69.html | 28 +- docs/articles/nb.html | 106 +++--- docs/articles/nb_sf.html | 56 ++-- docs/articles/sids.html | 38 +-- .../figure-html/unnamed-chunk-3-1.png | Bin 116683 -> 116768 bytes docs/news/index.html | 5 +- docs/pkgdown.yml | 2 +- docs/reference/LOSH.mc-1.png | Bin 37519 -> 37118 bytes docs/reference/LOSH.mc.html | 6 +- docs/reference/SD.RStests.html | 304 ++++++++++++++++++ docs/reference/bhicv.html | 2 +- docs/reference/compon.html | 15 +- docs/reference/dnearneigh.html | 6 +- docs/reference/edit.nb.html | 5 +- docs/reference/geary.mc.html | 95 +++++- docs/reference/geary.test.html | 58 +++- docs/reference/globalG.test.html | 55 +++- docs/reference/index.html | 8 +- docs/reference/joincount.multi.html | 69 +--- docs/reference/knearneigh.html | 4 +- docs/reference/lm.RStests.html | 277 ++++++++++++++++ docs/reference/lm.morantest.html | 12 +- docs/reference/localC.html | 77 +---- docs/reference/moran.mc.html | 66 ++++ docs/reference/moran.test.html | 24 +- docs/reference/mstree.html | 2 +- docs/reference/nb2blocknb.html | 69 +--- docs/reference/nb2lines.html | 8 +- docs/reference/nb2listwdist.html | 62 +--- docs/reference/nblag.html | 6 +- docs/reference/poly2nb.html | 2 +- docs/reference/skater.html | 14 +- docs/sitemap.xml | 6 + 33 files changed, 1028 insertions(+), 459 deletions(-) create mode 100644 docs/reference/SD.RStests.html create mode 100644 docs/reference/lm.RStests.html diff --git a/docs/articles/CO69.html b/docs/articles/CO69.html index 83020959..79a6a10e 100644 --- a/docs/articles/CO69.html +++ b/docs/articles/CO69.html @@ -379,8 +379,8 @@

Spatial weights
 library(terra)
-v_eire_ge1 <-vect(eire_ge1)
-SG <- rasterize(v_eire_ge1, rast(nrows=70, ncols=50, extent=ext(v_eire_ge1)), field="county")
+v_eire_ge1 <-vect(eire_ge1)
+SG <- rasterize(v_eire_ge1, rast(nrows=70, ncols=50, extent=ext(v_eire_ge1)), field="county")
 library(rgrass)
 grass_home <- "/home/rsb/topics/grass/g820/grass82"
 initGRASS(grass_home, home=tempdir(), SG=SG, override=TRUE)
@@ -398,7 +398,7 @@ 

Spatial weightsinv_dlist <- lapply(dlist, function(x) 1/(x/1.609344)) combo_km <- lapply(1:length(inv_dlist), function(i) inv_dlist[[i]]*prop_borders[[i]]) combo_km_lw <- nb2listw(grass_borders$neighbours, glist=combo_km, style="B") -summary(combo_km_lw)

+summary(combo_km_lw)
## Characteristics of weights list object:
 ## Neighbour list object:
 ## Number of regions: 25 
@@ -434,7 +434,7 @@ 

Spatial weightsred_lw_unstand$neighbours[[Kerry]] <- red_lw_unstand$neighbours[[Kerry]][-Clare_in_Kerry] red_lw_unstand$weights[[Clare]] <- red_lw_unstand$weights[[Clare]][-Kerry_in_Clare] red_lw_unstand$weights[[Kerry]] <- red_lw_unstand$weights[[Kerry]][-Clare_in_Kerry] -summary(red_lw_unstand)

+summary(red_lw_unstand)
## Characteristics of weights list object:
 ## Neighbour list object:
 ## Number of regions: 25 
@@ -565,7 +565,7 @@ 

Measures of spatial autocorrelation Prop_stdR <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=lw_std, randomisation=TRUE)) })

##    user  system elapsed 
-##   0.116   0.000   0.116
+## 0.118 0.000 0.118
 res <- sapply(c("MoranN", "MoranR", "GearyN", "GearyR", "Prop_unstdN", "Prop_unstdR", "Prop_stdN", "Prop_stdR"), function(x) sapply(get(x), "[[", "statistic"))
 rownames(res) <- vars
@@ -608,7 +608,7 @@ 

Measures of spatial autocorrelation I <- sapply(Prop_stdN, function(x) x$estimate[1])[raw_data] EI <- sapply(Prop_stdN, function(x) x$estimate[2])[raw_data] res <- (I - EI)/wrong_N_sqVI -names(res) <- vars[raw_data] +names(res) <- vars[raw_data] print(formatC(res, format="f", digits=4), quote=FALSE)

##    pagval2_10   pagval10_50     pagval50p     cowspacre  ocattlepacre     pigspacre 
 ##        3.8836        1.4957        4.8276        4.6744        1.9003        3.1550 
@@ -621,7 +621,7 @@ 

Measures of spatial autocorrelation calculated above:

 res <- lapply(c("MoranR", "GearyR", "Prop_unstdR", "Prop_stdR"), function(x) sapply(get(x), function(y) c(y$estimate[1], sqrt(y$estimate[3]))))
-res <- t(do.call("rbind", res))
+res <- t(do.call("rbind", res))
 colnames(res) <- c("I", "sigma_I", "C", "sigma_C", "unstd_r", "sigma_r", "std_r", "sigma_r")
 rownames(res) <- vars
 print(formatC(res, format="f", digits=4), quote=FALSE)
@@ -652,7 +652,7 @@

Measures of spatial autocorrelation of the measure shown in the original Table 5:

 oMoranf <- function(x, nb) {
-  z <- scale(x, scale=FALSE)
+  z <- scale(x, scale=FALSE)
   n <- length(z)
   glist <- lapply(1:n, function(i) {ii <- nb[[i]]; ifelse(ii > i, 1, 0)})
   lw <- nb2listw(nb, glist=glist, style="B")
@@ -710,7 +710,7 @@ 

Simulating measures of s } f_bpara <- function(x, nsim, listw) { boot(x, statistic=MoranI.boot, R=nsim, sim="parametric", ran.gen=Nsim, - mle=list(mean=mean(x), sd=sd(x)), listw=listw, n=length(x), + mle=list(mean=mean(x), sd=sd(x)), listw=listw, n=length(x), S0=Szero(listw)) } nsim <- 4999 @@ -737,8 +737,8 @@

Simulating measures of s Prop_stdRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=lw_std)) })

-res <- lapply(c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb"), function(x) sapply(get(x), function(y) (y$t0 - mean(y$t))/sd(y$t)))
-res <- t(do.call("rbind", res))
+res <- lapply(c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb"), function(x) sapply(get(x), function(y) (y$t0 - mean(y$t))/sd(y$t)))
+res <- t(do.call("rbind", res))
 colnames(res) <- c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb")
 rownames(res) <- vars

We collate the results to compare with the analytical standard @@ -786,7 +786,7 @@

Simulating measures of s Prop_stdSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw=lw_std)) })

##    user  system elapsed 
-##   0.064   0.000   0.065
+## 0.066 0.000 0.067
 res <- sapply(c("MoranSad", "Prop_unstdSad", "Prop_stdSad"), function(x) sapply(get(x), "[[", "statistic"))
 rownames(res) <- vars
@@ -839,7 +839,7 @@

Simulating measures of s Prop_stdEx <- lapply(lm_objs, function(x) lm.morantest.exact(x, listw=lw_std)) })
##    user  system elapsed 
-##   0.081   0.000   0.082
+## 0.084 0.000 0.084
 res <- sapply(c("MoranEx", "Prop_unstdEx", "Prop_stdEx"), function(x) sapply(get(x), "[[", "statistic"))
 rownames(res) <- vars
@@ -881,7 +881,7 @@

Simulating measures of s function of the eigenvalues of the spatial weights matrix. APLE requires the use of row standardised weights.

-vars_scaled <- lapply(vars, function(x) scale(eire_ge1[[x]], scale=FALSE))
+vars_scaled <- lapply(vars, function(x) scale(eire_ge1[[x]], scale=FALSE))
 nb_W <- nb2listw(lw_unstand$neighbours, style="W")
 pre <- spatialreg:::preAple(0, listw=nb_W)
 MoranAPLE <- sapply(vars_scaled, function(x) spatialreg:::inAple(x, pre))
diff --git a/docs/articles/nb.html b/docs/articles/nb.html
index f4fc7ea1..791ddd08 100644
--- a/docs/articles/nb.html
+++ b/docs/articles/nb.html
@@ -133,7 +133,7 @@ 

Introductionlibrary(spdep)

## Loading required package: spData
## Loading required package: sf
-
## Linking to GEOS 3.12.1, GDAL 3.8.2, PROJ 9.3.1; sf_use_s2() is TRUE
+
## Linking to GEOS 3.12.1, GDAL 3.8.3, PROJ 9.3.1; sf_use_s2() is TRUE
 NY8 <- as(sf::st_read(system.file("shapes/NY8_utm18.shp", package="spData")), "Spatial")
## Reading layer `NY8_utm18' from data source 
@@ -152,8 +152,8 @@ 

Introduction
 Syracuse <- NY8[NY8$AREANAME == "Syracuse city",]
-Sy0_nb <- subset(NY_nb, NY8$AREANAME == "Syracuse city")
-summary(Sy0_nb)
+Sy0_nb <- subset(NY_nb, NY8$AREANAME == "Syracuse city") +summary(Sy0_nb)

## Neighbour list object:
 ## Number of regions: 63 
 ## Number of nonzero links: 346 
@@ -185,7 +185,7 @@ 

Creating Contiguity Neighbours## [1] "sp"

 Sy1_nb <- poly2nb(Syracuse)
-isTRUE(all.equal(Sy0_nb, Sy1_nb, check.attributes=FALSE))
+isTRUE(all.equal(Sy0_nb, Sy1_nb, check.attributes=FALSE))
## [1] TRUE

As we can see, creating the contiguity neighbours from the Syracuse object reproduces the neighbours from (Waller and Gotway 2004). Careful examination of @@ -204,21 +204,21 @@

Creating Contiguity Neighbours
 Sy2_nb <- poly2nb(Syracuse, queen=FALSE)
-isTRUE(all.equal(Sy0_nb, Sy2_nb, check.attributes=FALSE))
+isTRUE(all.equal(Sy0_nb, Sy2_nb, check.attributes=FALSE))
## [1] FALSE
 oopar <- par(mfrow=c(1,2), mar=c(3,3,1,1)+0.1)
-plot(Syracuse, border="grey60")
-plot(Sy0_nb, coordinates(Syracuse), add=TRUE, pch=19, cex=0.6)
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8)
-plot(Syracuse, border="grey60")
-plot(Sy0_nb, coordinates(Syracuse), add=TRUE, pch=19, cex=0.6)
-plot(diffnb(Sy0_nb, Sy2_nb, verbose=FALSE), coordinates(Syracuse),
+plot(Syracuse, border="grey60")
+plot(Sy0_nb, coordinates(Syracuse), add=TRUE, pch=19, cex=0.6)
+text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8)
+plot(Syracuse, border="grey60")
+plot(Sy0_nb, coordinates(Syracuse), add=TRUE, pch=19, cex=0.6)
+plot(diffnb(Sy0_nb, Sy2_nb, verbose=FALSE), coordinates(Syracuse),
   add=TRUE, pch=".", cex=0.6, lwd=2)
## Warning in diffnb(Sy0_nb, Sy2_nb, verbose = FALSE): region.id differ; using ids
 ## of first list
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8)
+text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8)

 par(oopar)
@@ -247,7 +247,7 @@

Creating Contiguity NeighbourswriteVECT6(Syracuse, "SY0") contig <- vect2neigh("SY0") Sy3_nb <- sn2listw(contig)$neighbours -isTRUE(all.equal(Sy3_nb, Sy2_nb, check.attributes=FALSE)) +isTRUE(all.equal(Sy3_nb, Sy2_nb, check.attributes=FALSE))

Similar approaches may also be used to read ArcGIS coverage data by tallying the left neighbour and right neighbour arc indices with the polygons in the data set, using either RArcInfo or @@ -302,20 +302,20 @@

Creating Graph-Based NeighboursSy7_nb <- graph2nb(relativeneigh(coords), row.names=IDs)
 oopar <- par(mfrow=c(2,2), mar=c(1,1,1,1)+0.1)
-plot(Syracuse, border="grey60")
-plot(Sy4_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8)
-plot(Syracuse, border="grey60")
+plot(Syracuse, border="grey60")
+plot(Sy4_nb, coords, add=TRUE, pch=".")
+text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8)
+plot(Syracuse, border="grey60")
 if (!is.null(Sy5_nb)) {
-  plot(Sy5_nb, coords, add=TRUE, pch=".")
-  text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8)
+  plot(Sy5_nb, coords, add=TRUE, pch=".")
+  text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8)
 }
-plot(Syracuse, border="grey60")
-plot(Sy6_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="c)", cex=0.8)
-plot(Syracuse, border="grey60")
-plot(Sy7_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="d)", cex=0.8)
+plot(Syracuse, border="grey60") +plot(Sy6_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="c)", cex=0.8) +plot(Syracuse, border="grey60") +plot(Sy7_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="d)", cex=0.8)

 par(oopar)
@@ -380,15 +380,15 @@

Distance-Based Neighbours## 15 1 1
 oopar <- par(mfrow=c(1,3), mar=c(1,1,1,1)+0.1)
-plot(Syracuse, border="grey60")
-plot(Sy8_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8)
-plot(Syracuse, border="grey60")
-plot(Sy9_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8)
-plot(Syracuse, border="grey60")
-plot(Sy10_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="c)", cex=0.8)
+plot(Syracuse, border="grey60") +plot(Sy8_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8) +plot(Syracuse, border="grey60") +plot(Sy9_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8) +plot(Syracuse, border="grey60") +plot(Sy10_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="c)", cex=0.8)

 par(oopar)
@@ -408,7 +408,7 @@

Distance-Based Neighbours
 dsts <- unlist(nbdists(Sy8_nb, coords))
-summary(dsts)
+summary(dsts)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 ##   395.7   587.3   700.1   760.4   906.1  1544.6
@@ -429,15 +429,15 @@ 

Distance-Based Neighbours## 4 1 1

 oopar <- par(mfrow=c(1,3), mar=c(1,1,1,1)+0.1)
-plot(Syracuse, border="grey60")
-plot(Sy11_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8)
-plot(Syracuse, border="grey60")
-plot(Sy12_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8)
-plot(Syracuse, border="grey60")
-plot(Sy13_nb, coords, add=TRUE, pch=".")
-text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="c)", cex=0.8)
+plot(Syracuse, border="grey60") +plot(Sy11_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="a)", cex=0.8) +plot(Syracuse, border="grey60") +plot(Sy12_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="b)", cex=0.8) +plot(Syracuse, border="grey60") +plot(Sy13_nb, coords, add=TRUE, pch=".") +text(bbox(Syracuse)[1,1], bbox(Syracuse)[2,2], labels="c)", cex=0.8)

 par(oopar)
@@ -456,15 +456,15 @@

Distance-Based Neighboursres <- sapply(nb_l, function(x) table(card(x))) mx <- max(card(Sy13_nb)) res1 <- matrix(0, ncol=(mx+1), nrow=3) -rownames(res1) <- names(res) +rownames(res1) <- names(res) colnames(res1) <- as.character(0:mx) -res1[1, names(res$d1)] <- res$d1 -res1[2, names(res$d2)] <- res$d2 -res1[3, names(res$d3)] <- res$d3 +res1[1, names(res$d1)] <- res$d1 +res1[2, names(res$d2)] <- res$d2 +res1[3, names(res$d3)] <- res$d3 library(RColorBrewer) pal <- grey.colors(3, 0.95, 0.55, 2.2) # RSB quietening greys -barplot(res1, col=pal, beside=TRUE, legend.text=FALSE, xlab="numbers of neighbours", ylab="tracts") +barplot(res1, col=pal, beside=TRUE, legend.text=FALSE, xlab="numbers of neighbours", ylab="tracts") legend("topright", legend=format(dS, digits=1), fill=pal, bty="n", cex=0.8, title="max. distance")

Distance-based neighbours: frequencies of numbers of neighbours by @@ -476,7 +476,7 @@

Distance-Based Neighbours +summary(dsts0)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 ##    82.7  1505.0  3378.7  5865.8  8954.3 38438.1

If the areal entities are approximately regularly spaced, using @@ -506,14 +506,14 @@

Higher-Order Neighbours
 Sy0_nb_lags <- nblag(Sy0_nb, maxlag=9)
-names(Sy0_nb_lags) <- c("first", "second", "third", "fourth", "fifth", "sixth", "seventh", "eighth", "ninth")
+names(Sy0_nb_lags) <- c("first", "second", "third", "fourth", "fifth", "sixth", "seventh", "eighth", "ninth")
 res <- sapply(Sy0_nb_lags, function(x) table(card(x)))
 mx <- max(unlist(sapply(Sy0_nb_lags, function(x) card(x))))
 nn <- length(Sy0_nb_lags)
 res1 <- matrix(0, ncol=(mx+1), nrow=nn)
-rownames(res1) <- names(res)
+rownames(res1) <- names(res)
 colnames(res1) <- as.character(0:mx)
-for (i in 1:nn) res1[i, names(res[[i]])] <- res[[i]]
+for (i in 1:nn) res1[i, names(res[[i]])] <- res[[i]]
 res1
##          0 1 2 3 4  5  6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 ## first    0 1 1 5 9 14 17 9 6  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
diff --git a/docs/articles/nb_sf.html b/docs/articles/nb_sf.html
index 865e1ecd..736105d0 100644
--- a/docs/articles/nb_sf.html
+++ b/docs/articles/nb_sf.html
@@ -170,8 +170,8 @@ 

Data setsf_bna$AREAKEY <- gsub("\\.", "", sf_bna$Primary.ID) data(NY_data, package="spData") key <- as.character(nydata$AREAKEY) -sf_bna1 <- sf_bna[match(key, sf_bna$AREAKEY), c("AREAKEY")] -sf_bna2 <- merge(sf_bna1, nydata, by="AREAKEY") +sf_bna1 <- sf_bna[match(key, sf_bna$AREAKEY), c("AREAKEY")] +sf_bna2 <- merge(sf_bna1, nydata, by="AREAKEY") sf_bna2_utm18 <- st_transform(sf_bna2, "+proj=utm +zone=18 +datum=NAD27") st_write(sf_bna2_utm18, "NY8_bna_utm18.gpkg")

@@ -229,7 +229,7 @@

Comparison of sp and sf approaches} if (dothis) sf_extSoftVersion()
##           GEOS           GDAL         proj.4 GDAL_with_GEOS     USE_PROJ_H 
-##       "3.12.1"        "3.8.2"        "9.3.1"         "true"         "true" 
+##       "3.12.1"        "3.8.3"        "9.3.1"         "true"         "true" 
 ##           PROJ 
 ##        "9.3.1"

Let us read the GPKG file with valid geometries in to ‘sf’ and ‘sp’ @@ -258,7 +258,7 @@

Contiguity neighbours for pol eps <- sqrt(.Machine$double.eps) system.time(for(i in 1:reps) NY8_sf_1_nb <- poly2nb(NY8_sf, queen=TRUE, snap=eps))/reps
##    user  system elapsed 
-##  0.0934  0.0048  0.0995
+## 0.0989 0.0056 0.1050

Using spatial indices to check intersection of polygons is much faster than the legacy method in poly2nb. From spdep 1.1-7, use is made of GEOS through sf to find candidate @@ -306,7 +306,7 @@

Contiguity neighbours from partly invalid set:

 try(NY8_sf_old_1_nb <- poly2nb(NY8_sf_old), silent = TRUE)
-all.equal(NY8_sf_old_1_nb, NY8_sf_1_nb, check.attributes=FALSE)
+all.equal(NY8_sf_old_1_nb, NY8_sf_1_nb, check.attributes=FALSE)
## [1] "Component 57: Numeric: lengths (4, 5) differ" 
 ## [2] "Component 58: Numeric: lengths (5, 6) differ" 
 ## [3] "Component 66: Numeric: lengths (7, 11) differ"
@@ -347,7 +347,7 @@ 

Contiguity neighbours from geometries in the same ways as before imposing validity:

 try(NY8_sf_old_1_nb_val <- poly2nb(NY8_sf_old_val), silent = TRUE)
-all.equal(NY8_sf_old_1_nb_val, NY8_sf_1_nb, check.attributes=FALSE)
+all.equal(NY8_sf_old_1_nb_val, NY8_sf_1_nb, check.attributes=FALSE)

## [1] "Component 57: Numeric: lengths (4, 5) differ" 
 ## [2] "Component 58: Numeric: lengths (5, 6) differ" 
 ## [3] "Component 66: Numeric: lengths (7, 11) differ"
@@ -356,7 +356,7 @@ 

Contiguity neighbours from

The neighbour sets are the same for the old boundaries with or without imposing validity:

-all.equal(NY8_sf_old_1_nb_val, NY8_sf_old_1_nb, check.attributes=FALSE)
+all.equal(NY8_sf_old_1_nb_val, NY8_sf_old_1_nb, check.attributes=FALSE)

## [1] TRUE
@@ -383,7 +383,7 @@

Finding points for polygon objects
 if (unname(sf_extSoftVersion()["GEOS"] >= "3.9.0")) 
-    NY8_cic_sf <- st_cast(st_inscribed_circle(st_geometry(NY8_sf), nQuadSegs=0), "POINT")[(1:(2*nrow(NY8_sf)) %% 2) != 0]
+ NY8_cic_sf <- st_cast(st_inscribed_circle(st_geometry(NY8_sf), nQuadSegs=0), "POINT")[(1:(2*nrow(NY8_sf)) %% 2) != 0]

We need to check whether coordinates are planar or not:

 st_is_longlat(NY8_ct_sf)
@@ -419,12 +419,12 @@

K-nearest neighbours
 system.time(for (i in 1:reps) NY88_nb_sf <- knn2nb(knearneigh(NY8_ct_sf, k=1)))/reps
##    user  system elapsed 
-##  0.0182  0.0009  0.0193
+## 0.0181 0.0008 0.0191

Legacy code may be used omitting the kd-tree:

 system.time(for (i in 1:reps) NY89_nb_sf <- knn2nb(knearneigh(NY8_ct_sf, k=1, use_kd_tree=FALSE)))/reps
##    user  system elapsed 
-##  0.0174  0.0011  0.0186
+## 0.0180 0.0013 0.0195

Distance neighbours @@ -433,7 +433,7 @@

Distance neighbours
 dsts <- unlist(nbdists(NY88_nb_sf, NY8_ct_sf))
-summary(dsts)

+summary(dsts)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
 ##    82.85   912.85  1801.11  3441.04  4461.26 17033.11
@@ -443,7 +443,7 @@ 

Distance neighbours
 system.time(for (i in 1:reps) NY810_nb <- dnearneigh(NY8_ct_sf, d1=0, d2=0.75*max_1nn))/reps

##    user  system elapsed 
-##  0.0310  0.0007  0.0319
+## 0.0324 0.0007 0.0334

By default, the function uses dbscan::frNN() to build a kd-tree in 2D or 3D which is then used to find distance neighbours. For small n, the argument use_kd_tree=FALSE may speed up @@ -453,7 +453,7 @@

Distance neighbours
 system.time(for (i in 1:reps) NY811_nb <- dnearneigh(NY8_ct_sf, d1=0, d2=0.75*max_1nn, use_kd_tree=FALSE))/reps
##    user  system elapsed 
-##  0.0166  0.0009  0.0175
+## 0.0176 0.0008 0.0185
@@ -483,7 +483,7 @@

K-nearest neighbourssf_use_s2(TRUE) system.time(for (i in 1:reps) pts_ll1_nb <- knn2nb(knearneigh(pts_ll, k=6)))/reps

##    user  system elapsed 
-##  0.0245  0.0000  0.0246
+## 0.0251 0.0000 0.0252

For this smaller data set, the legacy approach without spatial indexing is adequate, but slows down as the number of observations increases:

@@ -493,12 +493,12 @@

K-nearest neighbours
 system.time(for (i in 1:reps) pts_ll2_nb <- knn2nb(knearneigh(pts_ll, k=6)))/reps
##    user  system elapsed 
-##  0.0186  0.0001  0.0188
+## 0.0202 0.0000 0.0203

The WGS84 ellipsoid Great Circle distances differ a very little from the s2 spherical distances, yielding output that here diverges for two tract centroids:

-all.equal(pts_ll1_nb, pts_ll2_nb, check.attributes=FALSE)
+all.equal(pts_ll1_nb, pts_ll2_nb, check.attributes=FALSE)
## [1] "Component 52: Mean relative difference: 1.466667"  
 ## [2] "Component 124: Mean relative difference: 0.0251046"
@@ -546,7 +546,7 @@ 

Distance neighbours=0.75*max_1nn_ll))/(reps/5) }

##    user  system elapsed 
-##  0.0430  0.0000  0.0435
+## 0.0445 0.0000 0.0450

Alternatively, spherical distances can be used with dwithin=FALSE and s2::s2_closest_edges(); although running in similar time, s2::s2_closest_edges() @@ -555,9 +555,9 @@

Distance neighbours
 system.time(for (i in 1:(reps/5)) pts_ll5_nb <- dnearneigh(pts_ll, d1=0, d2=0.75*max_1nn_ll, dwithin=FALSE))/(reps/5)
##    user  system elapsed 
-##  0.0265  0.0005  0.0270
+## 0.029 0.000 0.029
-if (packageVersion("s2") > "1.0.7") all.equal(pts_ll3_nb, pts_ll5_nb, check.attributes=FALSE)
+if (packageVersion("s2") > "1.0.7") all.equal(pts_ll3_nb, pts_ll5_nb, check.attributes=FALSE)
## [1] TRUE

Using s2::s2_closest_edges() respects d1 > 0 without requiring a second pass in R, so is @@ -568,7 +568,7 @@

Distance neighbours=0.75*max_1nn_ll, dwithin=FALSE))/(reps/5) }
##    user  system elapsed 
-##   0.027   0.000   0.027
+## 0.0275 0.0000 0.0280

Using s2::s2_dwithin_matrix() requires a second pass, one for the lower bound, another for the upper bound, and a set difference operation to find neighbours in the distance band:

@@ -578,20 +578,20 @@

Distance neighbours=0.75*max_1nn_ll))/(reps/5) }
##    user  system elapsed 
-##  0.0720  0.0005  0.0730
+## 0.0740 0.0000 0.0745
-if (packageVersion("s2") > "1.0.7") all.equal(pts_ll3a_nb, pts_ll5a_nb, check.attributes=FALSE)
+if (packageVersion("s2") > "1.0.7") all.equal(pts_ll3a_nb, pts_ll5a_nb, check.attributes=FALSE)
## [1] TRUE

Setting use_s2=FALSE falls back to the legacy version, which uses symmetry to reduce time:

 system.time(for (i in 1:reps) pts_ll6_nb <- dnearneigh(pts_ll, d1=0, d2=0.75*max_1nn_ll, use_s2=FALSE))/reps
##    user  system elapsed 
-##  0.0094  0.0000  0.0095
+## 0.0101 0.0000 0.0102

Minor differences may occur between the legacy ellipsoid and s2 spherical approaches:

-all.equal(pts_ll5_nb, pts_ll6_nb, check.attributes=FALSE)
+all.equal(pts_ll5_nb, pts_ll6_nb, check.attributes=FALSE)
##  [1] "Component 20: Numeric: lengths (6, 5) differ"     
 ##  [2] "Component 28: Numeric: lengths (7, 6) differ"     
 ##  [3] "Component 112: Numeric: lengths (109, 108) differ"
@@ -617,9 +617,9 @@ 

Distance neighbours
 system.time(for (i in 1:reps) pts_ll6a_nb <- dnearneigh(pts_ll, d1=5, d2=0.75*max_1nn_ll, use_s2=FALSE))/reps
##    user  system elapsed 
-##  0.0096  0.0000  0.0096
+## 0.0099 0.0001 0.0100

-if (packageVersion("s2") > "1.0.7") all.equal(pts_ll5a_nb, pts_ll6a_nb, check.attributes=FALSE)
+if (packageVersion("s2") > "1.0.7") all.equal(pts_ll5a_nb, pts_ll6a_nb, check.attributes=FALSE)
##  [1] "Component 20: Numeric: lengths (6, 5) differ"       
 ##  [2] "Component 28: Numeric: lengths (7, 6) differ"       
 ##  [3] "Component 112: Numeric: lengths (62, 61) differ"    
@@ -668,9 +668,9 @@ 

Contiguity neighbours for spherical polygon support
 system.time(for (i in 1:reps) NY8_sf_1_nb_ll <- poly2nb(NY8_sf_ll, queen=TRUE, snap=eps))/reps
##    user  system elapsed 
-##  0.1571  0.0022  0.1613
+## 0.1574 0.0024 0.1604

-all.equal(NY8_sf_1_nb, NY8_sf_1_nb_ll, check.attributes=FALSE)
+all.equal(NY8_sf_1_nb, NY8_sf_1_nb_ll, check.attributes=FALSE)
## [1] TRUE
diff --git a/docs/articles/sids.html b/docs/articles/sids.html index 837ad497..39dafff8 100644 --- a/docs/articles/sids.html +++ b/docs/articles/sids.html @@ -125,7 +125,7 @@

Getting the data into R

We will be using the spdep and spreg packages, here version: spdep, version 1.3-2, -2024-01-02, the sf package and the +2024-02-06, the sf package and the tmap package. The data from the sources referred to above is documented in the help page for the nc.sids data set in spData. The actual data, included in a shapefile @@ -151,21 +151,21 @@

Getting the data into R
 sf_use_s2(FALSE)
-plot(st_geometry(nc), axes=TRUE)
-text(st_coordinates(st_centroid(st_geometry(nc), of_largest_polygon=TRUE)), label=nc$FIPSNO, cex=0.5)
+plot(st_geometry(nc), axes=TRUE) +text(st_coordinates(st_centroid(st_geometry(nc), of_largest_polygon=TRUE)), label=nc$FIPSNO, cex=0.5)

We can examine the names of the columns of the data frame to see what it contains — in fact some of the same columns that we will be examining below, and some others which will be useful in cleaning the data set.

-names(nc)
+names(nc)
##  [1] "CNTY_ID"   "AREA"      "PERIMETER" "CNTY_"     "NAME"      "FIPS"     
 ##  [7] "FIPSNO"    "CRESS_ID"  "BIR74"     "SID74"     "NWBIR74"   "BIR79"    
 ## [13] "SID79"     "NWBIR79"   "east"      "north"     "x"         "y"        
 ## [19] "lon"       "lat"       "L_id"      "M_id"      "geometry"
-summary(nc)
+summary(nc)
##     CNTY_ID          AREA          PERIMETER         CNTY_     
 ##  Min.   :1825   Min.   :0.0420   Min.   :0.999   Min.   :1825  
 ##  1st Qu.:1902   1st Qu.:0.0910   1st Qu.:1.324   1st Qu.:1902  
@@ -324,7 +324,7 @@ 

Getting the data into R
-all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(sids_sf)[,1:14])
+all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(sids_sf)[,1:14])

##  [1] "Names: 12 string mismatches"                                  
 ##  [2] "Component 4: Modes: numeric, character"                       
 ##  [3] "Component 4: target is numeric, current is character"         
@@ -342,7 +342,7 @@ 

Getting the data into R## [15] "Component 14: Attributes: < target is NULL, current is list >" ## [16] "Component 14: target is numeric, current is sfc_MULTIPOLYGON"

-all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(sids2_sf)[,1:14])
+all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(sids2_sf)[,1:14])
##  [1] "Names: 12 string mismatches"                         
 ##  [2] "Component 4: Modes: numeric, character"              
 ##  [3] "Component 4: target is numeric, current is character"
@@ -360,7 +360,7 @@ 

Getting the data into RThe spData data set has some columns reordered and a surprise:

-all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(nc)[,c(2,3,4,1,5:14)])
+all.equal(as.data.frame(nc_sf)[,1:14], as.data.frame(nc)[,c(2,3,4,1,5:14)])

## [1] "Component \"NWBIR74\": Mean relative difference: 0.04891304"

so a difference in NWBIR74:

@@ -399,8 +399,8 @@ 

Getting the data into R## 37055 37095 ## 3 disjoint connected subgraphs

-plot(st_geometry(nc), border="grey")
-plot(ncCC89, st_centroid(st_geometry(nc), of_largest_polygon), add=TRUE, col="blue")
+plot(st_geometry(nc), border="grey") +plot(ncCC89, st_centroid(st_geometry(nc), of_largest_polygon), add=TRUE, col="blue")

Printing the neighbour object shows that it is a neighbour list object, with a very sparse structure — if displayed as a matrix, only @@ -411,16 +411,16 @@

Getting the data into Rregion.id of 37001 can be retreived by matching against the indices. More information can be obtained by using -summary() on an nb +summary() on an nb object. Finally, we associate a vector of names with the neighbour list, through the row.names argument. The names should be unique, as with data frame row names.

 r.id <- attr(ncCC89, "region.id")
-ncCC89[[match("37001", r.id)]]
+ncCC89[[match("37001", r.id)]]
## [1] 11 26 29 30 48
-r.id[ncCC89[[match("37001", r.id)]]]
+r.id[ncCC89[[match("37001", r.id)]]]
## [1] 37033 37081 37135 37063 37037

The neighbour list object records neighbours by their order in relation to the list itself, so the neighbours list for the county with @@ -510,7 +510,7 @@

Probability mapping
-hist(nc$pmap, main="")
+hist(nc$pmap, main="")

One ad-hoc way to assess the impact of the possible failure of our assumption that the counts follow the Poisson distribution is to @@ -609,7 +609,7 @@

Exploration and modelling of the and Read (1989):

 nc$ft.SID74 <- sqrt(1000)*(sqrt(nc$SID74/nc$BIR74) + sqrt((nc$SID74+1)/nc$BIR74))
-stem(round(nc$ft.SID74, 1), scale=2)
+stem(round(nc$ft.SID74, 1), scale=2)
## 
 ##   The decimal point is at the |
 ## 
@@ -652,9 +652,9 @@ 

Median polish smoothingmFT <- sqrt(1000)*(sqrt(mSID74/mBIR74) + sqrt((mSID74+1)/mBIR74)) # mFT1 <- t(matrix(mFT, 4, 4, byrow=TRUE)) # wrong assignment of 12 elements to a 4x4 matrix detected by CRAN test 2021-05-22 -rc <- do.call("rbind", lapply(strsplit(names(mFT), ":"), as.integer)) +rc <- do.call("rbind", lapply(strsplit(names(mFT), ":"), as.integer)) mFT1 <- matrix(as.numeric(NA), 4, 4) -for (i in 1:nrow(rc)) mFT1[rc[i,1], rc[i,2]] <- mFT[i] +for (i in 1:nrow(rc)) mFT1[rc[i,1], rc[i,2]] <- mFT[i] med <- medpolish(mFT1, na.rm=TRUE, trace.iter=FALSE) med

## 
@@ -681,8 +681,8 @@ 

Median polish smoothing
-mL_id <- model.matrix(~ as.factor(nc$L_id) -1)
-mM_id <- model.matrix(~ as.factor(nc$M_id) -1)
+mL_id <- model.matrix(~ as.factor(nc$L_id) -1)
+mM_id <- model.matrix(~ as.factor(nc$M_id) -1)
 nc$pred <- c(med$overall + mL_id %*% med$row + mM_id %*% med$col)
 nc$mp_resid <- nc$ft.SID74 - nc$pred
diff --git a/docs/articles/sids_files/figure-html/unnamed-chunk-3-1.png b/docs/articles/sids_files/figure-html/unnamed-chunk-3-1.png
index a1e842960b7a86396deb6b4ffd4fe05df2c0ada2..c0569c25afb63e0a30f2b44d492743f757556a59 100644
GIT binary patch
literal 116768
zcmeFYXH*kw+cr!G6%Y)HQlt~%M_Q<%Y)V8yiXfpW(tGbE2uKON
zw-BUC?*s@TZ`}93pYPxI`(5jOSg>Z8nQLaw<2tY7tONTCtU_~>=_U~o5sm6AkPZ_n;{
zMLkIR4$Ak7pnmH4;r_s2$}I~RCnt%Ti89$;Mp5?VI|ClX^mmmRjqi5yH@$!MH7r|z
zzaWHoRG*>aZ({1#_ZUX>8I(V3jTii}ttc#v%e4lKXux`ahz-+{;2#A~L@3_2$48
z{yA@hV19|Z@gIu(_)&q#@_{#y_cO5tjcNaa9I2Gu-?&fz3>~wVW1M-Q;y?VJ*y3aV
zGtg!0f9|-K>BB+N0*~0#_I>^@&rUFtw*0#*{*C%T?LYfte~Tdm{-t6-KT-L=bD{a@
z|Bj0bF23&}SbT54?g*J{bA7)1?_0y^C?J&EUa#YbYvrDP_2K!C0Gd?l;;;TktZ?6o
zMQZ1nHBTl4|B~<$c!~D4-4ckpSN%U%@IOY#7%60~9d8heP{#5t_)@wf1m{2hM}Be2
z`%A2r^CXt!bpi{%{0DcIrs7Zjdut<)Ui`T+Q48Rl)XyE`zf=iYFY7S>7sHSTEi3D9
z5Ss|w2&_CwOL9Tqf6>Kf5icHAFr2d=EdL0Cl4jmCdz|p_-%(5f$@ceKTSEjKX!jnH
z%Myh*|2tE2kHdYv_J{*-Li~TVp^3FfuVw#d5d4wt0WF&0z9D)YwO@IS+J
zGzn*>TSLY}R2cWL^am_UMgQOHcZr4jO67%iMw>MAH8kImB7#s;`2LIFDS~>jWB#TT
z>rACP`T^oNlv!nzX|LAgpxFq4ClJJ)(
z;{QG}C9&k+-Txmw?X0IZlHLOUJ3a6~3P{vjCJ6n3){?=J&yp4*`1?-Mf2K93&o;#O
zATMM*6cD11pbWW9%1mNM;>K(~{jb`q?#kY>C(0sQzq@Bi7AP686Uy~_x`0K!Wu5CK
zivB;Z@^QirCN=7*f{ItQrPyC$B`zVmCN*gtw62qpwuECSU&|Dsx4o;dB5aOv|GvTC4T5IxLte`jAs@4R#$7EOG;#e4
zVc8b~H!RQuzAxy+-gqs!WW5{&eRjaTB!igc+Rpe_LYNKVp$4S4$-%^#S*V1SkZHPV
z@_$#2jv@5{ZO<;^NeE4-ONc(mWzke+mhWGH69
z2)WR;T+_)QWXNf?sfdBLh*S%8L*#wdYW{7f$zg-I(#=ZfpMl~M)CaLyHi$FCON2RM
z4PgVh!>`Izwn03Om=1CCxmX}a$o*!aDr<6kR`K`DZCCMm#!36ZVqxLKv;vp-oX6%45dsc!p6v)&?!_Fo4v
z%#cfwLhRDk_K3|u)KR5XveT6p-XC<5NT&V&r`SrvgL28gGJ(<
z@fH8|QPbBA^F2+**Yw8dGI9gD*@2kqtmEjnVc!0Mt*s_XX3nnO&83|y`p6P)3pD(P
zi}%_1>#CgDFO-6ubs1}>b9us?FAFsWmnqyutgu1)F*YWp-vgmyDZyE`>(^y1XeVE^
zG@><>Il9kunvT(Xdg3Zb0x3*dM<&dDrs}P5yZS~GeGaGbVg@Ic9!fcM=
z3$ChBZ`W*+iJ3|8+-GZrxWXU%Ywf1E#l6ZL#bD>Zu7iZ!IkkUo+sqy_cZqhhg<9Tq
zg$^W(%rir7)3cc>x5N$e#ERy^-h}v8)N$Few-pDg0s}gAk%k%$!mZZa&gK>Cb*Jn
z4U|m^T~7>wP2Sl5#d)(TH|8(%{a4ulw?d@LR}TvK`7mhv&G@6hDae
zf6GzLaA9$#i1Fxfo12(cfYd{XsOYc3w;`U9)5@x2sNN<-brm{*Z}_p`CVQ|1@uJ5u
zd}qV0aEM8j7;YLh_5G7rVUa7+zX4ASI@l2AG}5Ql1Jm~uJj{=+hq8K8u76@U5VEbH
z(P<8G&u2g61tHFE7KPVuwsn&R(`4k_c~a^s&`Y}0x|kQbVZDuYRt_kgbMuCZ83v0?
zH}0Q26F}E9ozrV4Z{B=uX=|HnU{h3wZQWZDVILYNwou<5CUSYWeLAI{cAGes6J7uC
zm9;$MlSJfhJ$BY1Rk`cYT7V6vHSyKWS6REYciZa&O13Z)XdmM-q770Rk}U368a7Q9
zCAqj6+8vz+RMdTXT)~g+mJF&(5;KxOW+{>x0BH;S@k6P&#qp}F;%LBDGk>x%=@n&#
zK;@zTT?z<~YWSfbCmn`sNsDVwT?W$|JoNc(YVIm9ai7^ng};Pz`0t&ldDwKo{U;)v
zIp0#dL-qr0DMGQ{P!X4$H=S6!Alxl?xyc9ZPNoa!O^LLPyVWn|X*zaK5Ah@tz?TKM
z+bEl2TK)hZj!A%oFl8N2ofD1KgqdXOk5*d--{bqaXbuu{NxqG@fq0
z_%LVOCMNe}Pceh>jq=onOs|T%1~EQC?)s@Mg@p{c?K~>dTrv=FM6|D{WQ0bIhJtL@
zgQ5{AJhekBo=jdTFnLiS$9w4K0|Z;hFo4kz%>5EzDTDBKrMY4|Z1*G8&a*bcXJvcB
z?)M3Iz1k2V(INwrWKy@ZR_y!~rwsJvIJ0X8;J0_9V|Muno*W*HfrZCt)fulZIH#^S
z)zpg&8h!wdR)X+x_q|oPRX+!VobxRoZ^e53wE%o*czAxVOL;;mI{btuq9^&2ox2|D
zy%Oz)4Te?iLqp-sN4_R`lb6Yi$$kN6CS#v4jn3qUCKzUK728eWWpCM_3DyTy>e17<
z3vJ(=JRlv;{MlA)&0|gHC-)L4H})l$PK7wDHuqJ@WF@%zd7YKWEPY8HQtVL3CKvd&
zi5zeol?>pbe{JL8LhUs4k7hqLP>ngt)O`t@mlN)64mf?j?ES%s?|b7i%MoscG_q!B
z8RLQBD6MA81Z9>6JSp8c-%RNSwa%SnJnVjU{iMnpDv1psK6rLCJdijq>znA@$XvZ4
z86ERf(yrZ2^owxu4?7s-!
zaip-<_PotfqvMCelCzclvIoeZZ#cSS)GOQ5(n`wW;w-A9G^1+m9^Kjj9rzQfd|T*ZWz~n7IOxcwmHnc?Im4gN?+?Dho9gY?m!sB6~Gsi8N+Km
zqZX^!+4<=GJ$4~7VIDl5<=N8dXP5L+Ol*k=T~8Q35!DW#QtUioz2>9OvZw3#Rc_nf
zUeSF#0i}REJ=-FKjNh%3Hl$!oaFe2J{q~T7;FF2BStvPw*Lvu!;t1y*W@(I(>W#Wz
zBw1dwlj>E**8&t3d?JUT;)Ix{`(08m{r=&(C3p;3Uj6o2s1LK>?Dc!a>{C@XuiO(}
zf{E@gf)~;fSjvEP9(*&!zaArsD-D4N(^^qS8{!KJ$24P%
zt2iO{89P^-y~W1lteFFosHKUeMe@Lk;cb6@KZ@Vn$>6z&Km~8c
z!$q30z$M>Rd?F#}VP&Rg)JNaC`f_zHf+~7B5hxN+Ql!^OX+I==t$T)vsmd}GJy#XE
zOMP$_D)V&|OM37MzI{+z1^$JZrx?#ro4>=ueOdWdJ+(j4!c#qAJ)7Y*OV6*4QZuC_
zN2xCbP*WRu(Sf}QiQOFy>xLZXj}ajAeswh@E|qG*6-4$yTFCRMDDvd9%TxwfdX7AF
zwxCPx%!{A7hD)>)c|3jbD{lz%~t1dSt5W+Crj>3)YONR^#
z^T{QR9IM7G;*2r0oZ1%YShuIxIx>5j>O8)7fEFnfMFxc$%g!QcHLu
zcQ?+1x*HxO6||!MtLyJK+>|H!Rv?@9-K
z_~b9?v2apLJFMPgwbn<+NZ$i>f>ntUDR3_f%G`PSg@dFsQLjm3EQIB`Gj$t?dZqFG
z)PqtHg8gu-vWa5`*+s2RcR8JJ707U^!rurGv}T&X@QeyvmlpbVz7IXbaM*jpa;d2R
z2SMcAe2Eu6Vdr|+NqAhXXn%^`Hm|+e%nR>(q-x1)-oJ!$BG}bzE1ESA0lpEneh>~-
zAT!qCx_T!BMp8OuZwvoR8g+NOofw!#w9^n8TxT*fCg8{^7!I}Ws_-<6cR^RrTh~PrIk`F#N
zcTH<}4+^|^6xoavoqLqpQ4AATb~Z`|bgHm{sE;?rH8=;iW{4h2_0rOQAw-ExmfQ66
zzu!#x?Wd%~?*lDO4$qTk->v~xKUQJug-{C0)~U%ro>_6zU>qE&XH2^Q7xD~9TU*aQ
zffn`WWQy}4OrP#}mYHN-1xWA>ab9AN2@5nF_=(c|rI2RBvw~Zq-9$$Tw8+@+S~{%v
z9ql*{?qnPMW*s0fuA;RX`jvNK)bhxQQ*;a*FNaMLt9T}gpt=Eh8{>|@FKw_nOX
zrPxBA|GIYIeC3
zS928}j^+m!KP7D$Bm0wxTXEvMAa-XOn-UfvyG$$9@l91Wwxs2VBnI2n$MiZG?V0)y
zaaH&9KixqqZ8sfQa)6WHXKEgo^m`}ssXytJynj_PwX!~V(hgoO$T6uY<;A4MJbd-=
z{0qYdU68z84eIyrO^`y*wIo#v;lqH8r7T6lzKDsEI^^Ie@-C>X_J|98t`yX
z@kFH7Xy5Ei@hGuRRnj5xV_R*_v`v)Yp}5oe8Q=?YsmG^j+*u{I-`<}r?yJF-^7A*`_1*W(45E!T#|ra)T-=t$3X5uDhm9TzwSnwa$?UP%v
z1nZKtFmlS{#~(x-EREajr8FGwUoe?Wv+ZtBrCT#EzpxeAE}jR=IFJpTp0o>ZX|G}r
zg`DK=3^+v{tQOu^db9!5vJp21_YYFESMI>h9B{9c78{}Ugg`2t*G~sf>E~6S{c8+
zX_&vrZjEEH8dIL1;zyev^P6+~5(M8>yJ*mVg+RFxdP$UgNJ|a*#>wXB#MOFI5hCGy{~vX7
zp(1oZDZ2ep!)OdP>HXSvoo;?9Ke8%o&3LGuU6{H=D?L3^<@&<-#nrHBBT+-G7g_?u
zz9b@)`6Q0Yz)j0c9Di>RFe1pw3vFVfUy#o_SI~2)*)$a!n4T_bMbo3pEv8aRvT!Zc
z-771Pc$91WHCH%4iW|v|S^Q1mahRtoG&1{Yeu%-{5yKjK4b{3wpXlbQtYLNbHe1*|
z{}e}Sl#UCw>0asd;ywT^WfB|}YHf8WkEl-0jwzz!>6{#|lgzGLGRX$XKE-DzuGIhb
z0?1D+Kl7e4%+CPpupbmX%t8`TDZ$*GiinS
z?IiiZo1xroqr`3P%xCvakWIb~(hP)GiyT1i$t3l*l&d{=s4oK}bKxJt(;t_x#qwPG
zbr;CI$n2=UAexTvCn>dRSR-S%n5OAcuIhv#eyhRTk-KdwD@m<*&gC%UIUq{4CCa8X
z7Qt8CT)JP==6a^kEit}rMkshSJ2boEP}b^2>Tu^IRJ+UOH6JI$qU}qQL*3Qoz(i4L
zQ;^z&Y61JKRl^0lpp+{ko*+X7HI@x;nZ`XRKymV^G4p0XTh++5W|!z>#wsJ<``txQ
zo8|RgdaCxnrxK6y_TAwlhx~9%#4#a=^ONw4JiKYuY;@YL4gJzl-29mbArKwj-V<9V
zP;K>xqmgp3@L7rqr6`*Xddl^7x9WjD#D*G1=&kJy@?NJcS4+>-ReDfr_(~`cK)FnF
zv@??JQ>|h+8zZIq3dkaPFIZ%8?-4FY9;Nxp>&;oqzV~5zwgs;bUvWT~xt&f*lM5~t
zg6f8S_GeXFKt5hpMmz;QuKWxJT<{cRr9<_SOB)H0L6FE>2{X(R_~P+_>z{UIvtTO
zFc&OWX%3zXii_0#k9Cl`9OD9tf48uHI!JuHCyzk
zDUFp*efIF3wa9+eTMqNp>5$>Eh)jxullRl5*M#hrCi|a6kA;Q0b4t6p=Y>Hk|Kn!o
z&lX}P2|c6I+oi69BMw%-?e!l^W(byZiz#L%%Gm+o;T=xVN4LDyUbl(_4ADGI*0hzW
zR5wNecEGz{<5LQRDN5?{=?JidhFRb}@-l(ic@J>E<0uP2_0q&wf>*&f6a;
zyBl{Z{mm|8zfZFIEar?u_?o-4O@%qZ?YO6~P6qURYg>H!uhttPTVa<;CxNE-qTu5qs&iwRaCMWOA%#
zeO$c9^WEsnD~r06faSfJDPdik4fgmSVyzlwX>A*YZoc$9^cKn%#R?y<`1VrD*@a&-
zV36H)S~lw*3mL1a=(Gf=)|~D=bEfON!^r=coIEq!GEJBn(B(pz$kAL^ZO08aPN%BZT4X)jr!_M7c#Ih
z$|WeDUZIr?q6_=tBrP-(ZnN5f^sO_hbrAYr-2Q21^)q|#j)Jxn5&6->uN>_3TWBfRR!8q&N#Z)l98)mVED8f$4+LAD3+t
zE0@w4vY2g9D_F*RK1}xOal#m`vlpD%KZUdAe4YwkhrX0=91=f#AZU3o6O#%o-n6b6
z+F9rvXbV=L7jNL-UMYvg(Cw1YcvsbMWZATtl{cq+_0AxA{<*26y~gZPL9XRshP_%T
zF#|@8A549)RN7Cg$-@+^``r>(L0-De#7HWHdt_W0ec$1b^R>beX4!4lKQ{kD=AEeM
zg9&!zjh6T4vJWY*GEx)cYA+w=Hl-&%9{pp`)v;;N?^t>%8x)!C{KxZ69z=lp)S?Pu
zPQH)#RlmxbvTgM1>dpi+c5Qv>pM$$dKv44L8ZAG;fG(doJGqbsB8!&C7FWWq&riF@
zPEsMh%FTscuP$RzS?96s;RN^{Wmr4&f_h2dB2CvxS5^Z|R`c+)2(-va5MH9(JIXng
zx!1{@Q3YB6{h!b+j$uZ&WV!OsOh9M(Gm`!8dwgw!OD!qDQ=e!vYBJ6>mrY%TwwXQ;T_310tv&9=2u;}M6BbKiubkQ4aYwvwpk_l+|R0Z?CQDP-#6VDsAE1H
zcL|XsKW0Kac`%R@%RFw@bAHoGW^{{0Y@)ndPWX%q8g$#f+6)zB;Bhj3d=pa-m-4OO
zx%O1sy$5V;{<{EXeih4zK?c}i^4VSHLLOpI)gamR*c?jz%|)n@~7&kaboGcE{SmwPs>2QwvE>
ztMsLXs<{JN%pW(}1CPQl#;dXS61C1Jzxx09WYH2XE7e+aVsw*QJVYeXE_{KcWV*A-
zKXoRzVEl%UWMb2VoUs;gIL@(p;A>SPquusmwHIE;mZEA~V>N{&YTo;|`fNp2c}(W>
zliDq-S13W3ULb4W)9TwM^*4!fuB?{M~u!h+bM2y=S2-(Rerh(JI$BsNFMx&43A_vYm=OZT>if
zs?tRH*Lr#>W&M4JdahuTT3sIVPp`^-+9axPYkX%XsHTFJgSsdyL|rp!BWVdw*coamZ~^&$qfQ<~;*|1l51os1xU~I9$Rb
z*6V*m92_P-Ya;!nz2yLd#5QDJfNVX&rBoj^@ii-GveyDGV5_+`v{I*@Rw>y&z!_A{
zcwuRFQ>`3je1@!Y3tIoFCo{-aTREAyap0zp{(y}<
zA4wiD-1xDsLwwOb1fGQX3ywjS@~)vW0@KcZ{E&7PS(x6d-Alw}2#Z~XU*4c78YU|L
zX;B0?Aw;(tiNj3B8$Q2@urk#DsP#gMEEfk&Gnles|MitE<$jcc=#v8TGV=M`h4l$BCTW1F0Pm;Y|K^4sK9XFdWf0QF?2Tt=iba(r(R={XqAS3lB>o_w@m
z2zT(8-ru+hoA4dWT>6`lG$S9
zRG(%dy~lJTq0L_p_g2x^W2X}6#28gN1541*r>W_3dWF96KFlnisV7~cbY6^lcfzga
z_^kFkc?L|kKy*y0h}ApC>ctdUbv)EbK7UBwNrrP?x;6-q0UXlYy$*Q=k%3>yx%$Rm
z2y}_6d9*LM>MRKN&CS->{cg6|mzt
zL+ZevK;PFc8t4n+Gk>hqi&e|Jh!rGmyfIF>^3JaKGp*n3c~n)NrDDxAgq*^#b5bXY>S?AyD)QBDF|@`-&_ZLoN50rd#P8{WkyZ0$V76>m
zjM}b+=9R*}mh}{y0p!{wdsWG=J<#B6rqe-=&+SmAC1fTt*JqeQJ{^}?7qn}!J*~cP
z`s`83>=Qzv(m)pG;M*;40|<&ao7F+W5_c&?ldN_A$@NumT&SuQ-EB@PpfMfzt1;wE
z$w0;CtreA95iA+ZeN7w~CB-q5U2&CWPg_GPoyb>OE%gTZ6d_4}A}!SmE|3
zy0~E~_I_v89QIt(1a0U*%P^JED-xttR{#-w(7i2_y3Uj^O`p28=F>blmN&9qy{R?g
zAFwR9n7WmC($o=YfXscd-;NT{0eLOBc9D>9e!wjc(^)LJj*X^MZ!IU-fWflC8qg}$TM
z`nbBkjk$@$IAwWrJZYa^n|DEoK23HaQm|SNzA&!IN~*tNZOaVIu3;Px^k^M-3UY90
z9M^7turz6;4)Dnl7}HO_o9y8G?vrd`MPRZ2%ax&j6y0wXSY-L#uf2*!^oFWv__AJ6
zxLK!!X8Ji}_=r>LGiNcB!HC(k3wdV-v7ZvBX)ek>)7q00n?Ez{3Or!4<146ZTCUW#
z28!gK9_nSluEy+KkD0ca&bHM7ch5Y7x>u%xDN3_mZ2t>tP{dWUp50M?u#GmO{%89F
zf=AeqtTkm{jqbM*(6M}&_z#w2)`=n<_yHf&upGnjE_}1h7tc98G4`D5Ee&$g
z5x;CszyNO>Oifw};3J`evASgM;Pk$=(J0!szxJNi%`IF@LR2j6Gz
z0&|+@mU-%z6B--&o(A{-Q-Yt#ls&(=VY?TTsp<*)Dgz4{e6*{+m}MIMp+Yk{{1iyk
z1E9QI(|}X>$t`$btd3xF(v$boxwUu{`qFOcgw)Hb&Y0;BA@=MDjQn?fe{XSf+0i>b
zDLvqQ8XPiPxaj7AflZV}7VbKp$%Xa>!P?#I-|1T-xOB!-YBfx>e&zauq}tB!8>2vMG|`Vkt8<(tRa+xAFI|hpb08^q4`2!@e$wRe4Zjs2BZ;
zGlfjNOS3cTw$1ip*rUOBREIb)U?{JzKba`b(bKfvs&#(EtiHki7U%1fWzMWpBU|mM
z6s71}9cws5fPD~sJ7oKe^CdsIws&Q@+B1QRU*=_6y9Cvo!9FFJ55e2$DI
zjpZ4_jCa4M5Un3tsXpC%VZpQ{c>>LS^x*k}iI*rPK0S0$#ALs?v#KN-ZyP4}-z%t47ZP+Mt`+)13%V}ct+o;K|Zd|(^
zG6UR3W2~C=(_iM4_a>N8Xg~Y-?+m)!n)myM@lP|qUlNpUrxkYo={jQTqXsO1wAylIA(+|7)hALOFDWoPft@48a
zJ+sFJgbvfWxIidqn=MbA;XMEQ-m9#ZScu$oToYH2*k-B+N)52FKuLc_CllSOdUgzBrQ0|0Jc)WjvA9K_xUAFTU
z)jne<_hd#qGq$YfRO=Lvz5~GVx7RQaawWU+4o?Zq$ES)$J?Rq>Mk&h!m1Z+Rd>JQK
z-o5Ij=^Ce)+J?4^)zpFR)w<*8eSI-yXTbXhxD3I(Mh1`{=(!BKHyIlA(PrFE7}Ykf
z%r==y_@bayJpDVNR976BmD>5j#E;kSdBc!?p~oNB_R>w>V=N)^ba>rIBg(tArDDhM
z@=AJ3io+D6&t-(EU>#VETi{dch;QOb`DuQMP6FT|@5c1+^m`
zXO#805PMi5BYo)XakTWdx|$0vS$0IHB`A#Q1uimB>cqP%IM*@ArWI^|MsPKuQ}#|1
z!t9rqt%Ry&s2r@V%toy0V{uN&#I5^7IkDE5{MY+GXQhRC+bs2q8avBBuUUqqGFr2oRt1w*p$@yJ;eCHQc
zT8%Yr-O#sCF$>gq(C01kV<%Av`YdBZ3a(2$k}KaK>kxW+BpG&L}Ow{4Y;f
z_*oWx=%=6pN!W(Ut!-u>+mW}uS|&j6AET~jDlLn{9|(GPaN{Um(^K)1cH+U@Gscz(
zNb7WL0~<;z^Y^h0K|ybIQ`hVD9CKPRqrlJ7XqRPI>Q^@ax`+qjc0G4<{kyRSHQt6(
zDfu-7)iKeuPj>Vy|Drrk=&eu@AvC8s&V1bBIP}i+C82+gBmS<=KNlhkF-||J?O5XV
zCWG9k=eE!c_<5*+nrMRE%
z=@Z8q{4+SV&F*%P9-$)66o4VxQ$GGM1LYQbCjkUgNpP2|VxDE6{D_R0|JeoeyScZh
zI1!VoM+gN975a^vpTjkBqt)!Dll_(4iVXlhQYUWBGC?Q<;0?e!n-KyR}IISae0
zZfOZ_N2mN-WKOWY*|B|nM(TTazUN453ZHo|JwFQZ0Hy&H*OD3o7%s4%)YQ#P{D)>i
zb?yZBs%7o8HA2cDNTyOmwS1*7Vq>R!=cVx7ZF)S#OxD>AVh8KFXHVzkL)I}+9c0!A
zu0L39ZY{98CjR+?XK=BdjyS|>YOg{|Dj)W%orZJXrk
zK`~rXn9+*tx79x=w6s`;Q!TcJzY@QEbO0SFF@=-F8q%Xvz0kKJQ6AYPYT=_vVN6My
zupqy1NKm1yDk((L@3|lJXtnG_fe)W$Ktu@op#eUY8KZZb@AQ1I<5H;!`X|WN^YFMH4pFesoH%o#n{8-)b-EnGC@9PoHn0XCq{AL0
z*_aPm2%BaFF1J&Nl7Mk<2$A_P(Z0qX1@S$GHM#ORVcv0$ztKyMpXO?gS-kzT+1s&h
zsGZg!=)2dmLz6hdO1NC=>2gZ_`|`7Q&f6-&!s`8$uG+E)p3Pn1w&|;ddpWS=P}ehj
zkotU(dLyq7DbPYr$V?RE=sE~D*24YKts*1y-SvK;iuUuC
zENd4OIPe~r_vM3n-Fi@`Eaz*>bdlw^t2j5h@4^yxKG>;lQ0X~^b{N;^*YTC
z#?&1C?!WPLPOC?ZujALA*n7K?KgMwvOzpzII7Sx%h#sSH2)FQVzHx53d~+H;_VypW
zIbE*={TzH$?NjWmD4&j@hy?6N$H;Oylr_JXZMGZBeciG7#}MZ1TNNAkY{1z>{fNuF
zIOT_`GxDkHy-J`=elN|9i=CT3R%0a}p%fIFp((<1VX{k?{SwF%U4EVshlF8mc+O?B
zO~9Sg)N-Ed`sq82&a~MRL&6p)lpcD(o-5WQcOoqZypz>G)Fo-pTIyR?Q<
z2`YRH3~OdUTu=Wvnoq!MP3@1I#f#(1`*S`1d<+MFat~k_yr;2
zH@3KeOjAMg1I43ZY`Ig7wj@GESzdB9CDnN4++mebM>xAF{e`*Kz+7WR&9zE=oU8!l
z9bJcLAD(yYv6?Z5skeu-v-%0nX?mTIhr8hdBrtQG_3EG20~D6(qV4tFCsD~C!^3;A
zGv&^W;vGhZ$&sSy9}unHaS_RQyRnZk4ojO|_zS@;OZRh`Llb$aufa5?mm0!5HA^h<
zj;>ldBQ^=Vd>V{>na@36npe@6R&VB2Z72}3TW~~4di+$Gko^$vPExC+DPKX=```Og
z(#e5IYV~AZj^@2{w}w@==fpX8Sq3HYF0(ILWeITdACT8R1gn!A35VNrJ&OPCQ+{`T8HcN+1N
zwy8AH8ovVQvO+IFgWC#sayj1T^~K3uo4v*96E7NUH-EU2+Vh)z%Qw<2dN`}W*c?pk
ztV1|=@2*9sPXu;94dn}bA`-ZhB6nsur={^sIaqd_NO-d{&e1l+&~uDrDMLJKz=BfN
zHYsC^z~c!M87lEvS9v;A8?iMirLEzCXm3i7u|pa7?Xqn+ufmOU;1gi@gZz*U_T1;l
zueKHCVw%<@<|<_O+cY!+j|8oPLr
zaPtE5+ndzFuspBt2|PeZq?+pq=}SA3ti6L4IT+5;e~%s%B5A&m&RI1cCoH=$es{Mm
zb6w-7#bqLiNxs+bW9Oi!ro*2}Erz9D0Wdha^OtAXcHh~bysPuEK8&U*iPO`X_4Cm>
zpY*X6T6dEJ45H)-iQ)Ou{fJp~{hc+MDLO^e-L8Nm_M?(jg(sdzy-i@Nb^CHXi(j|y
zBDE5=oaYO7e)QM}yI}Sz|oahKLI
zf^ZBnV#;3IE;%rAN+pxjp$F!K=c0z5Zp)kk$=OAIj|@5I4tH^zzuKC7#~G3pmO;~$
zRdQxZD7ZR2^f)ZgSB=fqOWw$XyG)y-8T?@HkE7}Pw?_gw90AM6UlLI7Pv33NNd{c+
z-`v*Z%E34trt3Yd)|FcUjs|K>xERw65}bU%+xG=p=d{_elL0UR=S|019nR{nDA+{(
z7iPoAfACbHpC5>U{j&XJSJhTgv2gDszs|CXhMuKBC%+CIi|9bWR#UZTIE~E9=#713
z2eIvh<`ISIT#odBX|rI;BmZQ{aoK>&j|g-K)VhAferRDfP4?>oyBLYC+=wac!#Lm7#%fQ}EX
zuy~DT+g-VkbCyyqGT2M{*P4ljPhS#B1*)Mb?-1_kA3dia`jMvLQkIYGCRh~%eUYgR
zHd-9F@0apM9;RdwdUuj?@nc{St9v>^LlpGA7wm^YY*Bqmi4m*&-3~#{zVaU6iL$AU
zp{{HB-C;&s+#|au!oz!7fOm4?RAl+DPdKy5I^R_9Xz`Cf?u8AXakhudIAj+$zIHl-
z>FG|r%io7+dw|0ftr2dD7SiinL9PKoN4MNd>xQ@KQrBpf&%e$04ctqZ_FN2YxIe}o
zTWrD_BMd}O%T;L3Z;!~rH*<+F{!C0#AL^^en?wAUYAQO5l}*t=TWK
z-??l|TwbJX4q85EBl5Mg37=Z^K};spSXq7SdePdVA5l
zipx~hhTo^Sa!2Wlu{?*(SxIR_yJDb0EW4vdo{hm@co2WaC*P)wsl3~`mQo(Jy~g+F
zfs4xNEQ{d4d{<8S9z3_aogqmIpq3a9BCCO_1Zo9?t?y^3Pq185cu*g&{g74wkrl>q
zS0Qh6lDNciv{_=fhR4#aH?2AWgg$uT9G78wf-Pk}j@}Jw7rw7S-w`z%xTsSX)ckeH
zIR{?1JLFf!&FhDKED8$rvr!NKEG$*VDVAmT)^qvA&abYE5$zg0TZZOwZ!}F+o3ojT
ztD+A+HUev*?2L`&QWIcVh`QbZU*n&pbbNS>3!b{pq8K@Am`yJ@onu#ch(!y}zhX3U
zvvtR&=oP)8!HL|hrM!@D){oo^JOUAVwiLp)6IT^idlI3MhIhDl9u5wCy;P~Tk)Qgu
zn>4w|-e!j)+jyGzCv0}e2J6%Vfp~WColNDOuXrPW=Z?pgpsYW+Tz`3xvq(&}LH^Qq
zX$1CCf8LGNsw(XX%s8W%q$R7&zTRy9HYd9Q%bX1P)fZW#S@tu^Zt9HIUeb{Eoe@lP
zVv?Nh5ch0CZ?ars?@#rPdJ6iHg_LtPS)l3lo36fol@JWErC^PDi#ZqrU=4yvH8w_4
zr7ylD(=)6!>dA_}^oMeVNf`pNy0>9V+d{_7zSiY7Hd9kuC9Sp8KqJ{+_LHq0Z&YgQ
z6mvCZiLFZ&kEieXqyQ973QQ}&Ul?;@FYaeMBb{J^NYdyJmnhh9zwN5=6fWU9MUp<%
zFvT`VHj64a3+yZt%Tq#t9=wSR+gvImyCY}yG`v`+Gn&XD1UhQDhT4n
zxQ(yhdB$i5-6s$Hxc)XV1}4VaM>~tFC&f6A`&2rcgfBXg3*2AYB`p`Do=Sw#P=W64
zL+NBja4pQn7sH-163UdKy2lUNE18EISvM3r%iv9Y}%%U=g5{=nMCdB447^=kXFtL;pd6Ow#+
zG9oeD8nXWNSy$-g)|k_)d-S0-So&1S4FJ%@8$157w#x&7CA1y4)9rf~!&=LLVmey`
zTP>p6(vDh3|A(iq42Y`jx)$kXXoR7=Q@V$4Q32@^kQk8e?hZjZ1yrO}y?X@3qdJEU%~W(FK0P!RJ*&^EK%rj|Y2Vq=em{nZolA8k^4q
zR!K<$NWs_~PS{w|v4|Z2jZ61WCi?FKJhC%Zr*SrmC3d;YX(LhmC-&N%F#@>#2&SM!nj?RLji&(s5=|0M}Z((VXk~`yo#}9Lr@ydfqO`W
zxz{sqxj_*tpLJ!c(T)&|McA)3&^&|~@OmjZ6B2SAt=_6c1n>M2Rj@1f&QQU~=$@lS
zQYz(kePX~SN~Twp{!A2d6SE6|uS-TP4_mVkL6VWNVO$JS>##!a=e6|{tHI>{&PMaQ
zMA6XMmOk%Y_KTLn)tjFTIm{~n7ip}fVpjcP>kQ9Yv7SxRksD$1k$W%3r5}rrCQpuOL+w
z9~7<1^&sGfip1aMB}Y~;u%b~p=lh&e2+%EGQtX(Yr2m2l%vc*AsPbqsf1oA2Y+bjC
zWdzD0KGA~8M>Q2ZpoRvpYARpsB30RwQ>#<+{;;PzZ(k(!LUECOGU&tH1@yr`3c7@N
z@dMKC(D*ht?)rxBpwUF<976)7V7d-*j-k3z^vq2^oby$Y>@$6jTR;CK*yfvG_|xE8W~AY(*GrF{;CSMGGrlxIGt8j^`gmI0AA-e;
z$cZVgKEc{Ia-Utiu)AMV+x9VH=t>U5|8}yxOa>G#~9l-q}pu!vx%Y&78NQ=HP8@W@XbiqGwd2w(_}xwy>704NR4qFU(iT5C3G0yysE0+%NW@&koy5LN6WO0!GZ6
z7}63Rwlf`N$F{*_`W6a0hgFri4?YmP^CjTquFDR@?X}m|>0FI9vbp=CQQUJ!Kl(HA
zb5q9z)Rk$63>5>+8=py9Mi%pJoTfYs_xKhC#uCKYkt>y4krj6ahT}{Y*s$XMVgS#D
zi`33b*u=h28A$fqik$pxvDV15N$8fv((%yFyJ;He%h$-&MNv#zaJQf}xo86$BP=gX
zzK^(V+d?At*6rgp@u=LkB-(k?3Ovnz5b>#+mz~&jNIP@X`&$@szF>K)!^|jNO?byz
z)EYE4`TU|unVZw@6!qfjf%4wTA!-dkBP|2lKiOaMVg3N8RHi;k?Ml==yxH5YXlZjHdt=3*|X^D>B>kJJA1*K#=f0F!;s-0Ssa-##u
zfG$l}I|@dln~j=a-Hi0K930t89%-^T6&*XEikmbT3
zo?8coNO0%Npj^=VNV>2nKSgMgeqOjlU6b-%^I$W`@J^6Q)vYvD;VyEemIGCe1#S)O
z{uD`k!eq48@u;-aMC
z)oD!R48UVlPRqy#cz?3sCJhLJzw?m1b8tDe|A(o>Mw>gteCRdtr~LggX%+p`g7LN-p*7`|72pvOe!|k^#?YI=tF%k1G{0@P!e&5BAgBmkO*?MU7CCp7al
zC_4pF3=Ns>9p}Arf|rj18HuWy0WLZYPfbM+>qGm!KsV_LL*ji;8J_3el#@QQUr#Pa
zHjNd(V4#3y5D!0RVXtKgQEq3ChIZX#Vq<<{3FZ^+a)6>qpv2~)h?BXqT+eyYA{7_G
zgpyD0U=p`|wa4rlJH_=EE}z|E)TKY=W5~`bZ~QM>)dQ!^hFzD7ei@(!gjCw45e~ym6A#UT)llCq8z+g
zrhTMP6w-6zFP*Mc6ffs}Q#QggP#NH2`@Xl{)6rJz+TH~B9;ZQsb%^~UK!u!;)80;{
zz)tRaaW$ubNa-qG+-1(p0@+ujo1){`S-Y&muC&-c@VZzOvwa#
zl!^!WegD9+t$~J4t#V6}9MGWZ+9R&ZLfXqnIJeW|nk>j##v3I>xZt{(QkZt-Q%xp1
z6j}85X)mr(XjrgN^nX=#Wr3wiJcabgP`m-n~CR#`K5pj4G)90?>T@-M|Xl>**5FH4K<-7pGjYjS=K!eg$
zkf%D^rw+C~1JHzmZC-oS4LO|>W-#LXN;VGQwi#r}%@lKid(Pfhbp)hR3&#HsUa1$9
z(7^*p>84u?SrJeFBQ*#zk)-IfYX_%z*=t>C64jM0+cFWU;p
z{Zu!k{qY;`!iU;AC!%tDJOa+gS)n4{HVoO_H)HH8xO}IUa(&w+`3Oz{^p!bF@5LaN$l1G;4C;C=9wb*7|7C
zs8PJVyYU{XA@QWG;}8}bvG%ji8``4~ZX9&^%miN;tl?U6D?N3dKXB72upCG>>^Iif
zJj5t)4>T#7K$4^NLVlO%Qm+r);BUoyPK3@wXaaeQC~jI>+5$=emvMww-W1lH4x>5R(HvxqO>Js^z_iF`1r+*MiXPKJ0xPU6#+q+YCzKWf>4^`L!qg{2DP;8PP)st=33y^h}@1ugB>Gfie7pAFpoTS~T;McwZ1%->0HqMj03t
z91jMs@1@-#S7*Rr>_e{3aXUv11e48fy<$_375!>$T)i|deN(Kxa-x9{H>HR$LCfB1
zorbcf0^aS}1mtOLFiov6*m-q@c~_Y5$b`$-&0wn3=V9LgQHP
zOR3l*-p(*WO~*tAIx$vG$u4s$Z|)bvFu|6<_q^l{HkR7A1B;!5lDg~Nc0@b{p5vs#
zNz@U$9z60euNP;oEB*;A<>F|o2~>){~YdW7gpg^PMzP|f69+pEa3PtH>N2c^SrsiI4h(N(mY7!GQtSRc=^la
zSR91R@@=!<$ogy05wsy89=u=MZJhVl&b-Ir*^}$Cjh>E%&iqb=f6}Fn^a0+J_aIR2
z|8R^HeigTo8`Du`V6ZMM8(UEycc8LhkKOXd5}px%Q#Pz+-C#|v#$t2jPJCwX29&mM
zVUX{U)?QiEW;xDP^-YMxyj=bk;{53IT5HNm&3#)2G)@tm*2pE(H8wiG5o{RpNi79=j7$eq>E(4!)AjahYu-
zYkM-?{j`db-21-d{2ywaDBx+M!8i$;=#jWWKh&E5U>L?^QQnX2jkZpFHm`)lpUSUB
z+JY9?oyR*Be{Uz7xH`imRJM*P_7|zU28*5&eJX>^84w6DL@&j?loek^!c;B1ve{Q;3YEWK#5jj`0&0bIIVIZB2cJ8%9P
zo}W>Fw-e9M!%UshjQ9%R`rh`4XX>XZlei95n%YKsiPq;ZwjqIgWSv&UjWi8XPh$jr
znszp|<{Z=c{pLLbaW6q^$6=S6l*H=^hb^rkE#Jb1NsQtp1bAc_>+LKDn!v&{V;$#M
zRMELC;@jJDIebDxf{d0NKCUQkK}u7w4|cs}Q`gcVaW$q?Hjkg^)H?N+~tRDEAUa;
zg>+V$-C4U(KUBp51TO?`N@^uHV--@LyWs1*~hQt
z|0$s^*23|ybXS*qJMgz^lWa3j+bUTX?;MuCd<^UzL2}GI5UpcE5C4P`KiObXN0OoV
zHx`Z}R>vA)8t;p-#AS(R;iewWVj$mTA1?
zhZ}L46yd){oZ{HyW~)L*sZd@vHgv09sg?62zR}KLGQ77$b$^2zOS?~-nJMyCaqWXm
z0SxL{56ezPyFB&H`nX=GwRJi+V~c~mUSr}AGjJpBocFmAIA_)wfhjQXE@TROs?H*7
z&UavB5VwRQnMy?f*ON!16^>&h6=V)*lTr`7S*UriRG$Cs>&9Y!*;J+j8qG*1`=Nkp
z)P08Qv!1vt#oD-D5|j5u@73{`o9`nv&BMd`wY%%|-*d?j%txFsExSoFSVXo~D-uxo
zvr;JJ-!&cgd@YFCPHocaN{Q8ICPnRa^3Z7gFn4)DrN}4)8yi58(k%8cV{(gymI6E&
zE@@+qb*3>rTsRZ_H1?IjzNQH^t1}0q4H@tSn9@6axm?@F@}v+Ly;Y!>?<@`CrRe65
zSmTfuUBRixc*OXfl+HO`|B#;EpY8p9S2EV!0!In0K3H9VXPlCw{MS(4OQw^$vm%EQ)ynyieZ=BaAiF;w_V?M77As(_?sWZ-#yt^scXPr#9vfk
zhQNM{)V}2CvBTqkK^;R_$!r(knUvg+zk(CGm8%0+i4F_|0Aua1UI3n+-#gC39s>-F
zfw@+Qvg=Yd(=)pL+9~omnDZ6TtQYNmj`-h^o_t>s#=P}d#ARnVYDO1f&!E+ed3cAW
z&wK=%(}op@5PH(2rZ}UDv{9~>kzuD9bFjC5ba-N)dSo0Ep|K|Qg%qM1P$?|eR`(||
zQE{ZO;`v--(#T-*(_|OHW_L||r%mPR>#bY@6&73^XxtO%)ulhmhWdXFp%hlhaY0=$3Ke5Z*~f=WQg%5FswLH7UazZ#SYE0n}k_mI`t{=?l`Jxm-NN54bl_^
zuHKjOp?h}XIW_b2_CZ~!+X6waaDa@4R#vtt!EPR}xhv5fRkX!zx$jU`8J&qxcti}s
z>3y1{-pWVxO(2mm7;nyfJ9%e53SxAh_S=<2{4d_=@FL5q_{T=uvIqO4gPp%3M)A2G
z9XPUNGUVqz-Q%IQ?=0tkfGMgYNyS`p`(auO<%cqVfTBua=Y+~N#y<;irE!ekOySFs
zvK`blTbR;%71L5ph&5M_I{anK!-mmpSjvP|`$j`&$=VX0SSoCwOc=v`GmvDnK1h^6
zV)v^=bc^VgK6;DRFn==gfT%;_9xiN>J(E-@iEl8xrS5Tb_WW8M?O5^LriObFyh<9f
zP;`#>qkx;?d1YlmCA-;XKlbMwlVv9C`u}AC(v>!&YH-=h!PbH{&BOp{t<99U{wB!)Fax(87uRNl4iufGADuOpdg
zv;@210Jf?UPfX)a_qGjoy6qvjB0RHIOjl*xAqxYw%~S5P&M#ULp5jjOvHpmPHCi4o
z;uk;A#630+W%z#1*|weguMm;mO_rKto?X&if5H8)Hzd+0+XQv0Z#-E>b096eyogtJ17C
zjJJlNB|&0~8)(zv@Qg1e_?0i||LK|DKK7x@
zd5L#*jp&nMqH4mUyd-<^J|BWF1d_;ttf>RjeA+2TUAL8(CbHuRkB;L7U-3Mvln34T
zE7M#o=(MjZ#?EWeUib;Pbv{5>vsnMkou0==v0|}CNFFfFz3sEJ^l018FBU$Z4PcEn
zPPP$qtZAa4Cm=1}gOR5QmDepV1CsAM_Lc_H)QHg^4v3s$);jU%yT`;oh^6Rx1?^bH
zcn@!J{<=9uM4HtXDUG25xHsK$pCB@4%dQKBFD&QY=on|b(OxLvwfl^jg`HeUv@3Z}
zf5J>AJSb^-NtghQVc23J=XzyjY}CoZkrG$)QdmICpTV4m0U~q%;p$&4A78*C4b9zl7%T#oOjvN#ZfX>;y)M}_GKTOd-&>{
ziqgJ48{@)8qNa0B9F(WH+5;A!#hVs?NjVNV&4)6fQJKwf?hS=BHAvpai7f5d`
zGs}O_gKEshQVM)RPHncm)694i+CVOo`BIzT0d%Xfm@|H(F*huBXnRbt0+t$psvPej
zUGIr<{6}yj&Y2bk*GR!=>APbj_p
z+-RVpe8ZFrH-5dY#r_RUuo8Fw(N!_iTxup@Nn>g&P|IiijzY)u29zSCGA@+8l~*W2
zH~$i`_jNChzfPy;C4-t$|Hclbat!&f5Ogxkl60JeCm=Ho{dOes3AvOQO*c20AnpE
zx$CtNVFa`wDOz|th0RFyC+bZ3U)70(4k0G2V1HFXXf8#ZZ;9oBlW5dA3-k14qY5MJOb7;;mpmQ)E-Oz7h^<{rqJbmk~r{`GD=D&)f4QvHt+&9?IH
zCT9I-DPr$OY5WSnCvQ}r{H^S8Geg@G!5!H^?01W%s4EJ>HI46Q=fjn6w$wpX4x~p5
zc%!I(IBs=~c*z`t`vZl6cqKn=yxQm)Gm@By$TqZ+rcDQi{|g9@Hu4WyI2j
zX}M+|f`z>X_vpc`rV8%Hl#b^ur}6h^3vs@aXmQ&TDAL)w9xu5Mwo!OH*DBvc=sH6$
zt(e^q-My-gk^I-hmfWLH=2gLU^uH`hbURM%RAKx{otHx0}>mfIN$j!rG02pB}6Z&Y5hH8
zA9^mFYq1Ar6UHiE!$i>QnjIF!O~uVJh3_0
z+#u}BA{40kz7GwDeg|HKx-Z7sFKy|{ALShrGkC9de0L~6Mck=}O1RRVy$6>$=hFN@&}b%Ou3q;D)8
zK_MPVWK)53gzozK=w*YM^Jt2oYm?jEk*j!
zHdw>61f{X-VO*&sjV+ZG?}Dh=`he(#3CUcI@$2`fJ10-sDUKA!FSeIE70z53DN@6w
zC)>3HgG>@fG^XH=mIM7dt5Rz*r{U%#Ah$#vZqNe8kkSR#{4)mko8pWOF8M?9+7h-}
z493oO^r8SGMX5qv6mT~MOLmV4ciOGJsP%UFQ6}00Y3Eq^!jAq{=K*4{U}qaw1HJkr
z`rv>(`u#G3aBs9nGUNQjAdTv>6-QXzk4gpiA??ZtBX%gm&UVCAf@j&B=&Ef1vLdnl
z&LjG;mHXbebsx&9lEyjOKNjrY^G9um1?Q%QkiHeBa5;D6VzQ$$F$31NT3G9n=J$^N
zl|g5jYz&7@d3Cl}k#!tMVA%g^3*9Sty#KpJ%5_=cMe>deD3rZuxFbF~P3`(O+
z>K2TaVa+H_d5jd*ojc$XBfEisZQIu?&A1IeCUfX}FJTWO*V(Du3s)q(Ms3?^`&v#s
z=Jlgyb%caS=j7JNpB&tEBck1#IpQ)Z`Eg(ZR1wQJ_#Cq<01
zA~6LspGjZ}lWIh8;%1xTuOuONshNVB9@0NElddPd66bpHCrwuK-;v8U2O_+FHky;3
z-m$B>sVfb9Hl@2GSnslj5N-^`+-HTmfY=8ifqct>601-f>WC9j6UODuF)K=%6kZ}>
zG9O%@ys=w?g-_g}xBvrS#?HHtq3a_+a)-DN%@axdSF&U$@_kx^)XPbMOKvL>Hux%~
zdmNH)fwwC97(j~TLHZHi$+i3xyZ8uGfP>8sQua7Q{}M?Y?LXzLO`=)kOL)(ys#;5S
zG8Fe*`Fv$WZkThKh)MITsMUqh`(pDJI0LU*Etr`w6Z;4SL
ztazQv%B_;mi;37BGCUS?0Qb1SQq(8nijz(l2w@mH-Toa_!dC&}4;JEDhDP?BCJv-*
z2X`j@7&M635E@(RB<3_F@q1;1yW-EIc1TQTA48z5xKEA*!&l%gqUA)=)wSGsAci>u
z=LIB5A0F^_6l}tN3k@Zy&YsGFDsHO@4jr94^;-3skm6m0LEB2_J;?^TK#Qfsj8AiBg9#mhL47zzpnPkUaU$B^BF*
z8)iXMY-cYLZn{!O7am`=90ajKp>8>C{V&};-9Y~?$UgF{B!_V7wce?cyX^gK7nCz|
zK^23<;j$@81ZxKcv7dQduzXKMf`ZEf?dgpt@vwgWNS!=SR$4p`%|7En!W(53=NtvC
z%S*HAz54t(jd7{(SALL?7IXmJwOdT!f7#P6uTU-ePB1@Fx!zKF!lA?CHH>{t>X!&j
zM(F1kC&HPjE@_{kbUR-gFuaYwBrkby_e#i~
zGG-6-vgkEwPZXPK90=rPsWP@ZC=?{_N{f77g;(B1G}|v1$=sPs&IlkTseMe6ISE5O
z=+0p)ejt{d*`uA}U3+6MoQNWK0IZP1m-|B^0SMHF*7sj88iVMv8vs%$yczY66QN$*V#_ADO0h9}#MJBsj><2jqk
z`>#;lCNCsbX-{kkC(!rxKW(^?inGdsD4B1zo5S3JSM3r=;p^N#L`YX-8*Thx<|xn;
z1QjbfgfeW6SYYuVKJop&J?MHGxEV`Wj!g|HmApUPhi(H@Z0U}FZMMBlm6NNJc-;Po
z%6xfIR<2HA7e=3zp)gXR0HYFhtcXn&Q>cOrN|b!MV*y#cGlp+REr!2Vaw5vLvAnEf
z4Ti*b0a@jKFYVu2_()z-%WE<`B>YY{I@y#O|8bd_NAb|^Uy-Bot^#@jc^;q1LZ4{5
zzTGPCinh+r%b*z9Z7n@*cD-=z_>izLz(%qlIckeRgBYjP?63M_{8*|g69?$M7;w2<
z{6Vm}BKr!fgY29m3F&u5&i#l5Lm$trYd0jBsLN_@`o{}Hy6ve9qJ#(X)tSKf6I0wV
zN>W{kyW{CF1O>$5-1LQ`;nw;mPQmtZ|B~=dKXIC4lT+wyv@O-o^sD}3K9Q7awzzH5
zP3e-nelV3nRP446y;#0_yTD$Kd5;{KW3~)6;dh~>uUNd;$;5^XiCJUG>H~^hXhYaw
z>Xz|O$>z65`_wq%oB;&Kaqv}U4$&tkw|Jf#?+(BxmmhO)_L+XjSalQnSiezcx4_c`
zyO~ssUQ9hU5Z)&Xne_d}imUe)`_e|o9sjIfkf&~h{Oh*;SzhuKOynz((!BeG{95M(
z1Mr$-e|}3c-3h;$j6g>K&k_l^WCK4kPfT|d)$wTdqTjV~nRffMzg4An2%
zib7NL%FKON?vEOePn*ze3Ld3&EGchBXJvU$G+~#E;H_#woL{aI3H5xIq8rdDc;kx~
zWqBo^^`K?y#1!e}3j&Mn=d^n30VwDcpj*Y@oWf-ZqVZmgrn#G=}W|h<;>p!KDif>Q*
zYCHwsO?x`R3&V(HQR-VDV2McE(5g*ao@S)0R*_Oi?;26`MJQFDesX<-X6Cp?#Jdxy
zY)b1|*G4zt!fC7GW#ih2bbvfX@C(L^MmW*MSu2vAjY$j+RvA70lk$f2r1-f<2}KKO
z`*8oaum`77&z}_ckAd|AFC(MdC$A+J_U^zj0sUG+e{(C)Oyg$zr%vKT^lGI~8
zMFlg28H%;`uhg6-WT>ZUq93Km?aWPrQz(tY;io64$5C-|WJ><;(EVK>!rl=nbMVJL
zyEb<;GO6~Xa+jEis3RINuxJoc9w1Ms&ys=J6Ppb;X;#+Y`f9G}xwKPyyGw`pk|vfn
z1Lbq`wq4RFIMxa0gapcRlAE*?thuWC4p{5g*N_6KwZH5(C3h^q2o^-$fK*T2r;BrByxIRLbx6X=KU>lEU~b@i~||fZH;0;En<-sX>AD`j%2zB}+!>q7Ag}4U5`8rWWJIfw~6LM
z)_FviVlmlYmB^0*-ECe!3CeNJ>I-OAP=eIu5Awx2arH1ol{65vGflnRbPP@E3QZbp
z3r2D7?5|NI&bT$gYpuQ|Jl&gw7VBL~&lhoQx
zGsH}G;h+rxv%i~NSE(Ama&QZ5RQ-B1x9_?5w;2avogRGpiJ6Stfmj^8KhJ)x6H#C7
zZJSQ*mLezz82eS!^0|~qJUFklq=O|{%!Rn!DPQKI!3!FD@ABcQ2_PmsMf0^)T)#Vwy?qxmT
zvflqD*wuOaKvZ;Lmee60K6V(V&!@2^Xi-nYndp0(C+k`k>%4HOdx-f^_4gF=TmD`t
zucSA*YUB>UPawY9n_-#B)xHHxyNAHLC0c&>RhCH+dfWAUyZQixcu=2uuD5^1Yb5^X
zEpuY_p5So*;EhmQ6i^+0`=8j{wNCwymf*38yr8f!{q(qM!<2A3NSand*?=}
zF5F8|M!Hq`pm0y=nH@B2wW8;WknE@1I{RyQDSl2=3dxJ$X7l<$u@vT-M$&@4TGiPD
z(bMA5&oxXwq_LxKMuYsRTM}Ct+E*)bB=z{cLfY(DUu}3(u{{lk_~WrgEEL==a}OCl
zK5bB0IH*4v>*m_CA+G(&59-~xed2Fl?|p9*)2k>S|L1!l6~}&M4V$g~tLm;I(k>zu
ztOMT4LLiFn?I6DRb(g9{*LHuK!ti6ykK>7v%iOVQZ{5U(i5?sY%&AQOEZ=<7m+VwZ
zJ!B{Cj6kp_Q_rEcL|Bu`=h9k$9t5xEWK8GgV2_~ti~lO
z80cG|17?fkw%Kf`GDFrL>Pt+mc}eF!DGbFifPc!89d)dIq2QRtSQGqDUAXgU_zX%E
zCnSEFpm+BpreKL*k>dVvguUN!zkJ9{RBv6+Q~6atteHCY@d?k0Rp{dW#Y)pJK}x71
zX!fA1-6X&E%!gQEWAC{^NC#5Y`N%2>P+Z7F7VGa!<9+g@5f9PaCE7{@^=sLuh+r2h
z+Wkp2srg`~gS>q80`O7%{@rruR$nuXbrxv!II^`7FAJVF_vF~)x}voF`CRrYPc!=d
zO6PoByO>tfMt_Z
zq7?Y=jaCFvip*RUj`T<%#j%qAb=h2
z73bTyO}*m25pPQkLpcBdc?v;h2Cj+7Z5J$7X^7FOfi-j@erJLKSHnAja(dUkZ03jm
zgGkCNP6mzlmPcz8*6-=$?rB`0&TsD+D?-%L?Vyi_s`CI|@<%)+M1pgeBL1e__-_mT
z-P|Bnyo-b5+YF(#oAP*s1lGUC+}2#Yh2?i6Ij8E&M-ee-InurJ^KsXTxRtT|;>$b*
z^H+`gbqcc)Y&?YPOM=VjuH
z6E`;XlagdM^-*9VTODuq3%`{faZ;Ab2x?}!eB2K?Hd6#xI)>7}xx9|N^0yAs~00)Wr3d%tF>BVdX+OaOXa}yGd
zOOX@>1n`YNA8u;+>zrY;PiPR>FPiKTGpbb%Y0UIa|DRU=j-fPc+B=X*($8t#&`YfO
zAQwg@ch(EewhX7@-`k8t!G@bdo8Pe;g=lPy>Q4ZO4x7KqVZ^mfS@Pj#n4YMTQ~wdU
zS#(93gjG6$iuAaH2ee+FwDFxnfBN_LDR^Dd)Gr<#vVZlzXw@(hIg2m)O#tqm`yaL&
z*CJIRco*9Do+E&YCxYD8D5sAlIE@1uR>I?Kl!HEQzHb-bV`r2p-%P7bCtvBLeHJnv
z(Ay-P3EVHvW3S;xe50kVx%6`TvU%Nu?qD;|kRIRg3HF5jZiOm54&8>fYW3Gt7+i4&
z=tV={yP#6;DK7|U$M;@1(X16d=jAVgVf*68a1wm)6UjopwN%Tk)wNMLX^ZN4^>C7I
z+bX*3B)1a*WjX*OeC2bqE0~bbO{?QA(}C-x#6QL|ur5_}T;77>9a2iqU@*>XNfIel
zaLWtr+*qW1i4;R*b`tZviQ~6Dec@YSzB&%EIAtB^dlqT7jwbo;FL6_oS}GA;FT$`{
z-;l(G_45)@)K-|P?LUr>_j{*EsovRU8Se*FI>t$*KIZS~^gHB`I=y?oF7n8e;P*tw
z&l!k2W{;;xsM=c0H!G}atoU?!9`vD_Im=SLU??81H`$s3^`DUA9jjoWSW){RMvpe4
zfBUUR5H#zc)BT?2^6wm^p6IAR`+YW!RJ`26Js$a@-WQ@D^=jC$3;iZTJ?=al0djXHdEyMl?kz-CD=Gzi*unXZJtrTW=o*>945
z#-DkhbX0?God*!7i>i}TT-_!?xSks}XUxe}V4?f^i_{HxaJIFVM`oHM*Xws=xmBHH
ze?NNvJ*mXg8@XlIt7x5m8bd*lCpN7nD#@PW@z!oQr!wL3;Z1!f)<-yEHtSmCG2i7K
z_kK)4cWjoYKK^{afs?t(?b0@>)5tbnaXKj6RsZNBK*
zR1;R$L|!J{Uf&hA4A$FG%P$GRC?Su=u?=r3CG!a
zDal&aWT%7?Ytujr{^5ZeqPw!1DxB7
zeHrxLvjJewB<(uotN>xl{NRjQlzwwJ-=A$5Id9KaT&!&CQJ1ZHY?PUQBi!4CTFga@
z+qP2itxch3QI%BQEi-e?p9tIZh1LeCDo^3rAX#$v$XaF{`*D*s?NdOwdn2I3sM~!%
zD^O6zA5qP9Ba6a^=*U-e_};@g$Jy0nb19JQ;*t*twJ9>OQZHp-ny|ko=X%CnB6{5P
zlfYjXQbH!0AR&|Ae|<@MbqZIhG!1T>+=iS?iFOQDNu#UWE7F7q3<_wwP5sz!sd5-8yD6=+bM4PVwt|n6%bC&;TY0X)Nxy_4Y77fL4DkfgshRA
zh|fVX6h~kDgbVqQK`Cd{%1M~K23;)60IeNm=XR)v)gX7ZA!g`aVfaH{6xDTm!H5@=
zhDE$V{Qt55(Kr4m{>Z6v6SWcrBlR|zN)D~@9!v|Oc-KdFe=&9}*NS~{8p%|6SimT5
zCo<2Gv1^^*1k^Y0)DSC;UmkJqw(1F3G^061~W>CvxT}^!v0J}bBAwYr+ynt|p#yck`Ai_x8AV8G&B6TuUx2Q8iVZoO!#YXjB
z5iH-Nv_qc4Bf?$i@YZl6B~R*YL6wHZ8_@nEIZM2oX}{y`aGxVwewQK@oko5EE;78f
zgM=7d%w)4La@}1{|4jwO5tq_~SL>W<2HH+21b;3@ctk3El0`%~o-ao;OtofyGOFNI
z{{;(0{RIwFi@Fx1e?pTrDd&nZyC+(;gyNY16+h%`pQzElFQertI-2SUG;x4iy`HEO
zy=L6>ssd*e@Gct+G0fi3WV$>WtuS8Hr}6KiUV~=W3T?X&ePv0mRkI@MDZ#RNAN1&o
zR#;Ro{vx~=>E5Wr^ARs0?O5quF`nP&wY?fPa=QiD&L0%CyU$G(mfarV2bS!r+Vx`e
zMJ9|J&rP+RI{*iBtEa;5Zp?MIO_`18F-ByUT~x3cSz6%yUg?^Zig%cyl5cx}8`=8N3a4!k6zCX}DfLaW}3L_8Xs`sJ*)~czabp
z)|TR*m_Z*qD9XCiCjXJ1eWv7?_M}lDnHr*A6}K9?H>9~$4Oq=n&>qERKmAlsL+|BS
zBo#r5Gw8MFAdeWgsGL0D7@ICJzUvLMYYeD8NC1ftUhhpsz>(+^xCbQ%)wBt_ZpE*t
z<|0vG*w{_dMF$BufcN^M#obcmKNpD$KU3Xy26IVrokBg(w
zU%&Dt1lyXy03`8V9Jgr463y<~<3;fXveOM&7K{zl?dDhbdp(!)_13{a;)ziRJ;ueLbrK#J^%xDiQJ
z9~yC6JZ~P=tDo*P{vSBT3*cfIrQQlue}`%0vVXh4g52uiD?^TonI3~}h;efTV)iAD
zcknEm3~ZP}_VDa_Zx`ukiNdozl32pV5SsJAKN4R|&~!-<{D*LuXuEdVM4_!<%S2_S
z_+~!#lOf;o(?whh;<%?QBk#>E%&VOL6zNr%;bluuDA&T*sUjX^-d~DcX!xo3o_iYj
zhvY23c@M_($;d^r+Dhay`*euFoI0E31{`jfUQ18Eyl(dPgEQ3Egj|nRHL1
zZ9WO|(x41ID0T9FD}b1u%;3uv)2)OE2mo`R*)0@n>|3ig@V0-_i|neAE&=SM5!29@by#PI=*>lF^WFXcbH(y#5N9^+pfvTY%Knx$^GfnCn#lUFKddb_cF697*TeXMlUU&Od&
zI-KDt_IFotX`@KCFlc7?824!AGt0Bz%mkyt7B-kMd&85o?P!t90Pr
z5#?fhlu9^xvu4tMql$#=K)1vQ1x<%wUuHl5OE%?kCbiCMH{#)>aETDl7yRnEGB?Yd
zUw>$A>>?XXt2hpbXjbkf|8!`V3DtFl}VIhP`xz*tg)?yQ&T*UQ7ePR}E
zahx^NNmJQg`sb){zVQ+`{n8ovh<5mr_HSb5x_d&9W}O;kE!}yX%80PIIC65(F3M~<
z?g}-T>5`4ZMjL%p-kL5na$>BH>Gd#uTvLH>(TZ#y>4OE)hDuc>XD(!n?G*LX&Zqhh
z_24i125K1fc5;#me~TMICibnBz2ys(LRIRoip12W7wGb5X_%cr{$j%St=w!0t3!C}
z#>|I<%QX+XpBB*KHyFvg8?8;cRZtj&6CKMRmYO}kvO$?sqijE(-?f+H^GtJFSlUya
zyUiyp3t|?*i4uO00M(`&jhV#K%dYbk&NSuoV!U^p-Wf9gup&fp={3uZP~~W1^GSz+
zFe@*X)v}OJqI`K^%68vr7KJxjN#>WB{V0srdu`*NWH$ztNsoPUx)~8a?;?q~6;~0f
zn%@@suv8wSVDg3fDF=gRY(?bGwL4~uEa>5B-KJCw;v{|hVcy9QCyox=7v10wB&BP^YqsoV
zSbbFtgCW%7Or_*O6S!lSi=yUp{yf32)2_>-Y+JcK5-Trt?=Q+$jH8D&4~jeOVvU{U
z=&#@TqHho3$s4bgD~$9J&E=*|cD~#&$w4>EeMJQ?=3~WmRld0mkUW*N+wK`7wK(7N
z=HI4s8#8q%e^>yWXbH}CP<%}p_&=uJGA!!u`yN)LQ@XpmyQD!tK#&p%>FyX(>F$mp
z1r%wdySt?ugdqop7;4}@+~4PSUC-N@cl)f*-utY*_Bu^wW|p~X3fl61MDcy=#n8pI
zbZNztT$e}nnOaNycuI9%$3=nQ#o_hpr04bbcJ|m#n0N58e~2d;Thvhp^RHbOfe&3h
z;>PlZLlKNPvL&06HXV1oD{1{_SQdWUD>o#q@y^BIOYy`)(@ghk
zRuQ@T>ghE$E+kh*K0F-px*e?HX$Ndta%*B|$;rX>IkaC1U)|abF
zsrAo|UqZ1fE7g~pH)kygDZ`HMaz+kXP0?K9ZOQ}qDaTH1t@gcg6L{@a{Yi~N|0}-p@&6>z!HM|~iq_~JhdIT$Dhs%+s
zhDNpMqZSaj+3f8Rzs}?MDjF376oj(@1jqp)kAPk3#3y
zdy<<;h{J`-m14{=50ieVXFtkoa*-dC}r#q
z0Ti`-Hg&idKXTu}IuXKJENLe&*v8%*8C~Vv`EVO%lGf@CzG177%)vAyg0!~7mFra2
z8$T(t|DLD?hke>mhBqK%uY(dcs{bbT?5nhP_#PC8J^1g@dcFEk-6~gITVQ(&%ynd3
zKKe$Av;)4WsX=kV-9(fM<8S{PhC|<{og2AAs8rB_c%oxYjXXfHCOpKyTLvZ0czp>Ul^kJqzAW)fc0q_&
zuB4mU$Zke04QyndemqQQzMF4i2k8-#$bBGG+;NIO_9pMp9CF>AI^0vu!6fHTnk!JTQOTD>I0o)+OcmJh0dLS1
zO~IK1;6!9q3_hM@;a#7x@rR-LVxPU6>X}nUKQs^+y6$SZIU`CdBO@w(!@Rq{>o_c)
z6uPeUTvwEqJxEf+9Y4P5(0#9~gzNE4JONV=THhqn?jV>LtQC?ng5P(P{{IJ%9(r-W
zI0=xPWwbZ%9sE3f-7l$pe_`_)Kt&bJ^i73I)HVvZ5Ot%W%Hl3_1uZttsuLj;j%q_0
z!7}<*_3XS+n?YOs2iwJp`t;UE*ya6vJOGzdKBl+GSQB15y#{f&W0Le5(zthDr!4}*
zAl!u;{VtZtLk2}+7-gN(#nS3ML^6s*e_01`BXCO$d;?auF=?DfSQZh5ih`>7=v#@3
zk&1Eqp+&XFi=cH0EK&frJVu^ll6;ItG!A)b+wDd8%Cp`4lL?vKb89(F)$Z4(!0hRI
ztTU9?r)Y|)2IXuSfE$M!Vj8d}xg5~ln%&(}4#pX}$uX<>AooxI>e;*CE)6$kaaxk<
zK;^ikCnI%*vFwCrdkTLg*tIneiHPQ~L8w>2$Jw@(UNkd4hdpEFO}yX1Q`R2ut&l*_
z2F3*csoztfUF-9+S&Np~u#3?jVYi$Y>C!jc|BB|Xp^Bf2^)^e*I0qA^RKYNx1_s)w
zEp^qa298NpUgJTH^RJepUnwj{C+I@Pcl&#(i9dePzojrD+G#5e_~a`Sr{MYbu)_{m
zk_UQ*C+zfV{k(X3JFZEP20lsI15hU5BZbNm-g-{Mfe$7rxtc5!mD`#?<6sif0}cIf
z6wBIunexg%Y=$lfqM-{{k^aX#KEw+I`CLggZkb2QhF6lW!ah64Vd{pw?YF8Ko;~}G
zZ@m+1rrzyw*7Z>vwoiM5b`|dwjT!+ig4Q@{y|SzkJG-a)TH~BaN=IE;V4~iQT7E0h
zkNHwTt+)20tr~LTQP)viHnJ2-JZD{$<_D`WQYneBWdqn!f(o4cNrZv
zBbNjN!0U4vc|5hK6<(|lik*eZynnBB@vB_Xeoj}`}ke8edD-Nu*A23+a^Wc+j*cn
z?)SGrY-WBiuswUH;T=JKMod(bG^^(S)DXj7c1z;UjN|mKS-$aT`GR@
zW>6FRjs8eZM>8o)Me^|a`JJDj^XPwS(ChAD#m!L(oTLc9BD4;0TFd_w_Gpg3m8xT9
zviNKrnK(VX`f$+|uYl^J|BHHJ9>~`CJ?Ult#n=@_1>Dnv??Azlin^v!+JDVdIQ
zTk9C!o8fUkBfFOoaO3h{#mgdIhz^r@QPM@i$G_g6@cS?AyGA`S878U2*Q#*MJxT38
z#2-<8s-7=8m)sx%JU^@VTn6E$IlqqpXg(5I4^PO!tJ#2u{UEv6@EblXI4-*b5)y`4
zh1Dd!-Ftjg%xVEi3RJqT#*c_F#}}1s8LjzHcyrj$p8y|!9meloFZ#b2phDCC`
z;5EKm)HA3=upNctW4~X_A@_S1f){Kqn8$wQz9UFgk+7GAiF6Px{$Iy@3R+)ztIo%*
zv|%z-tngPbQr?K3?HN54NvP96GLUJL*C;rL!L7k2OMP0Nabtg<^BYaoxc
zcD1mbG3oKtn9JV4f%g3z!{dPs$wvw=iONdCLnc2lkd%pfn+F9JN|BV*vWL=rw@%6R
zouaAURtgKgh}QP^5JmG0&hRP-O8)uxev9l-C<=f
z;*R69vi4_U+6r*gXlLXZRJ3H1UG+X)DBqF%X0W4LU0#Er2kzzHKh^uplG%AQRUUx9@SEVS718~sJ{;Jg4F$riZnt_~3ra2+6R
zTZr#`RZLqWM`dLzs`2#BGLg*UU(Fy&{iJQiaQ2U-YC+lZtEi({B0Kw94XDob8z8On
z>I8xHB-*~=pTYubI1faRo{^4JRDbT|u{;xYBfsa_mv=dmpmc^7eX^o6_dr<>nc$nO
zcXK3d8r{(@f99T%?94KA39|`WuM@3~K3d{pt4Ejx+;o)3C?7M>Rz+Qo=a-l6XB};iZVevTVwf~YSpO>y4scD{TTYhZ4aseMYYQhsc%zjJ@0H>SP`_l
zpav`v3MV{?g-n^NX)o=QJE}#05&UmJnwc07aS~hG2KW~k!z6rzkg$6Nc}z@dwBNG$
zPa1cdC$c}O3a`#7>p4O(dYj0EtDP5KZ|#QKJ840$HGZn`Uf;Kmxz(65!c^+#UA
zAPV0>>*-&x;}9>Q2(}WzLD<29%6Tx~>s9Z4j}`U0yBf6ZFNE`-7y&>bC=L(YTzIlC6{qYt}q}TCa&Q+i`OPG^Bad
z4+df0+=iAh7j)XT;YGu$L
zxo(#vK>sDPX6rF-Z{$h#YbFopT}Q__RJk^swz3AZ&Bv|+SCASwSKPH9vd|3Jb&Oqj
zIJ+dw5n9V&&_^_r$mkD}f9T>Z2|NkSnbS*3oC8*3Ctu{Ays(rNwG?MzYICuO#6)gr
z%Wq)O&1lm|gx9rb|Iux}?bzyM#3{fNdp6(ay5v_5!LmQ*WPipa78_XJl<5=g3nUPc
zzacIzp-BYKd~681kk{Ch8<8!wOs(a8B1BrfITj6d!rD|Ao}Zh{(F6@@QLEDhtfyWn5osAv&e{_Hm^5cJJ~jK19&Em8u4yDO(}%A_81Mwko{*F
zZ9hj2R*NT|^#AOZ0kwV9mGdT}Gatv@U5^CakwC(w5yJL>-!KU`6$&BJGEUBTOnpC{M`tlAU%PKaF%tbyW+70y>DSkA%Xnh#y(%UCFd*u
z;1kr9vHf<9Ke6e?xO??*pJBAo()@2FtD_)VO!(8{(o?nK0}k0&la1&cIh^Q9mnp5;
zC6VQqiIQ#~U$WO*gCs=hR7>OUVlamTM|9}_boV+jylaRzw@bBxNg4e^Gi~08%lJ?5
zReS(h>XsxCAYCF-$S9XTF*B^5$9p+Y#?dl>65E*g6rv$)_2<~u9Ef5S(%GB5VUTy(TMM3&WR1{
zdNmyZ#SoS37V5!?f2Bk50epoM3O2E%$UPlQbaUMD$KUviZ`9F$sD0kri%Mr`_{&hb
zjd^@gZu?-|ZM+TUJGX^m-nwG|3WEGg<{>ZEjATqJv?>)**U3k8T^x9&}P$ELq;?;aTrjXPAR
zIIR_6{%mE`Fw?B^j^7tcqf4-CWfp#7_4}>}i7tm7Qf3maqFmvuu;ITd=VZnqmxhNl
zz2?>9{MjJ@FX|Z&rElQk&IXky8f+8qb3jAp16K{oMB?l*;B=*}PU#JdC3;NXx7`-A
zy6_9e!#~$47m47n>J}U#2%JPgA?-K75^)2gWk-aGMH6}O1V5wF_GZ2wg_;bFQsPjP?e
z6<%<0Jo&U>`d{%%RVmEWW*0PH>U_Dug3Iqy$pO!>8?XM##ocB>F)#Jr+B8?iBKE{>
zw@gH+H{KCU;BIil=W~JgRFT6V#=M{1lDmWmi^u4C`Y;x>Y{!lMV8;QUE{O)`J8Sf_%*Fcv^0T&^M&B`?ko8k
ziICt*X`yqXBmcCB(<)!&Nu8s?Ub*Qiq}Fj@Nr<_zl44bDXMZbs5pEw+diuTS{iG7Z
zG^_GdfHVPTE#Yj)Swv_~G<}Nn!qA;6yT9ayNzvwduBFtfX;-u<72lJ75Vayzf}TRq
z5Pi_NsT(~XY61cvFG6YBlk&?>uGvUL8Y{8$)WR`kYfu@X>*jBUs7hz0A>f2#{UogJ-vfYWuMuFu7
zx&kNfJm0pv7dIa46JEKPdrVR?PW~io+ZyKSQ*0jTOtLsA+_X*X*CO86VUrxnG$>-
zE{Kc&jJVZmo(--z>P>OZUUoduxVs8dPJYok&~g7qqril@l=3sM+S55>!Dk(|W8Qq>
ztHby=yB8O<(eVxAE(mzz@4T}_FtWZk0yv4Q+LjzvZea0x6kV~F;KZP>xs0t;AO2rl
zy=x5DSA+P@?$m-0pMcpjx_O9DKTST#n6sSkxl?tq9|Av@W<4^T-37+_GB8Fjr07ga
z#O$6L>|MrS20ik~olAex*~D(PfAmm*%M##BkB#I)cSmeQS?V3>0H=f^3rArGexAgC
zHInRi=$soYBlw`5m95Lc;dv&qdrXcJ5u9!Vm;Ip%Rc~Ui0}=Z|Ik)noo~V>IS}6B;
zH3vvKa7R%cVoDW2fr4S)yF?t6dxi52x<}azehZl7+FBrM6qxZRhNP_UD;Z~*tm*3H
zSYZDDX#r%T3}6ZyMpx}HHa2(127@f0&w)j~w_j09yzk76KGM@u-A`nns;a`^+XK61
zkQmKNddb0fr?q?z;@+@$Vpfmlno
z-sK$OMpf9?yXs=>+X%yAbYFSJ*x%?3#X>tsD7Fab8v1fz-muziNuuONAJm=HGUp04
z`XX^@02+p_cKy_f07AG5yzoW7Fh4to&q3jq*`sgi!gh=
z77_ImL<;Fhn=BKBDXZEE$p|8X?S|)$I2f!U6u#1s&bHDqvDc5}e{D`qBT$Xos(9te
zD0cJQKb?Siw;Tkd7<%eVpMy^n@Rbn;hL;%O?k*8-U4OuLsSWA{VRa^*zc`K+P~n2G
zWy|9Bq)tc&#MiDXE`hTf*S`(W>BKm>Sx<6inXR9%y33(
z-3B8=KdZGT2CiB|6k8`|SSOLKmuhdV8SdJyRuHwUaevJ8n&4>we7K;x_UDZ9v_hL-
zv>GTPlyHCZRko#RdqJgdkX37yx~gWfX(uq|SLANvOYkd)(3LL-IPRM*tZlN_-(L6!Di*6
zAsMudxx)`a5RvnlV8;i2s$1T88ea-dgp7i)!I^n5k~_yp=qFtkW2#t&o2H>@pXJ8s
ziN)Pv*~=5<*@6o4K-sxURUlNcBqb2ECKgxXBGn}&t6}2>X;q)
zHN|(wMPHl|i$jX&gXr>X^>R`2&3u%lTrK~PBMIs2Ez=lh6-EkEz?!>c!ZA+;
z&$SM_@7cBfX{>8hu-P`uus&>UcJW@NDh=YE6?DZ2-lTQ2yX$E)5SNOfKh2m{L(oha
zRQ97zNAZ%QA{3skWX@>l_$DDar9k#a*Q+eFRd|r|HZX5CP#S{{!#i$M1H&Xx)KK0F
zg!ODBw9@74&=t1KO&2t?XD$ZWYLDMwkTGF%>BQ}inC|-CiXBXGWt97+j@wHT=VL5G
zKISc3>psfM7qCS&%H3VTXGee*^7KKrBVQ3bRRAL;m`lPPq&C+bl_)kIm$#V5Fb-mx
zHY%~3g8A9T$By>t82Q}N$=_^7?~7N^eq?%byycI+W#MBc3-{Mgax*y1Qv2@Mlp@vD
zZ~~*k2!7fm%7MBQgOT+Jl5d#pV({n?XHZNR2A_OSPqAZU9ir^IfQJP
zxO9!!vsJbI=YMhx?`MqvqxpDFA~y=lvU0O@hLQ%CS(P`rI&ErB752h>MA1c8u?~Bl
zzB$EBwYHmm=*JCG{l<;0pKr-RHSiYHBC-Rc4X+Nf$AA2sc(W}t-1lIdoB{_oqHQCL
z3I+r#8dteyPVP*ZKUf!qn%=bC8SjSJom9&60mM01y0mmQWeLJTeaWu0gD!kSnwC{muBYtbyVSEDx`)()3DvrM1
z7qe+%CC>*R_H$(<7%Ad&uwT=oBlvfUT`$F6A$W>0y}()h%ZxyR!YPG;HcWvRKL7_R
zyL-ewKZ;WotJT0ZQ=r^
z1~843xVBejHQ&vFNjt6Fl6*^d=yFpS#yhDgS0&3T#cGu1Zw?6;#lv?$c51nJESSD7a6X_xo1=AR$7p
za9~PI)N`UgPEdGpdNH6qP*Pq{*W(i1KiGI`OskvRwO`S{P**sb;hSNk1rnD6#{43D
z{3JzSt#fWhrLOXk^(D+?r!juj>Tx%pXY21GYx1c70A95YVs`+=rIsbjU2Q1J#2vr}
z*}`*aT3IHkJBG=euRv8qxs^<|qSj|mbx@8Kr*&Qu@79~(iyC8Ti=>y`f
z;14V9ZaOdBx=KhENa0z$p~i%iQ?_)Pl4?dK{a0Sjp%vpxm;Wv(Gdu=eKXPuK%+n!O
z0t1$K$Eb{dt<)Vcyl|}6C#(WA)%y-N#@PJex$(J3zi@{LePyUV^zi7*pPq
zM)}IkQQC@9$wOILjYM!l$OLzW>9lT?`u|-F@45vd!46T{wj|CSVtM*f8Ivi)&n`T2;Fj%|JP*%~S7ewmreWnD=1iJSW%f?Vq563oBH?@1-b;79
z=|hZN{4h|=A&hHq6(Sg#pkChOG_hB7O+lI_o?~(9GWXn6^0QBE`aVG`uW2v!7-g5m
zw|Mx`eg1_LP>H*q`8xfK>YuTv)>8bkfQyJ)QHVCoX#;tr7ua4V5A*6oXv)lv``!KI
z<8qbw@L8~N$Y9a&fgHWM`YWz&loM4o+)#}pmCtrZ9JNtluL?Kqfk-ZvvbByM?pZxZBG4kzV&(+=p1Dlr4U`vqca9J&+o
zRF@8vKR4dqsq|cqaYYVJBRpK!!YUO09VEt|g8sh$qvD>VplxtF7^T2sFg*fl0-{mG
z(qjs#|D=aAKYOn2jBF|UNe+vKe~_(nTt!>=D{{`1V|a0(@z<9Qn0E7#^l|c}O2$Pv
zg%{qqbnkb}t+Sp|2OL^cqB}ze(WrB_JHtGaemnQ!Ry;}Uy$k0S+*69iY;)8kX
zXEr;%ZZX$xlbBO9m4X*MT?b?9qKslpnLQkp7Bsz6UZhba{Q?A1+d;3Wtpz$-l3$MI
z2dVbArs4x>Rp3A)Qsk>fmGNQ`@XSE070dHOV%fK#ydcKq5SzFDs0WlQ{$~8Dt0unC7eSZwwk}ZlR~e}+Q0Gc<`(qLMTi(icRd(<1C&V(qK|s}(
zDC{ftx>zV>s!la1_-8)SObbXDzF8|jUIMs|rNt?19xP=nsu&}8@|(S`3yPRy3;YgY
zkiyKM$tO=!IV$^;Ay1`Yl{r3WF|qaq>4O5a9G&u7tgisxd}GBR7-DB+aylA~9BYvJ
ze{*Wd%u%^{L@E3J@Pxi{4Yxx9pAY@)n&$Yq1rM;en5o=aZi5qPdK_p{Yfk>_g4jji
z+8@Tl-gt!AtuOuOf+;Zz=45@8YyOK7xWCh_X)!z*YywD~CbflD=Ucz25OG##Kc$&`}^zf3)$1W-Bp@ob(4
z^T@g3kHL)!T-#O^oy8Rv+*zP;mMaBoz1{p^rH95nr@a>nfO;`Z)CRMS0M_`_anH$R
z1Th=++rx^XLHVblFUtpbwp4egrG4Rw>n-co+M>+nnOvsadt)1>W45z1vu~kR5VRn}mVH
z_M89wE9KB^;$<;rxQlz{kcSMqgHlfadZ5jMC_Ul*iYZ*ubY+Ftc*;c(eG8edr%YE$
zNobl=|DEN1B=7m93Q0Rj(RA(dLJWB>pADgY!yBaDAb_eye7=o-tQKNfCCnZAd!Q*H
z@IOo|_deOYemi71?B~XXj>4535MY^W?TVrfNoi;Bz8ob$+pWL@ciZA~6$rN&{w4Dh
z-^HYlN%H<<5?Eg@9fM2ikJ&N!O=EX3h7E5x^}8*um*z*IOU;MsR7fAwuyiDFhE?lx
zwH&zD8tF{HK6oE*`w~fp8j6k>
z$<;HNWry8`y#_~GI!;AW_+=;a#D|~j(FF|>d&@sNy^(ImRIQ|NEe&^~gZu5jzun^o
zF(vMA)C|_Rt_4@IX&l748b>Mo(L)(faxIyqgGd4&Mmmk>&1uofl27xdHEyn}cO$#e
z1VlTrMUZYa)?m#E4v-cuhxinFedRhGr8JBpxM_Stt$7y6XC=6&vrR?*k;jG0iGn8~
zU0|xi41cd|jx*y@#P=ZiXbq>Va>;Ag@GpDCA
zk@9&T>!bntqz5p^-G54|xz2?GmqS47_H(Bze#0)tVRoZo-2n-jP^Jm%X!*c_pdkX2@ms5tx{r
zzLGUa<_`(ujGe6Aet@wwHfc@OU)Ru!dYxm!+z8J0MrP2Td7SKkj`AT{iqcQ_zg|D2
zgf>m*eUa>x{5~9CT0?s#Y@p^R>z`suW#}iogz|8+nof)?p%%OrPi$+iI{%!(23lm<
zo&vQVV+vAwE`5E^LQ+J-w|v6@Hzw`8O#OP5#?myu#wlcmP0>?)f>Gf|dyKyd-|}%!(KfmJPgAnrPy5Q8L&x|>u|k4|I=C_3msi_*AUa1Z
z>vu?PK77K3b(;27|af4RqkXu=8gc#g=
zdYZjX5!M--M)<9Qhn<@-`ko<88?io#_$Q~2FngJO3r~Je36FHIqH_F#d1~yl)>X-jR{O7x?|Hy}x|>
zPx-T|@c1{=;i76Z)o72OM{B**0^km&!qFwIv&uOot;wc^r9=O2Cyqj?Ch^-r
zgAHdqAgb)uWaZT&m;trQtFR6^DEpEUiQ1?y%7|Y9F>No88XlKS;e2sPMgZz$q|S{P
z#J%~rK6-@gpJTVgR!4K-Mnul%Rkdm7m>hd011kgq$0aYh((4PMo$4mW#{lxx+at-Fo
zl;g`87^Dm%MTovhC&vIuA}d6gNS1>}9bbKQ&f?565fjJ98p+>vXzHX#Z
z>;hq#JMfbp-gx&X20XerP`JMZv|+2>y8tVYLexO0_UsKkt}fsG-XxEYbO^3Qm$?tl
zI58h!4RvhiWYV<6oLaJ4iO+}omk-x0CZj##DaE&|nBpmgk2%LXu}A<$-sGCsALv^X
z;C&;>ugfiUk+ScWB17R1iJ{7?E)++bu$M*W6Zr?U4JxiW2B$B9pU?9YAc9E+*JCoP
z;87M~j=&JVCMD5PayTO8#>|Kcq|Ozu+>|<2Z)AL3w!<{Z8gbGbWxZ=K{|oiEmdJUS
z2!ul*;ZeKX+TEKh87-15hN^@rZZ*$!88|1TraHY_Rdq2Y{baZEujjz^
z0K$_ZYzL^XKDf}&{EnF{wdbT81nExBPl{sZ531SkdYkaG8+b;MxdDyBX16&
z$*(jmi;tPk=-^nUt_F`BH@JUuwt953_Lw?pvZuBF?w;t%6rUP^6u7-6<;mC+YZ0+`
z8;3K4^<)9XBoK6=G!!?9Rc5C@8f99z?9LUgV!wUR8VVndv<6?{N9wcUuNL^(BUj|p
z@o~0ew}g!JzayMdNH4U26*vW65A#r$%K1W;je^
zLQAfsr-m3yBs_%eEZ!wBL~dpA_Jks&zLo7=5&98zfsBH`kRKHJT2A_*Desj8qm-~H
zdsYko@=TRUg~R}*&hfW?%CsOAPSs1$1M%3}j1`v~i|BpCW9fWt>h8q2a(u3CC9bW@
zHxV4?IsF@P9y@z)Zp?U$>Jo_99zHEuWr-yB^gDYepV>ajJq{hTUJ$Jzcp+AJChSWQwTax!&R_84ga$wL%
z;Zz+azi@&3=l8t3AdyyLvsu_C#{8TB2kB~@GS{dwREqAfQxO16?AxL)*RW)qvcu!H
z6hPewl7aaXh%(6k>0`DLk~w~mg(Z2X<7#j
zn#&R^wvMv!6hfjv(YMvsj>)<8%ng}#4k7MobHzyF>p=DE_9K~}YQXyI#Mr1!Y(+ms
zEuMfQ-x;KJ4#O|xGx=E`B3gt0fojVve5@1rua*bPk*Hc$!(V2p
zlXff-N@1b)+U2UpAb*PM!`f2uwUzHHbl_zUDQn0(&!9happc#|Tj
zD04GymnN*1jj}*56}aU=$;tK}Ga&@8-Ku+uzM=rdKhh~v&1*AEAhB=abi+Q
zf@-e_R)(LczVne8enYm$lsDgK+V^v*KXJ$bCND`q*F1Lw5nO8{b78ip;)z~IwOVqn
zTJj^y!=GJ8PoUpRXBxMiQW2}({Ls_w|SzQS+(3*jI6#l1|&7wyr!GX
ziQ^=5a4E<@Ta(x`KHF&a{N^vS3fo5~Z2}=*g_5a03loh?eV&%^5_A61u}-S63G$fm
z@?yJjGfh8;tAMqz?PIM?$R>Q5$Rw7YH0oSXO^nN-JYg&HF-Kz5DN;ZhM`7xmwwH9h0jL^WB-m{`tg@v#
zY;$K&viRU?vF0xgxspKi5hrVdzTWtTY1c+K5_%e9?rx!zpK!zcY1lDSD}VrX!@IB(
zNPa)g(2+eEbIwN5r7hTNf93pl+W6CdpFuD(-(Z3F3NOGHqzDBrOMmP_lrzqa
zyT4DMJ<1G=Os`4pL3EM220bhw(JS_?czCUa4fjWsGpl?Ay1818YY%z9$qeU6K%!2~
z!U}xtRNtzhxLjKM267v1hrAIfRN+|^LH{qgZn6p2edc~EaF5ZClFnnQ|L{gA%Vr^Y
z0k&Lx(r9D;Y@T}l&u4F)D#9A+x^%>uF{#e}4fi|WZ{#!|?`UU7ire8SghgRErTxE*
zvPcUQsAp;B47cHq(Vq%F>~2&!Xk~L4EKr-H7dY0!IZBCZQNd-?oN&j5Qf1Xjl5JZU
zhgp@J3yx>LHba=;Rq+v6lgsU%EQ3iS~c@M$fIC~L9U{uQKI1clRM
zGn{B(ro@6qV-sAM==OF7KxF8UpEOII@1|nOC6_a#M_*lFHm&5oz@z_3mNGoQ2n!rC
zOmFoX@;f_1xjx4AazEQfCNH$Y)eUJbQFz=vQFtFbQ_2$C(1A*Ig;21B1*V~4!6Zwp$LM=5;)ozwpxSY*=MH7z*>ksUbSccZ&>@+ZG(#mqjG>qPC0g1)3z{_fJvY+WIr|A*{n^C?*jp#^>bx
z!Ccr+#sm~iVNXHCPHTWyl@lfr8;khUD{))G>N`(cn`|l~Z8
zzh@LkY+J<02FloUu&)khw-k?Pc-Kz8XvZ%GmCk?3qbD&KW#nlmOH%MBSJcil09n)4
zG~8*&iI@Wek$Zv(=J~&m!yD8<1?mTX3opx6^P#x~9Xa-P)!3QP6F~zc_I?E!>Ok$S
zCUT^%IH#Kh45_K)jnQ4twm{8;d&c>{eUe>$OjFt6dn2;~3dD55Y?x#AxL;IrHf)pk
zO?CZT9pPPI$PG1BQM^{SOtWWipH0vl)7~`?_i>A|UqYjt#oW(s`{}i$e+EtVnoMlo
zwP+urcW?@)tm)9G{G{_=c|k!?7E|&y{wAIwaJ&^yuov%nUGjYcKEw^HIs=S^&Gqw1
z;L2sjkT_H-KOFe;dWNE2wAG7S0Xc55s2a3Y{eM~jP#G*Kw+Gio{SuAf69hmI;6ld7
z_w<%jyIS_RBxhQb%Z%q|X0?*5NGlyyWBj$KE?p6{$)*}ozjbLpbAOxBv#EZ7Rtp##
zqA@}S_HMZ^-;~dZcu=)d8YWQHQC%l7P1W4K*VOw+bfpE)2wo(F?bMPL6(p(bsMK9W
z0ii3~%}CSSBn-}AbIocFe-4Gce@SXE5VoqT-QO0MwW(Iq0MvaMj?!e96MkO0!9>
z^VJN*t}pD6yRwVVi~ndXz2BM3&guips$6Eb_!8wkpK@gcRS~p1o&3^i@~73r$_*@Bw2az%yebRBf}E{OQU~31=hN!w*YRZLu?|CFx<@
zJCocvD)u8DeaD+IDndS%+kcw9B_Fv?zSMLUi6AQF3Nd!g$R%O4(R_XIk;i-{%D@zS
zG`intvJZwdZI>uAB{rUwCH74yu&jv2Jq9p2bzHCQlo_B8x}aG^2*%&{#y$k>Elb(G
z)HeF>dDBH6`lsElx&IuxXpimi;Qh22f$82X;@LW-5=L4AZ#nduI9r7)In-9|gN_Hz
z5QC93NtO74E#1p~t}h4x?IuXUK+
z3pVlUG4WCM?CkihW?$B1pFjK(#*`##@YGjqK?0F-vnSCoFr%sca&{_NBa<<~epgcd
zrDEOHd}W68;1l5!S;O;bD&H~9)X%blP7S60xj41-vCKH&wZN&S+-x)4!mhcdX6vBX
z`mr3rbHGe)&0ilmInqg)xozsJ+unFiVuW#a*)04x@T|5`OTL7cmrdM~oaMD;c~yG$
z)>zaqAKa>wPKAN}1i~epaVA(YEHhhPLAh4yo03mT!iv#TxKB`?_XmiE-w2-E0nnc=
z!GSg~3S*7U&_QUasaS=T<)z0mk7(>BGOHjmbYFwwo4d@q}p@
z5%8vxf1H)Mwb2H_yQq_+{AY*o7Vxi@TI0e?XNPR7!tY=Ex^9h9HbA$4?WNmWi5K1?
zA_Tu@h1#w$+~Y7Y2if8g;YocLAQ8vx#Z$IW(49|v!L?16wyW_
z@2P-o>QP7*cyxaGRlm8G^u5pLn>FUy)T7#4;ZKDm(~
zdo*`6E_dGf%6sCH27X0cwt%{8g06LC0;Xi$!LN~4#^io8Z}S*kjp_79HCrEvtxzss
z2Fy=28@>J{MXUl&vMmc<2;Wr5eln{B(S>IPSxvKFQvOY!klp?Gh+>Lgx|XGCS_r51NH53f?Dt&rahZ3Vd!)TII`f8gSWIk
zTrP~+s`(b@oy*2HjD{FeQ45*yxz0{iL4J^oeL;hKxWai^0nXgtB*Fo;#^t#O7g+%CfBRIGJJjBhw(8
zgT2z4coqsE(&?PO4Jtnc1Vm60vY8Op!kvzqP59&~9S0U&7SH)sm=y>IteT$`Ey;fQ
zb0zN|IZpf6;8n6FSl2<_jr+zoFzv>kl5aLM%*t0~MZYeokE}wf|+qxG(cUKE3gJmkrP>3j3&I4#l|T
zKA-q}qw&w%oh6faFAC1Agx$Vw6a3WvSGZ@ufs
zt$I&7%QF7uvEH)EKS>e0_bjvfp2PeM6BUbtv1vL70iJI!sCW%n=m4(+RS@d;I5^C7
zbvAkg>L(r?{h}E+S>NCwo>qNG!u2b1H`YCeTH>!OS}`Ym_I!IRnM*J$L)bWn*cm|{
z5i|x$j0{o=crxpSdXgETt{B8z{V7Q>D;=USyJV+`Wcfm8qWhAu9IA#ROk?UXf0j7O<_KV)$_wzZC$D}I!F{_w!
z!`!kZpS}QA{B1Jt0^8{Coc5?^1mE4pdC-gfl0c~W|&NXQmRfqx76g8yX1T9u$O|x
zP(#e6M(ZGB@aER@eEpIPq^JE7By}^P5FqO_v4Kavihmt3btdwr+seVeI?gkrF{9sH
zG@`8dd#d9CoVO>GEZ@IS%n0JBSW|pUhTEjEnk&CQBM4*srVLT85Lfw_1i!<@GEfSt
z51+b*Crj@?IvQ6W)fQBiM}*@R*+Pg^92Jt%(bj7yC&zyLo{%RXn!O!N<+EhQ3*9>q
zR-G)0*ce%->sk%-0RvZE23uO|hH^Sh)|cmU`U^q1)bOoH&fe;2!Ina}yId&Mx%gW4
zw)lis+1mw6JH`$_&JW3E2nW2KnO?`V8CWUww+2X_&}sih5?obB<Gg
zp2;Hx_kzy8^sOX|I1{H8ebi`zCso2T8@1^3ibo#xeyKrEkfePirg@}H{
z5jze|fGD_ZnyLGC#+n~$2}pBI!gDr*=8P8YhFnEvE3s52;ogn9&wg{1Q9aV<)JoWc
z6Pqfy8lGP%td&W1+iuEaBn^-+*v=sZr(FdX=D|0kaq=@Sbs9k<`7Egc-Il$Q>jhz+
zU&YRKDP~ANlxre;4FIS%6vT;G%>1dERF>*P@1vP4gGZvWu;IKO03)7uEJ&nh_5)_J
zy19)6)-n16gLib_ACcK270#hLvk}gt1t!j5Dy~Nl(L;=BzK&n{A(+*lkvt_a9N%NJ
zOzS48fy|6TSGOFpw1l`h-h57{yTiPO1Jz7HxEJaS46KCno)|_n2e0G`fm}Op4`Hqd^a=Wkw;a{UD?lZUK
zRAaqUOG>hvl-f0Me8n}Goip0Uub<;%`XRRVLR@ZN31>CFtY5ILx&J?=-ZC!AFX|dr
zM39zlkVd*BhoQSg>6Dh198$U)K{^FQItS@)hLVP%2dSZl<{AI@dq3~<{rYhI&OSTN
z+H0@vV%h7DVZnTpjm_~~U+3(Ps4LDy{s~632pk|$wuOwPZTfe^
z%o$HuwvjnwlE=73Yauc{3>mI8(Fe2$-kk65F@VC^+8hwwoVFb%QV+d7Ro(9y)sSE_
zctu%c?KMy-!|cnalGg8s;;rw_hE!Buxd@+Cy}SN*g3RDMPe1uZtsXDigj{_RRk&-g
z!wcC(lRv(j7YH4C>A4Y@9lJC01?xbPZd=&dHznoobM7>dQFB5J=?=uC!o=oIu>?eX
z`>*`~&a&S4*`W;0!uQkIieT+mC0>5W8$wRdy1DiTV|&B2Z{419SI`Ht)2&LhDb8WO
zz#Mu`FH0!ZM9po%Gc_;0344)(o*{`^$vqO^6YMvoJ>$CFNPg_Uy!0x4y$&0$tjO|v
zG>wA47=J^*&zGpPyV6u}g4K{zmBOq=VetlhBfvH~OOzXPzTUXyWH|(>7vzuIP8m7Q
zXW^JyWxH@N2sK*HPTc$-4~9$Pea`MbyC4P4))aV437Gfy3BV5=x>92HcWf@t~(&%LUosM7a1^
zay^-h9?MwN#Y|-+BI5cgwSdd)wMwUp+P(qdNL2S&6rQJp9slFY|jX#xCe*2n4l6G>rc+f
z+cf|%g174W^{SO}oRld3u}Yf)FCl4;H_Oq9-jm4V!;P|L6Q>gXU}A#`tsI|Y0;S4r
zm({gMKY%dlm_37o{UeKmUm!ErCs(54AOE_AifE%@wZ%I$2yn3tWv*z?xapFcNoRsK`RUSv+OGC=slj;7?elL
zmM5UmNPX^N{{urFGV>1W4hhk+wOx<)aiCo$z~${LH~`c_5NNl{w#gK01z<|su%HnZ
zevRKY)r6e}_FIsxlZ!g0e{TVl^`3e>jLh1~lRdY}kl$>pF=E-(_j{L_P}D*^5EK#e
z1zKJo^46PwAJX2X9Rl&OUHyW0+}06-{Y*(%gw;#lO8hcJuHYy#C1;^zisq)^U$+H&
z4rRi!4zWTy)NGf5`R`_0eG;U{bu2K`nG^pxpXqNud8PZ=fuGxC$P9&krsI%7P19Lt~lqmq1P
zY3Z3)`>y4M2)AG4zmt};>hp_2Y>~w(f0wjaSj#<1jpCfTHIm=wOcgA
z1}0mCLrk-^7Opbq;4G6yujAY^Y1y02tsCNhEJF2#<>RFL~UW)H#m
zzhWg>0gfJTxpFx<+7cpv{gmemz*bo3H>U}~Is|WV6JK&>Q&~ntFChW4cIjV3ubteE
zxd}U}#gg(9vimcoGRz0gK*D%JP)0ZX1sYgJgXl){URxm4UEvG8Ltkrxdtso48UC>`
zfW2U)LzRXdE=_mk2n9HY_7ohEueC28e~5N-McBMd5yy~-$c+=zy3k#<|BAOh_l7;G
z;MXf)oR|jG($GrQTrR2UO7sOw?Uu}mb)yvlfIYEZYF4b_74lg5iU<7W%R2g6&DAxV
z$(;|u>DBugr0jK!p+%J>qaCH0=s9U}$Fbhm6wmtFr*SZ1@QfzgSYPA8d{|2j
zbF0I;bt~>);cSljFTsy=0gUvPj}&D)l=RLb@WOzGlKvP}bCOY!xUyMICz~RbmDE$0
z{4wtM36aIcs)^a(?XVr43V%oJ=HRbILY@Vv3ASK8#@N))O32@sym6EijumdZ*(-qc
zM#k<8G2BVYUYW)=966jCzpOYaf3>X@!r6n=BIqP{J+3Hw6ts|7@jb~U*!RVmVE6V2
zCVvk>u74ImN|CHQpg(ROUFuW5+YId0pnc`IT;yJtu~d;QBaa9mCd5jze8iVZ^_a&HetD!`-pRn-FuS
ze*9}vt7#V`3zELxc-ZSd@@LP1aBS~{eVt`!6p(4e$`$GixOiY@Lf9cRSGl=bjTQ1j{|yxSOx>)&P|DA^h+nh_sy4(Zv7
z1Kljdl|NN;^@-FfE}Iy-V|(auvFCeVD_K=lnYsY~^?Kww
zbs2jU6>rt&w3O`c??-%d5oeb8YfV3p|L*^A-05@%Q_1)oNq1JG~P20sgGSy
zH7u^MmBICGQ@%)^JP63Dn}iK?zf59K?*wREXX!WU@-`AwkaH}%U+9Hhc+S+77?Qyi
zl#f$DF{Y+p+KZwWh3U)74+oed2w-*%qGp2eeyyK}e&b^8gS;2i~?_hPm#}Fb3EHE>4_1B>P
z;GZPto=*1;?a}@N?dB@_^48iD#`;~c@6Y+8{5s&-r%oPLH#wKkQHL-}nO+6*@bZvg
zAXKil1x402kidqFgWgN`Wp3{}*zJSQ>0CZC!KuEj2qO^e<0PO#$1MeMf8|3~WZIHauo9t>K%e7Qa>z_84o9z7Ign>k!zpIH=gz#aK-ko7i+=3kQhb>e!bvI
z-_gCbl}*{FL`pJ!EdrM
zkK%>?(Q6J|F_)-p^wn~MM+AoMPRx@rD%c2x+n#f}aH=}s2pqSuD;Tb~
zd8ZJ#k&md4SSqDw4!MidHq+IqO@RbbQVTh#BE|CH?+<@-nbmb{``b>nbNvRQ7g!Po
z%0Xhk8Ag*FDLgZkKc5Rxr6KHDQ`2~(k%z7cUOtLU?Lgx^geX`H;%R~pl~@VS@1~d^
zB);m>C&a5w4wP4B%=Gev{CP>-Y_YZv{Rz%#DvUTUR5>?-^uR(yb%ew%vV8rcqJG!l
zpOrN6?l2TQ;bnDA31(<)N~Ea{Ds8RA#JG#RjtkLx`}L!3tgq0H{Z$7(OzEB{r5#&W
z_dCNl!F~>dDjO^+dO0IxW-3oIw7lRDX)3>{QO2lnfTNtb=v6O;a!TZ}`Hz8~A(@jB
zd^iYSP(2gfm$p)BO&z(r4ilaD+&w_2cx<2>M)ISX+u-h7oHN={whI4n%Yme~Bh5S6
z2I7CX!ez}^FA_JLSD@S|N?o*=!CL{(?W;Ea2El56XaccRhFhXd
zuUOK~Wd`GDY}@N3c~?};6<3kJ88unq-1
z*`{=`W4ihYP9qmZ5R73PF9R~8+h}lQrhR~dv9ti;mBFlas+=H`uYbcJeK+Q
z%|f@!!JhTldsb$G(<{w4&QI&-Y=t%0y##HbB^2?QDsP>zMlxqo9UV6#fw2Fd^PU70%LZZd7raYQJxtUt~F2zyC%#WP57H9KAMK4^Gx$>_3IVBbK7|9UhiA&KfS
zBlU;({QCJ0MrYRk9-aT50{M#j)A#*YOt-04ck~^m4&LFIlzL3-EYyv+o*B>I)Od+2F2<8|vRaf%)23XG<4k=xKh*NL^}a`EAK>?NOu
zP0uB4EF2T1)5&XEG!G*~ol<$!-SI%#@gt|N*c?y=i?3l*9pnlfz$k3~D;lmJfZl9!
zd1lSC=?2(<^oc*l1`T}?7gO$GJ1#yYh)Hfu?G)8594UmX7wo5$hMmQ?s0~?9i5xD?
z<)Dgg?U1V)<*8}hV0hOkgaxA#2*OScuPdtAm&J?gv_o5k7dFZf=x0al(dc~Uh!zeO
zLK>CGcRjbewBTVD2=)hgn`%XbM9a+`lDw_Q3fVrv*t_MDhaZ2mJ>=Lw6nufe_OCFb
zF8WHkd3=CeHo=7VU$EPdISC+Y9#$c|&J7nF_uppXDM!Aqrn<-s9I_(D{zQJI=znRR
z!-EA9;FbP{L8UGo!>*#&EJ!~Dp$mAPiZq??3W|q^JYLvJ*znlL$d$JY_SG8?*w&XO
zVV%|{1cLpJ#}PP#qWonn`=?;?{uHh6gYtR%?K(F3AE|>Qw>9YKL3Agb
zLtrB2WM}EVJE&Hul(4o>hU}N5Lnx@$uB^R@a=2U?uT)0wL(KKcIwFwcmo@{6%J1td
zie*69Fnj^ilC`muR@QP`c!`Kcp=GW7oGkSOlgE=tQg42xdCbs6#af@ngLPO!UsM;HPMa19^Jtqc{)>>$!`+d9YaW1f_mE
z%$KbnfNlJkGE-=!w@p9TTz!#6Wo{R;B3QLjjQgh6Ch?M79an0CIeooK?V36>e&(-G
zM6%=0K`AQv7PRR_d2!&O$4rqL{bAu1Kp~SqRcUJJP?y)b=Idz-ry9TD;Lzt{OJ|VCj*MXd
zp+ohYnqOWoYkE$S-SIZG;5f4esJe>xx^BPqH!Pd@f&IDg#yfCamhbspQ5XWrF|!6&
zm_7AeBUhU6qSRYsfU;&syNwDK10
zB%JVHu3N`7sBUADGI;Q!5
zxd4|+ecRd^Bu%}>dCU#0YP7c
zNU`u?W?=HqBv~QcnMArfHCCbSMeHixqQO;cigJ^$41kpV>Jh1z7f!ify%Xo(SiH}>
zI9;X3J(m{-ynwZx?q_#Wzq=q4w|FlEnJgqkV22FC*r#L|Wr
zc4-oRteb7J-6Hki<`PwNYa8@P*T8y5>{CL*P$!~7h%gyBZDmY{oE3c)Z#U?Tk|o8MUnkv}%X%WERtoR!w^GcIK%Tw<_a2mN
zn4(fY>bu{;a4?8l@EwARvf&AVwnSs&;*W1EV>Bh1clL<{DcS0ooOdct&KT5t_JUoj
zVIn@(i7U$^F?QG&zu843em35)$RwzEd5!X(YvP$z6lmrm;FpW0QqSlVI5GS(#Agn|
zO4^SX49&?n_bQ6ic7^nyBU`XE|FDO-UgUoGs5zFc>Zmk?R@$(ZtinkX7QdF>7~POe
zZ^ha?udO*X8kXXm8@tLVr-r!Q!`tZjjkR%IO=pw{2?i`5;g)WeDU`Q|Q7M1soXZj%
zK8sm1B!n%W;`Qgf5&5fetrsT!RD>u%H(Fmz`%{nVNLH<|{WlFs`DA71_pN0L(APUb
zc*HW9U)#!5;a}`Lv+Ns|sUq7j9u%{o2qgV8sbk0+Z|HXP5gCZg6WxuB&DNk+e?wW2
zSO-3#zvUiZw&Hnal(YF4+HpNyCZC~$V`=7;_KyTmAV!+mm*gL;o00l?vZ}yKOC)^(
z&=DxV$X4^L6y`_U536jrVf~d`N?*ubfpD-e&#A+gGr#-$&C-{uQ;4+{d#3_~Vc;79
zd4LSPrttvV@&~A%`J8xeleutwL0QCpVtqS$>ZYfh!AA9AlP7$REu!S&Wnad29I7vq
zXvAQ~@3j^4@3V4w`%F_K$TLL}_mR2%E`*Q!stnRMyhS2gglzgb(ilEBmC2=<+NSZB
zy-2IwJDvJ>&f}#trv5F(ZXinfPdWwTJ<1IQ`q750rWy|zRJ-dJ?>WgQxW8BUfBTaL
zQlQG3PXF`Lys{4XdoZ0Ir!~X2*PCalVO7d6Ia@(%Xt`Q55)M?oYKZTBy9WZj2EVgK
zsIJ!!&3rOEvu7viuG}-~(D{_J`@BUM2H&Sr!3HiR9u$e(_vDWecW>AW{3f^2yyI@*
z^=F}vfd&i8RLd2Faw}w2kQQuLWaX=k_z9rJrer_&#l;+tV<6KJB2)5}3W9QB2HfrN
ziGASnvBh0NP4AmzlmP}0Bylq&-#S<>w4#Dc*S@NlUBAgh*4E}}vMz7=(6}*10KvPt
z=#%G{UY27m{AF+w%k_J9pSfyzi*DK}qnp-z+Jw-h8@fM)BXYd){1X>bjjU`@nyBIe
zTnpZx=N+V!E@A%@+T`#R#%>uuo&99N!g4*R5yj7K9=r2>+rL{`aWmAMYg5oT`~!P`
zF`&Hfyb7gh;8s(o`^tSb7YlB|shI_II851~wREtsH@Ycs4=M#m2qhjle%#vxnvn7dshU>HYr
ztn8{qRD$4ke^TdQB65D8+@G(Hd|@BJJV{l9q5uE{D<1SmX1C&xEWg|l(GFQZceO>6TYZ{aCFBhMwAdBZQMP8_pM~#I
zIcpe}WE3PI0uJQ;{LeX|va0%*#RU=k@3WJ)ysWx+IT^H_OBUL8_-Suu33KYJdc`Fi
z-x*~9BxwW3|JVsv|1~5NppRv^X{n(LL@|aK+g1C8kgp28t({o3ebkGZllKrSa|p@m
zO)IeB_emh-`z{F&5GaMUXrxU7m1#6Ss#=`T#3yTYGI*d~io4A**{=bqyl$OD;d=>HV)c~T~3L}cjKdS?=g+BXxN!1$X(qg38^
zI4txk?M(NXVQqfEFpl$%$hnkeiPi$Ocu=ZQm~?WLOqP<^<4aI=MG%R?-5b1OCXw6B
z@D2rILZZ%eIL@R0vp5ZHoC9=)m4}4h>~*NdbC~brE<|LX_GJbB{hj3JpMKZ;J`yIu
z0F2I{Ttg^SUTa713+kC!{o`d40zw;dJD|0#=8eCE*U?IjpR4aPmryXdXtnonEEiup
z+3AXo-Avx-Gp1eoc|m?D(uyJds3tPfN*HBk2*PCR=SyYWtT0sqf7`{6k5TiSK4Uju
z?bA}GRqQ54ZOP2zrQ7!|JX6>X_`qJ_dWoXI(WC_reNfq5d|na~aBX@Qc>Nv!CUAvU
z{Nl-Rvb6=XG9^LAMByoT#=-~>-%qQ8Jk^)ZVCL&F96iKGT^8;}#-E7pfCq|ee^(Y5
zv!3}CFo`UG;(44fZ?Q7P0tshIMP0Cb!X@I{Hs|CsPh!Z_qjwU(vY|7H-TUv8ty<%y
zXf{BEk>dFGluYi{vK_Q&aGd?TXKSX?{vh-7wDD4QRzYX0aRsGe*WSyD;cXH7nEZHB
zx}t+_eU{m0szo4-OhUgJO!5_ONtmY~-zFexpz8?(`Gw=v)3d8r@sx?U*U|#>4KD)~
z&R1q8$pkoZqpyT!5}(gsk#S=H>k+%d3#RORM{eYf_o&8q`cmRkmuowbmd6{6C`Ai+
zagchx+mz5a*Z25v%gZ5tf_UZjl>7OL-pHaOtl6Kz9z#vCefs4^*YoR8g|`X9XWc%j
z8bh8ClLuiUoAE%b@zfVM>UU4Jv(Z_FBRjV~f`e-*6
zU%*QIT1t^3-hrCTH;ZB6k;nV=Ay{*M9I`Ex@+u{cElt)2NMAmEVuNI;TBw2X6jP=MdEY!+t2Bvmpkx-c@FY%Dvc5rcLevBmI
zfo!)1!3q<1KSna@M={8-kTDkYKA{^YM9@3RRy(_=WWw$O#t;voa3KYF0!VBvW=+?W
zpjb^97hg*y_=z?GKrIopog}&CC18hVYkV$Fh2Kgt9cc7CJ83f44&W42_2e2Edo3LQ
zDm#Kvw+ZXPi94I?2JaLxSB;rK&k|cSbqQjl&lW1m4*m3NQgkmTQnf?k?7@dM)TbWB
zgIj7ID5_&H1R}TpfHl~Wc*{i5!xQYqbOYneyJ6)588*Q(|7W87+v%&y-BWyi^=H
z5>Zr#bqyiXwhFK2@R%9
zKa$YHCSB-whub;`DVAM!;eyLgb`3}PtP5WTgplv$69yRUSH
z;zS`R=-0Xq&x=`$0A|`u^H7UCzmM;Jw*~6zKn8(z>xs(cb{ag(k01M$)y-nH
zSA5Hn);D_d)ryEyx|Se@&H6w)qXmR@{kc1hqegOSc=h@*tg72)X3B?`oo+&BkA~R}
zd!T)5tB=y00}=)rqK?Os%8laZ08E@j#g+Fofom^4&nivN81;e=8CA>~;~Ig;H^+Wd
zNM*0nDTgU>lbrcM{8e*R6}?C}I6
zU(~le;XMV8=62>&YM&_Tq@Uhx+=UgZuziK1KudFN1Lx$-g9YC*hk4#^p62IPekuO;}hFko?*zVCikP6D_p?^z08Sj%gMt}JryafLAOpO)xrNx3WX|H)N_6hTRwUE
z9O+}dIS_==fDgctXsHnF9)L?A6^(-z$dP@B1V5Tv%`p||Ji{3(<6naKj;wsJRsq*x
z9HlPT@M$XmBdv>jIGN6IHSJsEaC0ut?p9SdPoJ57P4RLk%TwDo8=&&9!9)R@%c8)n{nu=ky{f?WiHbUT}y8?h09iLbJ>>|nL4+d*}l_SAS
zE__iD%G;J?OmO?u-oSm|q#oKX>0hq{llyLVXVNWNPN6a|$;?xZXnDSvTgyGj6n56l
zAeG~~wk=mHbo>}+;B7*}!GHTDTu84&ysVT~B&`tVgmv9}g-kfQ#?>1|iT>JWPsWwo
z-!x&UF$hVX1^No+z7ea{q&%TB%A2_`+2X+|Z80Vt2o@a8^y&?H+e56|;LH?I?1?acB2E;{44G)gOGT-ku&2sP1}m
z7JYl2C`k-u!5vA5&D0&~0vvCu!PGG@AB_1@??95&sRc{9Z9;a6(>d`Pl3@WH?LEo?&@kd
zCm8;a^1Dnh|N1J!wx_$y6F#E}{ISs?5O!h`2q
z>7r>GMuMWj2exY*&wmKSHvk0Ssy&Kn$2vsOC*&HE8#w7->IHHT@$A=n00W|u&fYl4
z0oH`gRJ53Xv8E)3U_;AWWJxNWcPJ+JVh)i#dYS8C
zxL_$^Ycb2Q`q5lvh3q|(kMP?R(~?yCPaLOH;fEW$TQ^dsRSH>brW~@cK*M`^-=0Y1KNeI^uS2b3deLoyP$6wO%LNtfqcUtm)1-Ac#3^*%uTZG$tc(ksgzCWhEY(+C4*AFJ|SbmTeVoG#7dkNoF&z2S@`woHsY|}6^uDO4R}wgqv^FOjOqpVssLBE
z2>%Vw`>>)z4ko?4>?;xDLoH;4`z4E0n|pIVa3l=5uH4t7D%>7_UArk^tU5z7s3@zX
zi*G(e#QFBxx~B($LG~~EVVty;n-xCOyA{UL53!@Blc=hq>>3|p@p7XJUyOmX2U#g2
zXik)g-jbUTn#O)9NZpXLv!5frma})D-5;b>u?-~RAteXib_F6e%u7yCR{SNJH#&&^
zLB4vGX2T(eWFIw<+!0RNr%;Y#|8?aCmqnUu{Im6kSHl>A$Uu-~uN7RY;7Y>|9Ne;f
zewUjns0ul19QqtUHEy-Piq$Mxu5F5ICS<85l+X{Hj&*zyYiXcSe6D~x*Qy2Ti
zaW>qD|GGobGEO|?W8BLo&5qLG-v@oFR5xByYK}BeRniAP|FRZL8%OFBb?9VpCPijlzs
z{aV^RwZggTufgY9G@#{7#-{CBZ6zLZN!(toCFLsSIslU=tH#Ibz$^JPWT*?
z>*Wx9`i?$zN&Lq-)8C({NvIr2*}H#hAAjC0F4fxnXTciZ59RW_yF~2$YuDU(_9%pV
z=vmuE3V>dMbYDSl{vp6Jl3Z?cT`wEo>qA>YOxG2e(7V;7S7R}^>`3KvracN=4hxc#c{HMlJnFL(0jdnocaMZf6qOW&
zZaTaz`?1OVH@-0U#iESr)kVdO_DNcPJA8iDgur^U=W}`zra(l
zP)9(1k6?MPohWQt9MHX~QMx`-8RXbF)DtsO&MOdTHn{t_`H;+BucA`zcdpn*eW
zamjj_tEpt}uK39X$c!=CzIp4HdL$98RTi9$Y6gQVzch7X7{pu!L3WSsBh4tHpJk1}
z_F}jTNl+Qg6<^)0xHt4Dn1I@`xl
zNtoUE=7a?nbQD0^O6eqvQ3d=y7htbT0&Ul
z?wR_bLu;4ewg@ZX7Z9x>DOS7Xiu
zwNHg_nh;T>HmnOef*IJ4Q>?a+XL93i=fH6{jtzr%`*+wrII4eM&e*tat5H+-{ErYv
zNOC{Qu7Z$k=VAGvV!oXcJ}f>x9r*@bW7iFA)Pii*p^0ZxQ=Ap
z^5#?KJ=c2f@CnJa`}raqJw0plU-_yH?T$(48RF<__~~vg#ZV2({SZ8oB47aTFSAiz
zN-s$Ii_TIS&Off%-Q3w99NEmZR~lDaHab28iM!aRHJOW1bziaW{B0+Z6WBkdYv4BQ
zSzlRB-ReG8HNi5H@rUnpzWJNAOz#h-3Tww}g&Pop;3mV{=MDBx{O;5v$sfIai{sc6
zu_rv4nzV#`_5v0R_HmH2Cd6PuuY~2g(lKPG?EfP}_HI!MCoJ6HAbwyQ#Z17mqnB&@
zIQ*BsIr?!MDXw@?9Agb_+85VTYfoiipyfrC6RxQ#Y(WEmq%LA6Q7CP6DfJ!Fy2KQa
z4;2aF=%d0#z&MgQ3rW}G>VG1VhDI|~>7nt8+xD-c?hR!x{PC_uDO7;r($@$Dx-~I+
zyyH?r+5o#6oG09t>JNe?Td#gagai;>vPBH%?nKZ9&kuz0%2v_R-j1txX-fwt(7hJ{
zJaz_)BxB$^7}w
z-?BUJw(93?ROC0FHYX2C_A|P`zsw~QZUkZNr62eA@j}u!2ksSY(A_xg+@t9Df&6V$
zm3%ih9LL2zEw8#B$>?m<-uWFt3k=fhY86Kg(WoVgjLDKaO$mMO;`Z?&9fkSf4&lIuUF}F4pEhRZGE>lgUeB|aQ`Vc%CNuO
zRmIfdW35_&`*WCxFyzP`lY9jQvQt=xkFTLQ?u+7ra%{|7xl`vc>kn8H!d?Cx
zZ^!~V@$;Y&;CK5j_#yaiEQXv^N-c%7)
z8-osZ(|La;=Y*YluMa4e&gFz_`za|82kpQw*W$Zv%;AmjceB-Or^?|hNGK5Y
zw!E^Lb0qV@qQO-(cbG;$+~%dnkFdvn{Ca!T&Q|;|;^5qK!q*t2LV?K5N`aXB_e#nc
zor}uo<^2LLXNy#|yKj-QK(fEGv=M?GSX#lUZumEjjA!G*1UGciDMKF}_DzUC
z2jZW8A^IPC_yNkiW)xeHQ^9t(0i^{nh>Nf?4dnoHK}R#w5`A`R?Prk!`UULy&XOMr
zBYo#C1muX1nostw^G6Cv@R4aPbcqCn^T6zbl%)|bBd84)^tYR=*2dyh2F+Cm-9*sHksKbZ)$c<*>KI5|96DYtOCz~$Vt
zt1-m|paxHcvJbz(k)6OyH-8*TD+_1HHC!1DP~)u#t((aoV;87%Dq9!vun(XdKS{P$PaJ#I&@#E0Hzg8M7OpP|HZWf
zR1bM^dz(aHS~aa7?b?0r*P)vJy#Uj&7<%u?B4>}ybg*k--0y8`vc-C2Xox*>ft<#Z
zTb-LRP=Wl|10V+Y)E+12-cNFxfn?S4Zb@{*TjF@T8w71@Qmt#XfJh&G!_9JHqVqZ$
znJGH|P1xXNh#;4&$$~CYRG|31fpI4m@Tn3Wl@?0vV$nxm2fu5VS~SlSqIJNzr$*#T
zNY-6l@d{(4V>Fo95hWEaSr
zcTIweopijE!dZK?(%}wZZn=MiaDxPGO~rXF@}1ls%fdIuiUx|Y1pl1rJIfStYAIfN
z2@cFq1K$zs7UI^j44+jA;p}s&Y*`g>7&Eh8Juicl@nhj<`4a_GHJ=E@4Fdlh{Fw{8
zbfpX{9FE$hI~#3NS66#$AN5#BVRMkAIuM@3I8~GE{k~Ge&pUvm+x~n?2^s2S@k+g5
z475DT-lFjz${C_o>A;99>xN+jGRJsB&ThJG4rE8vSr%QI(9X>6&5)u*Q}V9<#Y#6p
znt{vmAHoT%8hP)hb{ngaLNjj>c@GeI&-JTHB{(2A
zYiiJ(7t32{zZw75pAm1nXwi>vVz>!5yUs+*^i>wIWBK#(gP&Y<&`jI0dO@V#9-#Ojbh!Frs$Mwy
zU%6U2=sYEJiv#(xTl+T~wF_tGV6
z$KuR1yx`>hiWu=_gB<}<2Q40G(BL9U`oQ6`gfx(mSysqNRAo}T}FqGf<1*q
z-ERKYH9Wni_Eqdh);<6(vRhw4d~-i@ZAZm|UoRnPAxU-~+?31P;?3M`KimS`ohmJ_
z;XW2$_|YAZ8n^5UpKQgK(rToGt%B`A7G>=m)n6hJ9C_5U#5iyh{_A^@B#6zM>gJST
zlg@jQ*?IHi`43?hTF_jF-weDwA%BsAD+;fhTsaSZKRrj#bTIxfA{X5U0oL#o4hmBe
z3miL#oHqe$h@yp#b;gy}Cg&h%Gfq?PJ=;xt#k`E$9@*)6QJkYzOITb8q?b=j-$P$7
zFbxfEB%7TRiG7%!nDgDyUcefv)+Rf-ddbG9uhcp39;`RA<3Tnv)=O!E|9wc(grga<3a
zfoW@)I0~mI>nZW;I4-Y?tKUfzC3JIQ>b^0aEPu@$Sh!K3HP#1GtLSo69aUA-*5S*n
za2X*Do48w#J-?E|OTXA4X`u5_KDlvkSZ_}nUVC3ZHL&}G#*q=f9)i2?4VqljP7EET
z{WMbY#{#t-bVo&VTNNF9YF-gB&~zfdC_qfxC&89K&cpZS*c&@tvjnq^Wp)k+e3!KS
z5f@p=S?qy)&9~2Sg3mS*XUP@arXyBxRIViYaOa&aH;IpR*r?^-KYbJx
zfD>KrzdN%O8TXaM4WT*CHBkxRKH%BhRp9?FuXNiODdhR%kCi!m6ko~ng@IUJ%#|Vn
zN%WkKFBb8q0>3G_=aXd(jQn(Non7T>61xRBIl87iZUKs39|i?qc2ZQnt2~ZLM0_zk
zalZf{X;O|fkFQR~27Cmm1}3u~%o&%>rd&K%;^~*J%<8mdNJ?H_F8Q7aHCV$FaVa5p
z4bG+qNTVH1`dq(mqwQC_u*-CsN$g)7++VhKM}?o%95&HL-c&^bjiwy-rhLw9d&3&L
zxGwJ17J0;nfS2CGyZyM>Tm~`9uZqo|b5Yj7Q38Nm_lFqS3QGDIb|cF2Da7g^Z5LcG
zs|#+tp2fT(%FMx_Cu_bb5ShWNJ8!XK(3;bzS;Jt0lF0{!gD8TFD<`fWzmW!19Rx*0
z45ze{w*|~6a$EROy0R_pJy5qxn8R~Bbyu#;3z{54a*$U1o4aGfyJ&x}7MWdVvpBTM
zy^ioRrMcJvHt0LVl&W7p)WmMFzqRfPcBq6{gxo?TQK6T6tGI+PSNX$HB$2mQ%kE+Y#bv1)y$%Ej6Bu$UwRYu*3O~7we#zZ9Ew}tNd$?
z!OBMFNrQ=75FveFX95Et=9A!rUGE%LE3TF)F^}|xZ1FGZ4hZQR2IEYl_shI^m5U^s
z+s-|ZQ_vo0DfQy?P#=43H068dxju1?{gn%HI2h$Wj{6CnH>a$yTJuy5Ws!5nUu3OO
z^L**L((KFbB>k<6Tz$bHNb>q~Z#%Za8*%k|{p=(EXrGmamu{|Dcfb&ua^z$OR)%l3
zA66NR=ldeyZ}UfTs=DMU%P{Q@axXR0w5iUv8tlcLL82_4gvSGfl+5
zArNUe^m#X8=5^8+;xiu8*CJyKml9KV)bWhouhLud9UyuK%X79=!e6^ZSbw%R7arKa
z2WpA<&2DV{kNehrdBW-G)nij*_{$gF8g%75g3R-w*B_MKKA!^hZjUxk1dk;JWwUOx_WJ=+)4~c^J0a95C`CcN&9sPfZ
z)xTblHdsG$L`#a|fw4iS0hq(;aybDs*a4Jt1&^;L-0GrH+h@pU2isqg=lCV7st=Nb
zZzDs|jfL(UtoEL)7<0rzrQk5BBN2K(Nv_0dKJL9CxL1qFy{G!Zg
zXnb$go7l-85Wc%L7|iE215EB1*Q50E51e)}4gX(OugQ6+Z;FC{6PW`)-8baGIyEkG
z{SLfh9d3TP5p6A#aQ^jVDt!56bG~n?wG0X;piaXV(4TCkR2_cm61m9^K8Ln+!A--L
z^;X8VVO7c@$VB)r!bXGyR;&Is)Ebk|tww@|f}eSuYmmLeUu+g_=IpY3PD7T#^Mxq5
z7CiP>wKOnZ%!OAVyYTkv5x>FS@1yy;vD63x?xd|P{SKD+uclFo`s}nO)qT`i1-uO9
zTQ+MzL7~*Y#hf|2A7mID7l#kS7*ZbhYRZWn@ZK
z2%AATVAAZ2b51%+`|kw
z-2z2PQrtkT5z-t(x?%(3i&(>)II%bc@@h$q9#C0j?7}$DNz|$fAIyPSb(;rDJOflq
z<^Y95yKVWhBA%qbbOg~vuh*WzWBh2-u=g26IB7H3XdNO6SPfTWru=4f#-3j(D2-J>
zO8GM>+LiS1@I9g3Ofn5y80$7euDw8{;bawGW`MnE&!DmueX@0PAG
zn;Ab^?_-s9L)9;H5_;{;$Z@f^)(*oVc9Ge)ie;;|B-a2ktbO)zbM^ri
z^O7b5aMnqPv5fyc1=2EF+jQOm+U?`8_9hB2Uwm86@w%jl^OQY9bqKHCWM_n7-M-iEW!7gZV~d
zcZB=P_&XA1pJ^m8gsiKj(b}7~OkFK~K28DDEGSMsHC#1^hIj&EvG25_R;sY7`;7;i
zkLLdJij&9uu^91v{$vKHa{wE%!rbIZhU0EFy2kAF?u>`$e$XKJKQvthTU2e=
zmG17AkP^wEyFp2%kw!wgyPE-qlI}r3rBk|F8l+_Ckj@!u;2WR!`u@SW_St*gYv=k!
z!`s0T5bMn{wT#-bNrSe8Zefr=Y50?{f*$~rif(V&e-G;IWuux1R>Lm`+(k;AGe3Xe
ziUi6#y}?;=5f>WpW8f*fPq?t%C>7emgxKly6uNrE`UM}$`4z<4$8C;X+I5J|KTBQO
z+=)#n2;?b>T8-7#!Y+F^&b~`n5xg{Gn&wp#a3k~21X9+PoWDxtLVaH5TUSi{EKM-R
zJzCMgHE~_f!WNj;s6nuT74vASA;#zzSm8*`$e@%r{7@@)XitCkvgAnZkJvX*$4cMT
zrW|_z${7a!rQIrqhwF9-4Vb0x3Wn-Wp3$%ALqMHD1BAl)JBdLBsK_!
zaCP8KFoU+O2@d<_W>&Z#O)FnWfqolG=4JRZP!Z=2c;hOKe3XBXlsAi^S%*x!njQAc
zC8N&rjnpm`Q{oRx?u!eqekuOfPyNsAB}Kn}d>Etrh4P)?ac;WP0Uc3I?m$Fq0r?IS7Ce-ejG^-i}?FOVas(oU9DK
z_Vx->sRQz6i36=)HF4o6Gr2ETPgIe<(|J#UKXh}0|9yh;`7_{o86MB7)O
zT}rDtP&wfG$rq4=-Z&Aqxef?(RWbWuba1pi)YM<`TL4P%Q@tPe(F?z&&!k+DRM`9u
zDv%&J?Qz!|c?Q;&D383)Srn*N9gUMvHIhAhFJg7enH~#x`|~U;per~B931gq03e7BcB{!Q4X?J8{@wuv7+V9}qn
zkkM>gqopO)ZtiYRczO^IrJ#o1IB?Wzf+feIN8KcPiz2mR@KtY_z*9v3o&idvti>%9
zyUlyFMiuE7hL>jXb9r|!n7U?@PTY80-g{p+BQ|b<{c?u0skmepAJ0dlPd{in2Y+2@+=+Ba{ml;P
z+c4T@%zJ_%=P@1#tz9kd=zPFct)VlF6xtR)Ky7VK8m^viW>5k2b
zk~;@y&^^~v*@I&y<;2zdt0j=)*X72^D;bieRDfkzJ9
zwGVDToWpfTD05J8^jnx$@JX)}ex*@zR}}z2N;p%dSu-tS7xMGv?KE})^v)9P;h!a~
z7BPc;m`_{jl&Aa+wgKNdrKo}Z74MHc(6LovuYABkhu}yddrCb4$#@F{cetEGX|~K=+BWg_QN7wCAfbZ*@$JlRVtpr
zSR#%;H{DhGneNV_mfQ7B1bQ)`Je!p-35eR2b6e3ckwUVZZ%5!sYGka$Tp^|wv?S2U
ziD*3huPWnuYoL6N{SPuSK5k~GpS31`{g*@PP`IGgpX)oR1`T@#V|
zKlv+^IVD^bH7deY_c*=Cb2C
zHHD_2>XH5~aLPEEzR!y;`0*n-<|ur`f(Xf8TOwoUKoukvx$2a=6FFM9BdEeXu-3vA
z_ho@@jw-Lc25oYh>s;y@{{DIe)~la>1zJO}?%;
z>vF>-)Rt!)wz5C8DRbk5>*qG<$EQqrc|&QXY(>Ysg6Ft@JOV%V2T_qDIHARu6*ZH5
zU*ssULT~~nf)7&u?(wS<%+F%O+iSW#AwFCoB>FmxdILxLiALnVr)@s$!k*D_s4If=
zG+3!StaysPbRl1?Ojk`_N$iSADB(o*?P&VA8Fg9}=@~+qWbNS_%m-dDIC>
z|Gvb;RLNv2N{69o_sVI@DtuKXik$^sYgDMJ1VLfLK9gs^CMSPQ9&4=SO?ge+ur%22
z|7j2x_n3tJ88q!T<5^6vc0;ZKmm5;O&d5G_+vg$o8;kASd&qR@XhZOOT7y7rtBs4p
zoHHN5T$J$V3qLN&@V*DzG>Od9cXqpNAMWcS%H;n_F<205_5?R>b$Jy{kQ=y(sL~`C
z1>#K5V=BK7{wck5ex&@iu~+TAnY^jF9|f@y=~qUB6xZHaoNSzgJ)(rVU{6azPJtg<3TX>ekC$i)HcHw1G_ekrzqV1I|rX;re<9E!M
z-ea!EK`C!4iN^1_tt()zNMj*sK&o4w!`!{zAGfzk=zDo1(u
zy#@mw2Sms;S^hK|=FSSiTcg>ZF>+n1W%VYykw;tFXGhF3=OalQR*RZ!qnavf@{>jx
zKPXlTr%?XJ5eXBPl(&EL(Odl+xuOT}@1cHeNaH&4vqAxrfStN9am$44;`27U<2iBq
zqR+c}5+=2%J$uhW5brm(jnj&^*QX;7=jQ3iMPYQ6uk2BbCSX89-QJz*}!
z8GGk=b{5apMS@724%tn}ndlb9DR5{>yIl3p#mHWEqsG9jKNBklZsv}N?5`$wGCh^i
zl4PsY!0D3}RG>)CgF8_xccL9{=HA%Uo>WGRZKXv}PA7TDyB|gN_W^02A;xLu?oBaK
z?Y4%c3!1_lY$gA$JQSHlNXHyya6npk-EpA}_i_p}SGa}B&3CQ(iol$*3R{%jF$Qv2
zS&kKx_U|{V$?1-f@TBm+BmRjg?44oHhK;)4$eY}Wy`ATaf)u7}I=yu#_>K<}qyVgs
zjPaD$pyF_RC9i(0j-&!B$s9KNp@ts^eQbVPs1VP}_{(VOv*-`Ci$jyIR>)$o6rEcp
zl#%xu*wZgRr?-3Brh9y6*G%e{46wO_dgXw46WKPB@GtitKC+@Pf_{1fYICy5ca`!<{ZMK-DKc{p$kVliykSUo4X;n1&O((qwe*5_H
z7Idu?tH^`Xk(QGAiCmFm2uZqE!xtjIh`ThsBT7o5ksCd;q}AxBLYo~u5YaFb=@c|e
zp*~8I#?T_`Q9Yq?NmO=&dfh-}v=PT#naCler%>Gi$kN@Vd3zWle%$jrS)Z}^RdVb;
z>`xN0Z?W!AVZ{{c1N!$YukY?n>o&UDcMWpbEYDDs=d#%>XZu|3C8^cjn$W9?)BScM
zoEKRuW4Fts#5GyFu};1%?aMF7AG8cfIUEhW5ZbxTh!sMFG|`u&S6Dn26zt!bhDtwC
zQb#yOMs`=tcsSaoI|OR7NYO>Ue@lmUEO)=2LIks&3Fc}RfOfgk{zdKDWRKslH=1+q
zj6PK#w**Rb$pv+{duLre(NMo8B^u=;y`?xOyo~H7NgRLdu3>>E4o@nk{$3n;JK)Tw
zg+UdAjg4_cmF21MVFuZ?{m7B2&3OU_<@DzJ?r176Bw0`k=jnv*@7bg<^W2Amh`0~C
zlJ*F5Ej-R4`bpW@TZkX>#vtMR@DlI({FbR1JFwje|Hf?dR5#4Wq>|zfF6q0OXWHPFLyAlYFGdB&mk?02KI-O1V%&cdXx5)y@gU
zf&<-Q?ql9taapCjAB{jm!*wJI(ti69Ne(2s12bmYk6wV{$<*LV;1i?ImX~eWlKr>p0lcog&FXk6g`E-bq6R3IqjQe!)VDyQ~}2|KMK92_#N>#_VlWm1xMA^qGkfk&RL&zIQ6OE
z$;|XYROP3)4h{2RflNom5yN)yS^#{E32y@N#EEfgO8bj^rK{*n(EH?r+$DcS@c3!$
zM`Hn6C;NFY@#_&O`K$OdNaJ%?bV(d^vO*=p@0npbLKN2n1vef&pP$^%_G1DorZDs7
z4xET4HR
z?ff*b;Dre{*q3R_jK#ZQ>d33krqX7`%SWuSM5hEjPfr*eWh>s&LIjrYr}8-YQG+mS
zn3`=UhQ~^H^9p^E)%U@px-C((a8J&2B{H|S{!rBap9Of7fZhwh`n!o3{F0-s>PU9^
zsOSVV9|tjxayZ9hp#+&uDwEe>Pn2Ljw}|&|;%%q^HvUO^Q+gjn?78m~CzZkvaXmH8
zn97s?sx;=1_;!cn;z)p)UJxiRHncK)ZKYT8JArcmN)+~rBt24O9F9;{>JLFFkNQ**Smj6
zwtG>NzMka1$rUZ9{s=L`b0oVlwkLDFx8pW#GDd3NSFFM6$hGKy84{;ZrCFR;zxUve
zyA~J{uF#e{eRv^YV6oIK8Ohl;v{~ruou+S(0Z7Kt;O}ep345KKTu*XIkJ%7He!~O`
zj69J*T9hYgy|a_^#I7=}R$U3bp_Q&rRR3h&Hz!@Rgmf{n6ma}u$4rGip@J08tq<^dC4I0*FSTqR^+jT+e3_RnFulx4GT5T8+`l?IxKeD>WZWCO7E
zc4wVGaD#M7;Y;Ti_3m*#K%x_xM(q2}kpcro_vA~-)5pqa^;bl+0&C$zc=-}+Y(>}l
z`pj-UzN5-cIMX84BpHf*>t9ul1Jd+1eUPa2gPC{lC@rjn7T!t!#$#1nG#_#BQ*_6@
zy2mAV7UUSsP_jIuu!AS5g)q-}{WUv2@}ymii_KRmDhTfgV4IaV#eS!Z`c`@2Wp@9(
zUCx{!V7iH#>oiAr?@mJe(>gS@$(~usRC+v9UAf0!dC$yi1$fKFymysHe-{
z7_+ozN8Ajk9MOrA`yJ-Q{Vocn-QzUT7@VTFyU=Pr9*Y11ncB{$Oo%e
z{E)d1JL%cTW16xRJe&p6s;!jk-%O`m8)%;l6@}H^sV#y;rz+#xG_E*VNR`riRyBSK
zf7!Sq_f)?0M?Alr6WPtB&37TC)9!;uqokr>vX(7t_tl
zo6BfPq;@U+%-ZLdHtq}wHV3+TC9PSDW@CaF$s2n-G7sF;7;J_*$C29XoX5mE=kr|E
zJAzLIkpnj(*67Y
z2vd7f+^-@2ghG)JSNy5d>shhW__xY{+12$)SsQ-u>Q4&J-Ix>-&cfH=fW^s!)~k1b
z^^l~!yA>EQy$k03uL+SeKBJ=uk$79ov0~@{SGF5?+wgYSg067gHi%pB^ay&r5$-A>1XDsIpU#dzuqkAT6F!My#KU
zc=gSFAuw{&+cAb7IoM@QmW8Y3$~QMuV(J&_CnRdZg7}HQo?WmN0eg)S%Pg%%v;!FW
zeXzG2N>wYn`rC2{&l=&E)n9>`X`{_D%ClDLvLun_;sVpW^rwn@Uj$9lhKsS(zhGm@
zcKmz}h`(t3i5>9FzC!Yfr(h70_9Oh8OmG0ghj$`QOA{FpoWS+E@KhHZ)@Ni72t|hVFy?ioP(iyYvts=a<_7^)9(vNa
z?h517k9A%f+Xjqe@o_tpXPqwJdY+J6x-TLVjc{QBVTH7FKBQ~$ORA`!`*)XCNM*x>
zIq7D|BXLH8oBJlO_Q0azc3chxF#;;4flh$8NIrybU%BB>Yqq>=+FCCmkBkV++WWIC
zUF8m8T
z0>*G9HVU9T|2A}QYRS1`vxerzF-oI9;n
z*ju(PNzs&B0XkK-vSmOU(u+;(B^jf^Yabq;!;7!XwEKmfiPON2%OJD~^Y_I~woZm2tA6ZYj5)(sUyX^x<7DvS
zOFQVq32=aUEBObW3TaG^VwkVDCNFPnmxzy4cqtT{E2H1D7bK7?p2-s>B7TC58{veg
zsWSb1h}@*W1K2WBb%{(IJs9unU$^urCiaC7C=;VC%xew4M2!ZGJZ(G@a#wv1GFY2{c_)rWY*9i-{3}hg*$qiSzCz^L
z=slR)y00ZNBW;sUD0Y`(I28CJ?llYGS!f{d)~9%D59>K(z+Wyg22Y*bQbpPb+R#o6
zAuT&capS~fSL0l7-A}0A+OUCCr@!eJOK!4Miag^35)pgF>n0hM5d%Nk?eTY^E(i^*
zHF7FgK53e!_(8sz?tKdHC#mk`14x%?wvtybbm`P2GQLFPC6}_wO{zu%d)f>u@y1FfSHMvcMGKo{)PA4@mZt_SJPKc78U>@j1y#?gvvD6-MRx&4?5y^
zV7Wj0Oi26s?25+Oi$E+zm!k9YHeMn!Hyp9oYRZfgUSr#ELFkT}8E^DXVu~$51LB5$8A-VKkhlaxL;XQ_Y(8#aM;d?8n1SPG3
zwBwfGdGwTx2kh^k+)?hGyP^tOPLdYzaxIUFeko{BeiDBvI$*ivH+@ubkY6a3{@zL%
zfZzUQFYj-#GFW*!Fxbpf{Y`4i#jA~f{7E(ELwVW>^I*PG8N%X%Te7-W;fb;((-6C+
zwu-=aY_oYFP6vYQ?-m{Om$=2CZSUit4ZKT^>6AT#azF2maP%D*SW86UCjjRIi0zp9
z%~POVfbYYv7mPJhR|8!0fqcVKhsT?=!+cAMAWnKL|>y^vWy
zBB{d(QH_juK2U~PTaDA!zX=tf4=DVWrnP5_xao2Ekm@uV&Qr90|IY51gzd0Ku_5M!
z7T_J{?~N}@ZH^1&fakiJqV+uW
zFv;}ArV5oL-5D>b!6O&69V*F%0QiprlLo7Mfp3e{2cpg7`7?2`YZ^tS^h+$YCwn(n
zUnq^YXNlm*0U;`F8(6z!8y``>F7r>7g%rs-C4H_%HF|U|+Mnkf*$#Z&DC0&qF@ybd
zBD%3yQ2{CAk^t8KLlk-vazPYdej9<;^E}P=FkEPi*`mUV7rAfZqBXDKGeY2<7b3H0
zYf>`~pgbGq=k!>YyV{3y-62rJqjGRM{u*`1q)zgZTG+I6*h;^;!GFuIWgw-$`9vxOTOXnMY_&mRH`^#it)?lr-&N{!Y~jhB
zlO1;dovuq7OUYG&eOPL&N6kQ*eKq;T9J`M;J5MyD8l7|6!PTxW6n
zR5kbUSAX(3;ji}FXrDhC@%XxE9xk*BQKm;Dt~pmzxlY`~)nL@5;On(Jd6RWnoYdFI
z%1oL+gfU@l!i$&82dx)=-+8#H3GRFA@kT>;XLh6wK3GZ-V=X2GJA4ZySiU0{Y8!F%
zQ+9U*cDhU`0~7YLtb)7)rOUb{Yaxd?cBTV3mIFVy6pp=-y(ld>s8h?Bb3*e$`U@$;
zQ-@1+gMp1bCN~c=eLcRObV>dG>B7k#({qv1`ek6-6@uxHU=1Q{!~gPyWy*(bygi~z
zfnTdDQEu4^aJ(FxHw$rMI2|@j4`!ce-ZQF=?0-C@Y0k-z277dYH-gnu^3aJ{8M~3`
z^6AHGU)6hv=y~RTIqy{EGv&kE8MKnf)s**>gGYRim_GC7Bo6AE&EBb-kS*48DM7}Z
zVyf8+0iVwyZg{(<*)F;Sp27Kub78W6Ni9mE&3Y(OkrKILWGNHYRSBO@{p#txiH%;U1Q!BS)R;G<{b>yx{qWhT6DxoUR+2#$bR3V+9ECa
z)J~Dp(V6`l3aBwJkZ!d}
zbm%jH!XhC0_cd0LN*|Zvu}GL$0&keGy%>|gP_;jGK`={wuG{ek_Rn+L^xN9k$5l%e
z_-T_ojw$CtI-#&}JGYsybG82-0KfaXOrqeTb*Cc1|t`&b6uDg?LuxsCZNfd5jl+*OAL&CG}CdgjB;}6
zFu&UQil&T(yVCh6C&qHv(v($*%Q|Td=x*szSKHnleTHS{fn9$&m>qO6!|n*fP2WG`
z-#Kx6a}RM*N*imR?mT8BHMyY8`Pdc3DsaVgKjEJXlmHjX79eRd&FpFK6kodRY+k$|
zPCvU5x_Ua&ma1u(Mm;w7oH&bRon}z({(@DCqtAtt=2HI|@)^Y3E>@*tDmY|`Q;x^v
z;?u9!sApC9?!Mz@=;3w3sGS81`!rQpIm2t@GIhlbp4vH?6kVJ8kb;)8uj#{;)Z$iC
zXR3!6tMo~nV>Ipib9v=~BJu405qoDYtZl<+g`lGS$F#2Iv*IyWIdgC67!zW?BYcyK
z)M6Hh`?7cP5AZ3r8t8r36~j2SVjCOWHOWYmvI#iuEdAUO?kFxUyGjHQr^YRLa4-=2
z`M>|jp*l-MRriq0eLtG}$-cVRjmTNUi2Pm2o%|B=cFhc>y%cqb*+G*D$^NG`d_?8s
zb1$piu4^VYNB}ngWw~?Q>Wiug8suxrnl|G)jzC$Dj1lN}@U?j$4jwmwG9*JlJIYvV
z>kdP%dAI{{3#Ivfx~EIF(R{gDojAAp0wVopu+#;
z*>ALP0WzK~@Sr#p1zN2S;+KR2v869Mz4KvD`O`j7YEJ(;wtLBa^={iUI~MLh%(#o!
zU|C4p2(!X|dfx;qISsyihXE@^~L41-oeEN$L7qO3!8st7smR@xjZ
zXC|m{0nd}Kg5_90B**j_7|Am=4EdVseH)=(`ct_6dNmo>06#!V+bTEs`XM0Gh6wtY
z+$)k{oOH8Flh{`GIG>JCV1WS+907
zw@K@1e7)!jLbIlyR@z1x)p1221B3BIHi{BIP<6d+ntP4b>CNz}YwK}u#26BCg2x2<
zo;J-iVBp!!k3)90V;zuv96#wqe?#$OoA)m`d^OP1XX;gLie^i>?^JnRpDT)J_q^oV9OdzyjxH~psTuQ(=Ai3OA
zEvoJP^byfGz1WoueN4u#0JyYZd_Q&h4SsIvp>ZmG~x1
zA|zn=Y%}r@T{LCQkE1*?=X$+d6RI%(B{{T%^Q~$f`WUD~=w5A69#&taT~I@(MR_G_
zha8Ab{H0nkZR;U9W|ao8Uv+Gg8^^i^DoKV(7k`IJEBYma6zCV)8D|2l&S<5=vGo+b
zvR(3o5A9-dp`KkJR#PflfTF8R4dk?D`e2n|A^{Tt!qgtAi&
z^BFwY@oDWx5IoxN!a0)Frn^T9XCiXB8&OpLWP1-ii6n2Mwk~uYT52b`Uu$~6B`-oN
zSe&ukj~Mykiw-ryaXw?#)CiA!YNR;N)W53s{;BMPV7GpC=v|az_gD$;q=#!YO{slfct5t
zzh`!)w^&jR49pTvam;iGCNrO^J#Soel7a95Gdb^P)~y?^PVE?`v*MU!6>m0T!(aVU
zs%AxTe{y@)JGcMrI~i87C-s$8-3BNPqsED!%rdBf4L4|Fq++B>(8gJuQkOij#P-YI
zcXZQC_G(N6xu;Wh3^Heq@vc~NFz;4*67%g&>D}@Mr^APW0EOG@Gw?0dGs=dPm)Vs5_{C0
z_LP8ul4BKs=8NoIjVh-sjg`HjPlq@dE#Knu{FS_xm{00~S-G#t`S-|bpJLRt$
z7dU=w#Q}o=&$VCjOn>r6(td+3`Xu;jpDB+OxY+Oi#1wqp%Lyc0vsy1U{OLDudzEV~
z9!!;3p!!_00G^IbnoIV52v*4bIdv|1M%k-F4g#+`O1C{txb17@cl=qkpdg`E836tG
zG?QeK!h4CX=lbv>?go!^Z3ZX-nyk^E?T@s0pL7d!z?a9#-Y;3dUp?^Qjjeu$tL}XX
zpuL!?5>Ae(Hsn2229{Y2vL#~Db!dK3&8p3go&oUm0j8OZbUV$#y!KM2%nt{0u^@W2
z*>&utiYnOj6=$`yGVHqepe?}e2@Z)GVw}2#nyEREegzBU^&C~;!BrA2_t67Vtsy*}
zN+xKgB;>(1YPppi+5~bWQUc}(%_fznb0|yD8kMgm!}&WFN}Jxqr7#P<&3u#t>N{t(
zTn^JhZ8gV0EcGR*B4lW_#15#QOeq%H;g!ICZv$g6vv*8Ds58#pSzmt4VS7se
zj+@C}YGj6`nT`lBnYhYrz_xCH&wJ}i9ds;WZJ)TR6sh!8&F6R=%{l8#}Sph4?Yt2c@f=(%XX=U6iNG09o;H@
z9o_^J-x#J{I>JgY{8Pqf?iM6nJZUk&9)a!Z?LRvpZk17|G*?5Zjq)F4Hd2b*F!a$jzM3yv2>#*&Qv2x
zWk|O*;+WUn5G0vv^eYp)Pzp-<9p8LZ6sPe={?Gbi$q2-peL5cU)JXpsuF`W$cloiC
z<{|XR`%;i7>eWe1HOMMf^Oc)G&XQ6}R1b~qoWilWEBPI;Lo*-<&c7dgxtH5WvG9~c
zf9S=2zs(-QXlE%gx|#uf>SoXB04X6~ezu!!ePyI_i~e@a72uEmOd55#9*chYEC(cT
zNtyh>?<{}}aZHU1*R?jT#8|~mM=z!ERt8$H#bU|++VAimaad(U3`x}e#nLFb3;3LA
z9I{I4Gz`8_pLIAuNf-Agi0A047xWJv_IqWjA4+F&EYob-uF4D95#Rr#X_(b9b2TQ!
zqO37ESr>23Pn{XH20K%nqL)Tlx+}Un$=p2!v?7)y&|ByWSpnf)=evQu%RvM(24!;_zWyQkgBX_zK`H}h*
zUUuxRE`rFxT!KY?HSaisw(eMdt|)4qy*`#ZatGPvV~AO=sl(OE^}foGSfgo!i-ly_gu!V@
z%19UQ{4G1qe=Ifspo}mhzy-N2c8Yzz#Qock9tU*!qelD1D&fQTkvI+Vop1-%;~xwr
zKD~Xm#)RB2BUrx&F!PMnGV$Ofy9Njnd-Ze14mn+crK6vx2wAce$avdvqnw9RyyBzT
zbAJ!{b4nDR8{}Xd;`?zt8{hCOrN|0>@=S5AUhWB+cq;vybB%<=IFsWiBwUjDi{
znlo|m_>{$}x$~JN(6TJ#Bw
zm^|4*_e?tJczv})2ym9-uz2`XJ7Z{rE6TwzXT(cCW%HE181z{(XE@YD+oJiq#rwWr
z<*n1!zh|NdrC};_>laH8jbM-8GEpSk1^ZKsQ`g=&!by(*IcH#K-)4zHsQbeku76n2
zdbASt#rr5x46@pyQ&e>UxWM^!a=)_H5a3gD(#uYugCd?x8`XhfS|Z3$WZ2t5ROKF{
z4)yNUI}b*EWA}*v6H|md3ZIGxiav^-I!^Lr2)csS{MmyW;&iwPWgkx984X@nQbxm_
zznd0&k+DQS^g9;Hpy=uEF3ucPhE?BXYNczKTm-mFDL3^K67+Dt+*RkLaB&SF`Reu^
zTQ2AFf4l&r8ai3W#p_`)!bwCLx~f+s
z?x4QB#l@djE}nWd`aMJ#*@Ze6m&R)9&C!%A&aupn>UU;#HReANPUO^FaDBfrQQEJT
zrx+d;W)@BF>biFWzD>ee@zaFQy1elOdUoVP_;(+gWeU<6igy#emrX$keDBrdba6oIbzZ64+wx8y*7Ax{w
z>4xQ(hYkJ795w0S!qWP94r7fEjS1%8ymu=%i!zXzBn;X
zecpem6At<`HllxsQ-=0n}-T!|UK#?{nDg`)mwtY4)&w@tw%n$33
z{=m@AQ2LW^5Ygq7dq2q{0iRjb5iei=Ix@-TE&_FR6gkF7*WWnSFTf+noDYG}CQY8@
zBg%K#e-9)G5V0$OqqZCSeB6pCqOiB5JCV(%rBQ4{i}4whuAg@>km_g{{wguFN{)*}sc?;s!h=SEK>dpMRW
z)_)V*IQ+A@UoLe$
z>L=y&2P@EA?jU&v6J#JJDYEKjoj=jcz8Y${X-fdLi$M#nG7~^+c>O8zz!0Qkp_N6k
z(X^XD=ttFN1SoT#d-I0?a%m!3Y*~KKoCaP~F@(Vjo@Kn=M~VC+;EYx?2n8B)NVvQg
zsjnuu(?{kvq++#1H3q9(tZz}u-t4FtsV9(yvM@YSuHo_leRoG6fW}9yB5_9cdq@L-
z{#U~DGb*&b5Qy%tYyRSvu-Ojsk-Yi(Q_c=6obrW&bC4D;bT~H@J8X%
z!^JDKo7`7>e$cA$dx071r<0)cOdkvuYN>d*RATZG4E^C%{#So?;?``Gd&CI@ZI-r8^F9$0l5%aDT#u
z+;8t1XZyktt?MM}_sU_5kryX9MNSzAl!4Th&`YV_8_hdh5t#=#ns)jv(S8IX7sf9?
z0*T~1f&!3oXQgUZMF2l91HQw+aaDdjPqh=G^KlnF<4dwe=|1|1VT-U+N7^{@xnvAK-e0$Q$W9(2hkc7PXI4VB8oA9s%&)rfEc@j{lEFdI7E9r-czrnI
z^GGD3b+TbW)p30iW?)^+bC-rN6FEpXn~(l|J6d8{1h$wrHhW=F;@M^8PE6*2K>|hd{xt(=`d(;O3>N!6iw|n07SgDL8wXr?Z
zC{8)kcpQ7xuFI#)M5*qB*2}tZ>J_gPj~i}ZFWoJydNSDm9l=06ShRxwf=F^?PZQyp
z7}qGmC@vQAI=}jzMQbKvwAsyE1AaNQXDm7+M&+IeFWI|Du$r_Zh(ezJ4$2?0^4^kuK|)V~yrJkAThT#QdGbqM6f8V(k~h>zgDWNr
z)6?ME6e+`6QSX%Vf`p`Ow4t&_U|rgD$(@d;^OKua25?V%IG(ti)#^jFME+&oVSKCJ
zzP38SLaAd?V$xW+WGyUvd!?}oyI;Fb;Htd?ah^6<{mR#i{_VPlG!3c_iLTH84;RJx@$Fgf@X27h9Z`9?sufM~(vE8~3w_c(NT9&*Z5$FVX7
zgOZL?Vr*!0!J})0XU`anVT)=;4_X!D97Jc*NIzq3!WNeVP~&h}JsqbTzENa_;!UZ4
zpj(PO5t@#C#gie6(l2cxPcs44+>oewc40a@^3wVoZCc%T;_5k0ymSr+TCTi_V9nbT
z_7R_6u?j?y}ZjkU9)LL0_~Sdc%&-bl8=obzMJ-4gXp
zzbJ^L>Df<3p1^_gwqQ9MpMc>}tC>LT%l8EI4)9QuAa*i&6l1l6`N(}8AM{$QY?8Ol
zUuo3FlDQ-v*erq9kiy=J_@Q|z`yxw&6W^IdZ>~*PrQ)>Qp&R>R&0XLxA&OfXAzdZ#
z4}lR7Te4F%y8%Fc+K0+hr!^fCM|qm%`Yec(|@R|n4m^P
z&23m6Kui6Im_~bJ#pvQZ9~;3(GsqJ>G+?#Ehnn~fm#0KRFZj1?8fe2-08L$ob(Zt|
zo(g!GNL5$Nd1uqUd3F#8VY?f+)w#qofwP~R0K%@zjSOBql0^loj}@E6SXmSiywRev
z@b*<`KdG~)gvi}hMsP*D-wSH(UU3tpSuj38BNad>RStg$l5~zK&aowk9Z>fa+2V}R*E(0#LPV|QZ#`KYa$zP
z=v2x2YEWYt1uTM(M!tlR*oDaR~I(O7$)(Pnn{Vk1@
zp6(&*d3C}uTyr_vv!}q|EFJw)fj+8(?o>J4jP%3w=Vrsdw0m?`?nP^qF3+=FLBNuZ
zpw}hmb0T3BHTf65`HF&U?W%?Z4}NTTg+}ABf?R=mFhLaX`Nb~n)%ph;aEIf%jA$wy
zzOv7)ho3X?<-H}l3DDkyX3mjB*x{4!LnaFY>ToN%$6W=nmUN3Bu&@ct=A*MJPlicirXJWcAm~|F{kl65k
zXq#wrb6_w%tp7cSzbhGhaV7c-yd;KiC_okPrjWwdNqp-})rE2D{&h0*Lgq{dYjw{Z
zF~n^ON>~0iNit|ezEk!=u`r6R!C+QqQi*|QkyaV|zXH_Q@OeJ8a%b>K9%NVE5(rDXXJrhQ)$9C=NbwS$Dx8k
zbNORa7mr}wp;E)FcbB~L3w7(d!grK0FVCXp!ffrjd^&I*8ETn{?+_OAzP13mK@_h%
z?$eg$@feDjqE#gxcy1sb(rYoK)roj1g+QiQ|FHEUj~u;bMmkHmdKx=9BgG6^(I{I+
zo{Bp=37WkV=*x+z%<;gQ6J?m}h*
z<%B1??cp%fZl8T$m-Y8y%{E$2->-rvkLDz_z^D-30I8#f&T3N(2P+DXr<|>zp*b<9
zIqhwsCn+SX^r3cyl%t)FvXq8hX44oP^zWfBeUYa!8ieMRJ9V*s#6^*!MBgfCnv
zUs4ml_eqaH^R{5M6RJ69nm`wa?)wa!D7SAepNVvpZ{tbWb`_beuBu_Aj&pS;c_$|7Dq%StYMQGeMuDq&AEy
zZB0$SA?$};tRoo6A3Iv-E0gOzPSPbNIl0>HZXUuwErZ5}W3wBmx?#72=F#pF&=UX;
z-l#-{QpyHN-P~-U-3oY@&{TTU4LJh>%n>S7p&nQ@6E3yIRyGe5MxnQq+@zzM?70k<
zA-PjbJpInMVxyfdF^p$jx%Q@yez_2?pVru(^acp0*??IKZVo*>m`?Fah#eYOSvtNw
z96j6@0F*Q5s$cafr3{Xq;y!j0h`vSjKyx{4SoED>tsB)uz@&E8yoCk*x-E0q30chq
znOiiB(#BC|@lQYN*U@dKm8xiyKm2{`%~Z?Ns@(P=_;wy}G}RBKtt7d>8a6hBP977G
zOkV{eEr{f%x3ag93iWM!9hZRmXU6|IoPD%8LznR<&tIVXBr4jh#VAAshm=ckpeUKw
zfV`u|r2aPH>}85ksVDUP%+LeP^AyJ^Fc8}dV>v4Qe8isE{HP7(in=kNQMj`{8hO#|
ze*3_3^<4zzD9jS#!+n`>e&$jnQMe9AQyh=i8mWEY%;$3*pSFJTPhaT3-Z;MhEsk#WB95@~vOUlJM_BOJL?T1d3$;
zTu{Nnd5V5?KWiXx*hs3xf=n$B4UAm%szqtExv_+vTI({`8BVc5ko}{d@+;O`7dMyW
z8*ppPk7hk&H>sbFkc8x3C}t%X^ZNp_XxG@??w3ez`zV?Z>KJaj2MuR8*AmuHdq=&t=WN
zZ*~To#yqJePFZ1HheqL=Yxlys9Qd0&2`fY~>~20(2tof6Xbc7s;!gPhf0h-KkM~3d
zQI|13P>qD&MMqoQ*CMBVheSj-zmDbZ{OG+}-ep099)PJQ{6#IYysNwY#T$JVVFnoe
z#WD3OdAxCF$7ih(N4a$W40=SDF0k&wDnuFo++QQd%d9GbtJ_-c;>+9Z_`6k;SLy=#
zWv{72&$msY$M5W$38!vAgPS`a*n%&fv;RDDNssv_+m0}?@=d9U>$=12LOYZ}*p-mU
zaQ0mzS6pS?f&#Axk$@_8^BworIghA;>0f*GjK9|wVMG3nJlufN5fpLd#54h$3Nzg!xy9s9dw-reuY(Yk
z;xFx&HEP-2zxX%wm;DpGi0SZ&$BSd#(5JLOme-nE%=)Aa+6qp@fDqQwdVma6Iu2
z0Dt_PnTiV1jVl`6d^xfb^s-JYn=J^Xdfzz)!&tm9*SMoZc{IrOJb>a{?w-MgifS7a
z!tz|#oVB%&<|FPD^bR({KTN9ZE<)p)C6jIq!(39sxL~iFJrS{UFAIC50kIlR4itS2
zS&&t7=m317IE||~UIreF`Fzi|=`XPDu|@c?!2ah;3>-6)kcgEvyFjp<@4__`VOwDx
ztXk-rO6Uj9(#4bv`nE}~1FFZ#9_mV=ebH-=)+XglzG%kcO*Xgb)z19p+Pu20_&WL6
z(rr(ZtT(XV40aCf_<7K3TDk@t2^EN*E3(Un*N^3Yf#9g)1Yzr3wV+?#@JylMSaYIx
zt2M9fm(v++i6C4K9&0f`_r^oad0E_7Lw%z?YvF@CO)s1t)}wY`PFmD9t^31+%AQlx
zB(nWY+a)+GoHwDxeeW0Lm=hUnT^{Jy>!mV^5|mq0=cBY*3|Y+tS)P~VYP+bEjjX8(QeI(9*6~3FPNpS#Mtk|(~fcgmqqi6c{{c$O^
zz!DOE09cY&@8ijtMkJ4V
ztPx&eTD1GaiG(-%rxd8M?+l>{DVVvr2EX!|*so`MjJgBmE6UhSJ*ABB!_6H)whiNQHw)kP^K}F`
z%-to0r=Yfhm#Qz_s|hnrGY8E6L)fcS4uk16Yrd^%Vok74<9o@bGaXfqlt8Hr=r5He
zS-x9hUp`xT5k8JJ*TZp%C${C18s`?!)ajd4
zeB0}xM?ibharofulE5T?{%{#6u6=!X++{Y_fv@?iFc>0V1ZstE2vi9XL~9E_9KOP5l9rW!X6LHMM{e$0K>ZvDq!
z&{pEGTgaCk5Xou0bm40l{oAY^Gqz0d6PtYhLW;}1{JSbs6;ptK2nh3wq#orL(CxEq
zQ|?F!c_T5jr~yq~!~;cRCw
z6*JqNd~%h<_SmM92RCkVray6PD-Y*p7Zm%*QxcDhu~P{mqfDHmev_!bmyI73Ih_l?
zBFNTu`rKpm-5|7|!yN
z4S^ReZLPy;A5inwv(u#)ZfUN4mtMJ7)WM!^Iv0Yo&u?{jWKO=4|J5wTA`2vUX3q~E
zYOWwI4p{&WrAGvQD{rWUDd(87)8z0r{IO*eM)57<#E4fwMNE0(@OuFiNt8ux;sfPq
zf?<&*$Y7)&<>4+OGz5xGd|^Yg`%BaKzNCxF?zsY@+GOrxeEJd2%F8G)BXds}O;$*4O*A$Mm%wsLLNRw3N2Aeacsm#-B{CeZp@#Bp5^})+3pWIKT+GLd$
zT@v)HT?0y>k1e}^?&mYF`rjMmT%TT#7>1;;r~IOyK7k-+HUUzZs1ec5
z<@d9{Ts%S4KngyG1*=tur*Bm!&QYl(!Qh_i@vu54t3qcF;?!w^`NGYA6@#C20L?KF
z4sN_9AA|cib}J&fK+18mRcA&XLHA$0IjS%_?EB-0wED1XcG0V8{GfWK13^P8)#(ik
z9EgT2=;ouzOt#7riIGtaYEJX{_4w5>L=k-9?CV97c>XYPd39!%J|NgCxl8NJRlD}~
zozWRXqlg>pDX==fY^>;OEauy;Pf#RCWUegzJVYdB@6k&y#hcDWV07>vd;jJM*F!q@
zbt8ocE%u;i9F<^xMPGkP-Z`Jco9;UK4#rzavGVeiMSs$BGAU|FrbL-<@z)A*KH|k5
zc+^bwL4w=7LX7eS!v2BH7b9yVj}!6UKB&G_;xucB>+ew|f3F1nbDyJI48NLg!T^ES
zuwvXJps0Fk?zc!~Jy%}!XeEg6;@(oLmnr-u2*wO(R-Vz#TG;Obt<(wNubFomZ}sOt
z3Q4MXF-)3WT6ASp8j#qtzrPjxZfW>^gXZXthUDCD`sQPj-|*ruh_h>Y;zlBYqrt3r
z3pxWVTr{v2GYC9%GCnQ%0qp;b*k@d_oG`|v{1)7R^%Jv8H^(ALPIRbN5tmn4yD~Sz
zIOKq3#$6;fNQ7|ByKI*8GAKl=A>zyMH^$oM9U8w*v!t&ReRm(XUor$>PZ$QDHwn(ul`Cd{58pbCL7QB30Z$=(^C;|c6%yW>&B
zj}y~?h(ugG^$X$t;KiwdK^IO>1X@HliDT*|>9+YKc#pVw5|9RHHLN`qX&wXx`|mDl
zl;6g!3x?#_!dEK9SS|yS-@7))!}{;pjH3^rEdp@R?4rQXLRlW>VbDH^a#$e!;`b?I
z`^~LB=2}BMk_aj3;)h`o55fZ`Htf!V3Tlfz$XSav?fr{vR`-$>T~T-3>B7j~stpdGqc0uo
z8zYW|-q%~a>rj}$RkgtZV)GFpU*x+Lo)F=mdhB&=kI+0X;P~ec5|OHWUpOTRb>;id
zNT7Ng&yza8y;uPra71I56y((f=4YMl8XQx3jpl)*dA3(I47dk_Fr4q6B=h!V{5(x5
z+TW{X1;4F}a67?eik`5+9d&%Uu053oo!=FBl?ti{S=J(
zK8sgAb0tM#10510nHdn#Gi_Tx%6XoJ9_pX++(bTJ@t}{Aeu0yvJI+m?{CE@=vH-Wi
zJ#-eiZirtw`N2I%6ZRM%_Ct|2u@T|T^>5A2H?z17B8oozpKmWwN}4#oSV_)pBgxy-
z2E!Y!C05BGL_+jCD|pQsGb{<2Oe27wizZ&SjYNVxKidk7za@Tk6rqPnK8&t-1LqrD
zk*n!eJ=><45Bj{4}j$DMQH#j73xzpPu-F(lvw@s-E
zQOc_Pk(_Mq;+LvX9x$5-va2%k0;7q@Z{_FC|=0duW#D4r`HLL-r}J-jyB#;#(>t2k%t;;^J9VyGEWBgzWX!8cvXg}tOR&DmYm5Py&#
zDel~enx@gbk-AFwN{!?+kUu66J9hP%e2D*!n$Iz^aML_Vp)-i`G&nS{1Pji^iO4ue
z1HJIy<&IBcIS1EG6&C?Qy#?kC?-tXc$B_vkn091BHVm~lX$X}Jh70|hzH?$B=epny
zUfGUcXWj^`GK+upjjCDp;Q54NTN_-~{baN5Sf`QAm(oQb7NkedMI{&0B3qZjSh?#e
zL;I4%A9{;>cA!J^FB$mrmEnKD<*zO~xgd+^RN81ec~icLe#a3
z7H%i3iTw34zpAm9;e_vhQK6|%PByN#A^D%wru7sSu+C2V(#)5wor5~+Lm#)W$Sq*W
zAuaz!`!1mi?8)g>B%%1aFMv>T2ZQWjuT!v-J`r|~S@A9`V$X{%l1%pL*xsLT$>#*|
zMnj7Z#_(af8CzH1dp6P$%3jZ2CV@SEf)()Vu-my_!fBKr<bfu1v*9fWB6iL=T1}(ZP0L*WmR&{|0lspD|LHTpmWUFZ-_F96@*SO|>$;eqAIsX=V5cKmbk)CjxLN
z<@VYPmLj)%dFnwfR*0toBqTE3O&0tfB~sm`%^oN?N>>%`1IivpAQLoOO$3RWq=?Q-
zU00>0q1cYAC42`A&y=D26juVZLRu5fFBJSS#s+j#{IaS?8sn(lX;B^04gJnmzRh5c6@Kzf6;&zd~O0zoTjQcl!JzrZCErc3)OBUsz5wB1x8U
zLAq|eehE~(Dqs4k9{sr6xR^E({Qutx35Efg2>*}ui=$4pJCFSNn)vA}^{T4*h{uAr
zb75jL5Xf;Z4BL(U`l37UBw{JA-draSH{&?wQT3cn?~^b~^@uVUK5VK@ndOLaifRC*
z$1M60-)jDT#azDSu9t}6cwyL&IOk4%N*fVCQEG{{dZzmPEBnjqi73MxHL8g|-W^w`
zrx@#)yQX`M=5BR(K+jgOOX|=sYs&oO*J-*!5yxC|l+9G~9kLgHBNdH~Z&Tv`0lzOm
z(q#CrG|?fHl+Hf}d-3h+uuAg|PL)WLJ@RAVPl)|%OtFX-d7>HBb9rQfLp^yX0BE2pJ~mxzwm1YITK8{k;*(|B%IyrPu~ChPV;Q
zzo)GVT4cPV-0=xgM`>0Rl@nH+wz!ZKe@c+BFKOl_tQlqFu_KWU@thiTWFI%L!Jd6G
zD=et$0w5^edGEBq?p3S0yH}8`&0bTqJdCRs*0;~U3#%1%w!4vtEwms`xCMyyadQUg
z+MwG0$zFP;$U}vNIXuScmbyKdY#d_|y&!L;kv7f^Q#j<&y?Jap2eHGNzE5G?Gb+T*
z{Dcrh&%dZ2NpUuJ>_FqUI5gpZ(4TQN)o}InS2`zMe9>9%Ap6o>{OI`!8+k{X`}(!
zWjy4dL;DuxviD?vxr=|XEQ6=e27>>0OW-nlzK%x5wJ(H(e~_-z3V+aA|*h
zRCG?1)4KqtjGS%wZM;NCyX2EYI&^=zs)hEh5HEtUhs}nk;6M|No{P>P&}4lQBSq5H
zYGu3b5ym2lc$-;T`}~;kMe0j5E;OOHMg6Vm{PsvZX2I-YTGOU#xX3#6AX@DlhU-7q+B
z@P>M`o|rpM>*`Pq(oYoagM*IiRfq11VGG
zv`YV=9m(hzIbCYZ9{C3NU<8VjfpU9ukh|VCR-QPVJa(Zm^CX!gx4W)~NO<1A2x^-7
z8@31(uk@B-un*tfZ%^7np%z~ZrX?$xG&tUZ23~eaCYZv6&ZQE}aoFoFg1ZBq3p<-#
z15ia4U^j0Cg7N^i7m+u@5EOSsfubB4Cw#)KfpFSzo=E|-)=*t6qfT00+>1acLkjiL+m
zNji(rWiF^8y>f2k?tG`bZ6var;
zy?5owd&>L1SBgkpm4@)>&oOmOvB55Krj1J?JmC-%AH_rg+-BxLX!NmI04Ycf$|d&K
z1OR0T9~&RX?(_|xF;h&_t@h>`nq18P#&z@le*dnz7;G!!T7=+t`-2Ca70x+e8f}f_
zeMi0zbUr8L>ofT*Oy>gcBgYVv`}=n4tPT6U8%8>`r!88DHrqP%T=rNz>V>q>~pAWN{Qsl=4FK&(t9uA&M#G$A(H%c^Vgt%B(BT4L0sM-WYFb
z{6KoM!dtLQBKG=P7FRhEm_nkgkIZ!~7y=z`T*=w}O$;xlYip;S8}dE14!J-)k_(7T
zDLudPSnpA^kfi%dLm(Pvot$`dolJF%YdvEEKvXHnBNu<>Y1G?^G0NV}-r;27)eZ(n
zT_h>gqwMd5Oe6V`#gpCJ$Kpgg{do~`VX}3iez4?1813dP%B`dpX4h7hqf}k`!U=<^
zV{C#S443`g%?lt&b?ne_ALFQd^6;iR*xs6d!PmqTcZIyE01ckFZ1WUMUPowv=YtXx
zN9YGH$hjOC`J9(heW6*A1lj|D*U^=Hjs%0kBn%Xbe4zpFJdOc~tJ2Y<}+Whn7&A+DgTy#Q$(le7eE21Oenk+Ddjo2tCTE*kb)^)SG5>hngR4BNkloW47w!
z&lIxuvd)B7CF+7BT7s>h@W;hTOBUi+s@xOk9w&k~&wluwP(7^I2j|4~S5L~>i5(7F
zFGBx-g&gCyHAc$5+P5r-(BwJu#CAkdr`#UEj~z&-y)48!gb~(mU+)aht){~~L0mwC
zBbS$WV0RSnLB8+jn=?MYmUUmTP$EaJPhSY;g|~l(z~YR{4l1b$!Es&P1^s2nXZ#Vn
zwz%%W1mJbrM0HoXPRb1lpNk&>-2*Wb9M=NvqrntD-^b6$ZXQ>vQ$_!I3=*WTLyEnd
zn2apj(j>dtnm)8A??~mG4iF@Xnecg+q0b>7x-L(;d=Sah)x(p<>Bj--?ujLR*GGmz
z9g9Pj@MTHciRNci+Z)Ws@z?9hyqgXgHw!*X*%rdd<^gFIjSD|3Ace1nhcybK~o>+(&ocpHeC
z?WPoc&im)L3#!*0R!k&xxxnB<%uqOeyv!9nv~V5cjqKSvn_@}d_Iv;s*3o_A-CR5V
zMv3OCoRwN`^OTe1$;c|>=E;fRff8FC^8Bo&Cif%SP%Uali3h$-hV7(JRr#Mg=4DMF
zhi@=kyMpwGX>9bG!h_6sO8^{9Do=AOm{>qupwSFCxfV*+^Cw{UYx$tGVv#IzXtMt@
z&S(JDF$x2uv7*abm7rx2;s#O2?UX|C)p4d-3`XC1dP1n)u+%rIdHBbKdjAtzm_?r5
zO8mJKg}E<7CjnFsIm6w^z_;B=5i><#pSi-RGKY%Id|wJ!Wz&Rp;3D#}AG`C;jliJV1Z8bwm?(c1;~g^0y6R@sK>(=$
zUG=rE>(3FU-Tyej@6D7e+B#R$^@
zHDIa5nS~e<^vt${m6+8TQruG>f}avySJeXb?#<{H+I<)*<~#M+zygX~qC_z`w|J)5
zlJ10p$faUBYgwO9c8{jJtFstA^by~4T$`=y*9z_Br;H#E69YPVvH$>xpPT9re65%YUJ?dW%Mk+pN%ke6{Gheba>?P}@l3%+aRJ$Nfi|
zX>wjbGyifUSXNQ1Q6LBR;O%e;8cTY
zvbD3_fRt2D;t%e!0FKh?ffQ22YA%7Yq4YBW{K0ASgS(!8i{Zb~TZCrkRHur~8)uHl
zm(^^z3({g|sCb{kntS&0i1fNY$XS*P#cEGB!2o0FpuqJmDJ0?jfX#c7WJc8mA)2zSIT
zq(>%-a_h?fUS$2Z1Oi3hqiBisUm^|cf^_+cLXY)`%ZZz+4q5KBILItNBAlsTf5pnb
zx`*k!e$)vyDRd9wEE@-!`jhPTh*lSG6tj7%{3auNAx4Sdv`c$R9XCbj{R6N3PX0*j
zV|JrSAVd)KioT2CxB)qZjYKRzw}hbUEwhFe~+2-noO
zCoahcK!)x}&m)ncV8g_JSph`k2xu-8b$s;>G~9WBnSXYag&)r|n#kCSleec@u_c;^
zj=IP;*!Gpp6m%3ePPnX6U?vXwQT86&Ld}5uLk(t7{>EZXiBa9|Ba`OqUP$N|)+8jm
zw8zN-$L)m|D1e$>X4m!$;VtL6mr%h1E?cluI{8WJ;ySc8q^tgB>&mTp;m?0Asgack
zzHXP+Y=^^ZxKa!88>Op5^-!wDZ
z4_S28C5_h?P}iI7;sSOX*7$z-U!$I=O*v7q_uEoLNjSlj-nVk71uHw^Y`xCz(p=a-
z73umpwAhHlqIiYesBvQ((bN$#UYCMlGB&OiRYLk#m!lzF!M-vf-V#bz{B(&IRrH~7
z9XTJX^Zi~O$^W~qC=DcN;n|WWi6P9)=7{3v0R_gDmQydE?w??2Tfo|ESmqySlx#t-
zV?lB4o%(wq5NW)ld!=lR1h_B1Go;3T%5uQ-O-(a5R4P2PZbD1k!>0;lj=C|qXm2TY
zD!CoAmU!HC^Gin5C!zfIvoFP=%izC>X-gRXC0(?OBsnENdyeq~R$w>PjX14=y?x!+
z9i*oIp#OJ&4OIJZY=n#MpZPX$&TAh{quf{Gj9FCvhH8E1(r-W&t3}`5!*{|#BPiy*
zY}(AZL8CUC)f(g@!uEm{i7xOpYFN1Py9E4#xS}|xK8e-8h^;jxFOH|Mlo%o}^Pr7<
z!M5}9js}dL$mkoJ?%E3h`}f4DL0oWmz8tx7cK(N&h~S=Kot7Psu>9GEn`!Dt&|BG!LkCGoHxL&$h>{cU!A=f0vZL&Dx-s_34TRaOf}W%I
zBu|^Z!;GBi*EM{x<3dF7r`z;a&xyWi7II`LGBOeJ5|O?fiIpN6c`yDCrbBt;+Azd}
zdvDL!V=*-o-6Fzit~N0GbqHf|iboRJ;&4Z5LO8$U!-VkCV8hyNI(ZXX%DP(LE}^iy
z?KF=$LuW~4Z%=j&uphXGxP+pE53m?dAs>Xs$LQ0s+0Xe~F=p@1G|FoQg_XFV!HMDU
zs%Ek5v0b?bccsxTb7Q=r$I0S@4bx2acMG}CY4>}Of~j@5{(vR_hN3Db%m-MfMIIPW
zbmav>{nec&@g!dNCZ+F<=;w{Ox719518pB;SQ%`RpHL?2sA$qD6znU>Oo>CFlaX4SL>=OiO7dNBI|IUVeJvEUsV
zpcB2W`3+ov+RUG(PU=h}@Z)v{S5P-*ookNN@XMr3)~6+vRG_ka8|7lC60d`@QFjNm
zrn+gxJaYGEi6`8YhwPeb*3^(O)E*#r2OT;qk|I%oYmhqJe)}m*>2ysFFY-=d;65j2
zQndwOVzi28Bn#A~R-rpm1DY48iODohzZ~2-8U`qLP>woQ$-@{W%g3&-&^7>S^MTP6
zU)IOJZhSkc%@H~_Qhx~cV>s)G%1VCtF}OdkOJqeXEe9;Ompoy$&lOSM0|Z-e?E0*>
zR?Pvu)_mfXMuG@hn}(%^qAe_u&pLud&u;ulT&+Hq;_&yaNXO-HigykOiF-^3Z^=0z
zzE6wD3Dpb8?YNHD8bU$p4I{ay!Q^I;3YJh;r4h{IVo>0Rqb;UW`1)ymBOaB!O;QO(sQ2fePRIO-ouhF&oE&+oGm31DLWKoaVO2|EcrBu>iJ$P@9eT3&7b>wV2
zSQLBtmgV=Fym{b;^gx~H7N7;$=6KKG?jYF*;~E*DU$C<31dH;AE!R!8Cw24UruQxP
z%+f91w%&k)FO-wCtFvtB%v3<-)Cx154UNIJmG!LUyFGX^OHVuHZ{9<0hU)S*qtSYj
zgO@YPml?EEQkl%%BDcH;Hf6;LfXsRNtX1eMAot$vI`+krvP1#Bu)Z*TYgWt-4IOi8
z-Z+K_twKD~cv_>w`(lR4r}l&wwfL#sC$_V@YNZ7OIiK41cdmK)+E(Uz7OyR
zC80Pn5}hPW8pJj__u+Cyv=Xx@gaTnls33H;ci*?{ZF4ub7`GQSQhS
zYcveMEO6Dap%&`nP)>bEiyI>SY|pucXlJPXihIU=u_PAP5y<(x=AjbV=I=><&s+<0HN$y&52LqTEu-boIVjWdJX<+Cm!_$7Y+}&r_^Na!
z5dEgdZ^otzju{e-=>8D66q;_!Gb6X7@+R@io9@ZM?UN-u#U-q76KJ*UW~`eL
zjy*4~`ExGEkB+sEDpmip96JI&1`WxS>tcdqh-2mqY-HSZgT@@CqLv82W~^XT@pM!=
z?jBN^y;`Gky`B|M$3$zqtY<=E%CXtmQQza(;gGh_k*1fy+n#3XESqh#{Jl2_qCEL!
zka_>HD%`LcHD>P~FTB!TLbaLoC)e)~CKbfege=UtHkm!VNh1ZYSbTIS5jEo8^a>hI
zB`Q?SNhd#~53x0Ifc^LX(*h`Kd2-2$nJo_tmcAdSk;#55Vjc@y%^lqtodE83*xKlt
zH@bSQv<>bz@rS0_;H~JW)2Cw7hee$^J?>
zQ=l?xL%f#`UoIPeKWIBF>bTta<}~P;NV6=S@ACE;@@A94FWXG=kk-`tpl`SD?D65E
z2Yap+fu0sE%}i?Z)jDpRkJl0#5;J@LV(QuR)h2v=ef}XBLjsXqU-EmsUB=(T?VN{|xSZqW&zg+%{|Jv8L{X
zStoq3KC&(@v1g4yGg*HS;Yv~%oROA6`hyVjQw=1TX&wDNw_x!HDpYQB^Du9i7E|gn
ze_!PrpD>@a4?C0_EvT_p|IK>1EK09*?B&dh3apWaQ5Tx^f?u9K(mW#ePpCosY<2ll
z?#L_)q(m83KBAjn^mTNXfQh*CDlidQnmKjX)0d@WtfNQaD&@1FX$klJN2TWrklP7}
z+lpqr*a4))0uei`gih^dwjYmGC+|MQerE-wb(CjNC;mo&l}^7-udINyUCx-T31~JR
z8>F0CI_-h%ntxM`d}N@3R9G|f|y72-v2E4TCV-~MIKv(~8lQ~4+t++1mG
z=DIlzobwPfW1jD`xZb_oY-_62$thP`b1RLR7_zhnb*Tyoi!beA;2-a@jup(6COLu1
zCDK;rAgAE0290RBpg@nkkH!wd6;d)+ta~}A57c&_Q*&bcrViKeHjr2n!IH(lqe}x+
zPb-M6i8GVtqQ}a;P`sG9!z+j~rPRv9&i)~%!ot~L8(4O5r1P5r
zx!$S#*RmI?PA&X)=XN={k0AAXzv^W798IAd3Rh!Pu%R1gmk*_jBoSO|gG2S{yTaNX
z$tf0M4_k;$Sd<6;Lc9g{DHF?6Lp8DqvwB$>;2%Vk*t47l$6R#D56W3;^ZiW;_NJ0h
z3arkRmIk6D6u^A|#2Q)CSSCO8BC13D$6dSG3AItLy_i7n}>PCY6`rV#s
zLFX(!7YLVkF`T&;5?kPu%DVIfODnF={`fLz?`FId>S5-)Au=-!SwP}JxcsyxJogdp
z;Ox8eHzMUb1bXaLp*Sc8XmynD5brH7hXl!;YKU(f7s^f
z;xq1y^*}ocOSKra@ZQADqS74NaqoTkMM1zo>b2O0vTXg0<(Z@j;`+alB`+mu
zACd)LOT}L^Jk=a3-zTLw6U$tc1?>!CTVXPKj-u7Rd;QNB%aVLc1wG&js>DKhT+eBn
z+AYXeND-JdB)1e^o!UK*eu4pBDh@11b8bmn5%goWliZSK8QV<*eF)M|dQ``Rq_Ol-
zD_UjR>C9}qu^scio55({s&gOs<0mN
zMKC)_1AUi~v4LEg$A_fGd8c5x9ukGAu~U4WmfeBU9C>Ejf0rc^=jH&+}6
zWRlQ=i`HW0jK5ott{ok_VFRnTB{x_SXv;dBF!V0!WaP(`rvQee1k}N_G#A~LRFCF+V{ID
z8IOz3IFFYf@I{2fXRn`3x+Hqs{fvu`iWk?j)mK@!`q#lBf*3U6rH6?4RFuiu2Md@H
z9yCE26SCt+y;Ue%Q~#(Ss`npvYq0?UYUZNbzt7sq6y6VNFQn6sB;WHNlo~yHV4b1M
ziU*^BKi&B<@S*s`Pk6>Ku+(>?Wa-uM^{qIXr0&Vf>Tg`%C|G=Oc{$Oq${UQ+V9ql^LTfhBRBA}Ied~FD>oEwKDLEr{
zGvE}EZ89qK!AbojM{QMbEg_BN^(1>Mv?*G7o&Y(BF!wdA^stAyh1G9$J*Ib0Ie7iC
zndDaO{5JT?j=lj=q*y%%;jLmHp+DgAA-3-wV_L+{idY-mF|m0m`whnp1DP_y%ilUN
zR=c;0yNL02{EohdE^h~k0UJ65lP)g~JQ2DT48ERGr@`puwnp{uwKF&#NB9h0M
z=f*0)Su*5WjG$LW2tiei`iaekO}zqPT4Gk9Mqi)_1`XbkEKqt6xyOF`8fz0;m#O)U
zgNPaTnuS}Ku9QPbnukvRZNV6d$@4=}XXJ-G5fC979j7gQYAK43mS#6*D$K^MaXcR=
zFoA~1!GJo`1u;aOgvhm+>ee2Uo)AInqFc?3l8v9+K|N9@Ta+6ry$ZeT_z*G_XH=;b
zi}fgClef9ARY|;w><%KRXvQs9Hk!Oe{|E)i;h1wk9c+M_d{3NaL~oQ
zz^RjY#5vvN`!OFnP3haWrt!C(_v#y|Vdm+;Z*CLJ-9kfn%5H8
z2Hv7(Jc|KAdW5IN+fQbjgWhiwnLlunx_(==
zk69S_{2o!C{@#}{<=NO9R2pOrC4717SN2%Pq8W=)tZ?`>L7n?2N9e+{CWlN+DTROx
zKT^$!66#5$0+i-4PJg^xoU}1s8mv|I2mJR-3o&juE5rpincIujQZ9IWTI9t71IVhm
z+lHy7b`Y+?9LRy38N9<*viPc(=F#|5Aq(JREc6KDisbFxfOCz%T<
zoIgeSND*%CuSr+~3Q7(OGBb#oY5aVTt)J<>nmG9Fg7yn7p9O??c+a+n+(mKb>BR=1
zx2jv7RXI%*kx~jM-+5Urd=`Wv5QgUv-$DM1uYLhbiZaQ51oCOdsOj&qtTDSGG^%3pZQ&h$~gQP1v#(F~y8E)K%
z#2DqJFN179t+7`+TbNY?0=u=PyfRovfS*yB9|
zI!3t-9DM$p&jHnbuqrFIb=M4v5Ik2Cs(EWpQ|+LT9zK#t9E5a>HK%fZjK;~5KVWW7
z%%|pol+tU=eCLaIOK|{w!m0>l{#rV16{b7;Q}=V$hH>qxiytB(MZmH4mG6w@dgYtg
zKas%5u{X=XAPDLnKi@PA>y)x0Wq&Qn1MSd4Zqp#mSiMsLjs(I8_}rK-Kd0!dLgk1E
zo7KM|AH$Ao#`2)>X05U*TCDrZ(k_AR;FQ_aI>xo>
z!fa;n@=*>SB$4#0$X9(ls|il4eXecoXRzamIUxWtX>89pd>DUoq7Uv8De>
zqk*J$7^lXYG#3mT9|OVb{z|O69O6U<5x#O-EmAT1fh7Ci<
z6>$+bu=mnKuoqejh_*xNF>(OaV$ablod1|yJ_kEj!9eH_df?*lZm&*hOru$WQMKV1
z3jB4t{a5K>n`k$JN&-{3AyJ721okw9bgl2%5DHCW*-<=hC@DQa&{PTrUAw>AtT45B
z|5X%+QTlQ(zhkVTI%t`$!$${4E1!_7^iAOdmMnZ{%UcMu<*NnfUmW(LBaTu*nONFF
z(@VfD&RL7w|I^-kcs12TeWO4q(ghTest|}Eh;)!9QbT=2X;P(14MloKMWU34M0$xr
z6zNFs#K$PorAP}UQlyq|X0cXInX_kR&)$1}`*+UVzbkqBnig=2jpt?m_9FU3x|0bCcK3F1ilON?V=#0qSZ*zU7bXQYf_yQ
zTy?Y9vZP$(kL(2s*lX}(9bBQIY|S0lJg@yrgrYnj{1<&uRK=x39&gIc06Rsylv~G&
z2}v)c;^uTsstQCcCmX+MJ-0Wja?X#j|_4>!pmrNIW?mQY%0W=Gn9L|5%`COXKb
zK0MeoC!P(un-d*KjuO!NluKo07>{nHssDFft8(4&QD1DQreEagIyHt^B1~rI+N6~b0=|FQ0dgnnP9U_$9FIDx61XgI&cC2EOLhI
zg_!Kg?G#7(`+2Q^-AS?HQ0cvH_xl0}A9`O8DXw~ybVHN&blwBr1pi%{zXQ#V^uZZL_Tp2#+yN#w72xAq4_-kKg
z!=x)&h(ghNp!{^7K9pF3Vukfp8l*`s4Sabc7`_`=qmf#jJqkoa}6Y458Q-cg@)j57cW`#VQ(MKAJ0Nbw(&!b#l+G59$71?#t_
zDtR;zoU$P@FhH%DP?oFxX!}ZcyrU|pF%c!JO3LszKF7M4$5vSuA8S~Mfz_BSY
z0N*PU&{cDUjR>yP{lzU#=Y(^+ID2ESti4>>KkM#@2`r
z^m@`y&}+J3^w|dMr)1`>-EZma&S%7zCxQH*%>-EUpXqGN-g#ahQ;t+6-{?FEQ@sD*
zHFtOZ&!g$-ldm{5D%p=%n-d6})h6)8`x*%orqI2!$1{s%BhuBb`o4XFT6QRCe4}S7
zei9BZU*kyr=aeqlwB`U--uaFfN_$)SH2RYx@DVhbE(2S3`4C*u{+0?FxZ%I>J;>3>Pi2wxlj;oRbQR5HC
z+|2Wd+)aztVCS(wM7UZjNd{_9mw`S_nuB*|9>(GA-K|r4$DzO9%&iN3CWzrn9QpR{
zcO5Tglu28U06!&zWBK?#kjeG?_{RG(g|3qX8JCw>GtSB9<3Eh@wNEA|H1a#)*t
z_GO-&>D$*gU{ovxf7V@hI~k7LFcVx;6l~ZL3NjNY-LV8sr71-?sW$`Hjxz+$j|iQtJno&!$_ET_kyO~JvrQQ!nJ
zk~E>oLeAn8xkmB7mE(4w3tGC@QJE3?r`{m!OfU-%gH+avX%DtxzU
z3Z(wyWG9NZg$G_@~94hfHRHet&up`xaCps
zz(VEei;2K<-F+yd&AM3eI>Sn;=E_Y_=*9Qs-{5_8Sr_4$2bt9(pdCjH0+bDJ0sB6p@;u
zdSpXGF9d0-H(6xt!B&4P#_Qw!Uo!+m{n6K=Z_!Bj&e%&hWlm$2h|i1Jehu12_h?OY
z$Ix*zm^ffyO!NuSyHi3vk?IjDxu&h&2b~di$5w+=dMIJ!nbxQI_M%>utMYc?d1XU%
z9iB`+9li42*ETa{!=0yhTRgM@zsFhfUc(ya1c!F_3JHl4{NNId`9AnP?2Sc(=tWle
zWbjj7>oB8A&o(9XcuX(AYS|h0Yy2H~6%WBY!o0_P)|kmlfi(WMM1WK9!sE7?QYkn;
zngeON`3s~Kw8^CCOjxZJ7%b;D9X77;Vjty{OK}PflRdn?No(g~*B}|=Im^yJ#pYYf
zC&2S-9GmR@KU{!tE{Tp>aG|pHCOd|unYhPnr#!c8nrihgOMDQlx
z0-gh1o*KktMWHB~KyBm!WL~$VK3?A*>7K-f!p18F?-n}N_qC2Irb{&I@
zOKuBggL(k$6(2=JgkFntRzMZfvY;y^pleqyKaNZfe=dK*tNEy%xE-A3?{(wT`)1{8
zmh<4n2CQGbybECku}|0&=6``M+;ZEZVIOKJuR9Rx=d+$7^-MXf{()y09KZvO$1
ziWt>Y@&xM6*H&jXwmW3m@?Tp?6JuKsilVtFVb6hN&kChUv
z10NI*9#!qIcMxqq8q(512jVKIVP`qoLmrKRuZSfK&8op+$Cn7C!0TZ)4g68_B6$`?
z8}QKt-Ww7hB!R%#h6kc02Qzph_OVE_gII|<#_V~Hd*w{nj*a{gY{SkG*|ZbK(vlQ7
z)^3d%p?|GI3ZIhK1s1vihF4E8`=)P^jKcOK3@;`XL*3E$Iw~@MhnsVQqLn{Y?FXDEIX2!xlDq
zk+Jpk?(Hm&)5YLkB*pEx+SLfHEP~FMCca=bV6t1Gg860?o0I51KiX1l
zhqm}#nSa6l?Z7hQ7we4WrZePeF-s)2ok=>+_s;_H=~fs%V&>%FX{;1^qm(ORKU`rP
zK;jvK_^T$%;gwJG7p~15O{Pt3{K%UmAotE>-qwR%-=yQkFgIFhnX|;ARaw(kq#Lsi
zWrJQvYmwB*_2MbTs-b@MJ~bZ4Fzr$SLK1LrW8a(;mLNun%snwoD7<4nbziX2_b0@n
z*eH`Y!@ibnXMlKE^!S82cnElTL?ipVOzv*CLF%;Z@3*8X8L^i!xtQ{}ey9-{4O@On
zteUdI5#d&yrS8yg9;dxN*n!{y$+D|=Py!lBmVKd_O}_B)BufYJfQB;}r~$3k_?%w+RyG-x0AgzwFFHJ5U_`1+KA`pb;bQ&Ttr1xt5lNt>KiI*^fb^x{#I*
zs=>`NV|@pRMGFCgxDn4Z(X$84L_I{w=VH1H`ja@gRPS(9IV(hR5dH^wbRk?6FmlI0
z^b+S=pxj9Z^~442M_h>%JX$PgRd=Yi6c)*mj4vIz!7D)hl{;t5`If}p1%13@CL~DQ
zb<~+bo>Bgmwtm9Yy=IjHvNnC*4cw1~AC50YsvjSzA_*qZig&Q7CgnIq(4qBqy-%JD#2g7u@oM&C1C$VI{JGWO&hpL*Mo~BJ
z@!s5NxA5*K_RUB3bL$)M`=5JsA&x{#-(sV0rfrQ|pJM}(1P_WA;^)=!zWL0ey>NmD
zet!E8%#1b@+4>my-zh2vH*;4&2YP7%d-UFias!{h0=dD(N_9L!Zc33VcuTdBuO4~m
zd?bY5zzn|E5CJ48L?uGBa(F>uY(WT)NyQ5*$W+n8u}jAm&(f8=WbE^58vyRKx-P1d&Vl
z;Cee6ibM
zB`0*i3?Z!kbn0N_zaPqdzt?V-eJzPB;_e&EkHrw}G|wlB#gD^zA)pZu>{_Sr3F6~B
z0<-;X1G!2;&TF}gS{lS@7xF%XRNE=1HlTemQ_wJiW!B8vrA8Eo-Kcy=CdpR!bKJMA
z)ryy#bRZ)rsg6yjP#rWG4s3`3Q&NA}bF?B1$emR?ecAqr+^5gn{po?IF%7sb0B)d9W1gWajT0W%TKbm+LS*cH7&VMZRvmUgV97N)4gB&r_2
zZ+*c-D{SZFl_O4$4Wb)*`)C_zIlz>A2x5Y`HMa5{(pEscZBYAl0u|xghw(848-a$%
zypBd@@-$Wfk197PcPJ|gxm*ho(h0Sr+lpsFb+nFtsU2fwyoj2WrC2BLy>7qfmjQ+f
zc-$+_3zyg2mlr
z0~wj>AE!h0Nds0<(j7t}m!4P}Rpy
zl|2um+PXt5dg&<$J(34doDKb%q}@9oY#u#kIP@8qw*EhCPW14%=#7hu-OS{cS0>KN
zk*#TDD+cdSN0_hrq86J#oSbPZ9Kzv!({;NhqXj6+H-DX;x`_8=CM_fN#>y?A>XblLy>Z2H>_Hwq7;~t?8c4
z6RPSuZ53S*2gWv`>??)~zD-t4(RO`#Ai&`=ze2Fe(wvLSAZold|0Ce@0gMCzdq~{5
zP$36kjD2Ks_X7~At{Zi}%&mOeLi`+)%O;Tv(j~m)%
z#GPzZ7T}&rKPJD=ETPV(ZoVqdbVyb4gpSxl4N&r1If6WN`~6+w<==_UV4VZV!%2b9
z;8zDsG2k4out2AHq9OxE*KcAMTOd))p!NfaZ}&}%HhXW#&;ij_5hHZPN?F6oUZ%K9
z#hFYI6xp@A7enFDJ?pNY%~KbL`w9xDCK<4rQjMYBQgSo4`77hWBCdo+m3Em<8;$1J
zHgUy^P|nB0c(EvfAi_!r{vuvA>M{_C>A_*s;?!OOLi$0J=J)P^*4(gI58TD+VHfR|
zR<6TAyZ_G4PVZR_m|*2bZi2eVN7#R)k^011iEPzyXmIk<;bnmDV~4DrMWe2lap*kF
zclGk!AO*nKUQD>YCw65G^O}Yyh>u%O3H7CuNdpkG=;9uj7->zzsiO4H8zx7e7tW2hduywia@R@GN*mjhI6P%*HV*iF1K2s;3`K
zsps7Mis_5HIag_uKA~#xNZa%%0R#bYfkw#A9s$`uaE%K*_Ok^=cFM%JIAjHt#!MjZ
z{j395d)61BakOK+w*-wzQ~%4VY@X7W7nnqhQB+G@V-p!lZ(Y#<`(Z(ax;Zsnd%gyf
zKOZXqG}}tF{~B<^Wd{d)ZyiSYXB^U%s;(Jz%ANG3m4Kki;#4*OI~F0$W1gq>mqBLi
zV{_MvXeQA4SvgzjG(1DiWN0U@W7Q1<>TXW6K8y72j2e!B`(JeMQlrbw&ZCdPhvxgOi+@Nnm`i}u~@z+Gm1X2
zsx8%og^hfQ6m=NeC__DO5SO7L1X^^Ft@-CxfA_3^v}YF`X%q&2G+dDXH+>@59UtfW
zrSJ_ih`^fv_TY0znIQDCLrmSB)A7w6p7$Epf%dwZhiBzH7ZrX=I^k++DZLsm*gfRyBbnXeUju?z?`?jV6drd%*uoburx~we4YjBn>;j
zAut5(Q}&9<-
zIH9&6IvgOsD3UFbr%5T?S1f2h!mtz!O>sB}Vi6wz%!Tg_&vO7wPNbbWJ*K}uO9zl{Ixrq~S7&Nq
za&!k5?970#;9yj~-2iGL6*qhC!`nU?4;brTRo8k!Z1rjt>QvvQESS#(^Oy!)`*V@V
z&x1IneoKIw-5HWYrhg<#m3Upqvgz_DMg3KIO84Ku8)>AvGWpq>pZV}qkb7Hg@AzO|
zU^?Gxo}U0>hi&~$re1q|IA$O74CqhA=$1}~zqc9tXW)67Uq{tMp)RtO<&bAnh?)UO
z>OXfDwNt_rc&Th?R_T=(n=?N4HyLE8{gu547^?X@JVCNRf`V={6o13c`Tspf4V-JD
z8D%=WyS>vMRUCaKg`K1qKtb!?{;bHIN?}VSOLj`_alymVjWnZ3B{r9K>X)xT1&g=G
zSTxDV1BEkUID|*V2*gL32ug(rIU@gDiiQF$DsM~UiTeBd7Z8@oi_v({iBj^Cl~M7E
z%JBb{Q@x#X!!Dj&oZN=C1T?{P!g(lGfqpls9i5-K>m%z;=IvrDKuV603Nf+^bOlr+
zRF@ToH)TtJJEweu(mct&{jm8IXf*HMe0ohTQUdG=i0;g+jG
zk=uuL`iA&K7Wh<%ErI#keuU2-&4wZX5T+=q3a&c9gy?)A@fcrG#AO_K1DtZ7_{`Vw6lZ5>S?x6M!*rqU3}ayvi$_FrL4
zQUEozNZs9QsWfQXaN$M$eAnkLnRI2BmE^jCg6@ADQx{n&;DPcOT<`6k&APLD^kiXc
z+gkf?f4QR5@oT8B8SQI`Peu^AC{3Q@5+`0cLoCUV0mU^Fpd_lkhOR7mW#@}wq+v{BGqwVGXGW*g21p>w^}_`zY3P>{V}qHjH>tDt`bUl5_x?{7mBK+${_V
zZ~0Av?SKM6JLh>J(hrk2=gUUY;i4Po>p9Xj5AUBNsiX@E^ZvwNz+q#}b5MbF0s7T>
zTAp+P^fEwJAsqt>&}I?~lT`kHQgM%{BAJ0D9}Sa;VjLY8%`nIfGXPllp(Y7C>P-e8
zCB32#SFu~oXn;{>(4jvwF}~wo*tonn5=fSm!u@*NqH2{)3*Znjj@NV$|C1aTYXIJ;h6at`IASFxXjB|uZeiw#D{A9cVY{;KI080
zihT-0iryOv?9dhhQw3R&qBp?X(pl~i!t@74h?!UuPmW(>2~|apS-b;*nlc1}Okx3h
zX-6rlv(85rVdH!a@nLQrz~;8hQ;SwR=1%3Xg6|MTi=XGF0D;Fz0wZnIL=%+6RsY9I
z{cjl|K&Oh9reZ^(Kj%J)Cd7tDf5iv@-1S12R)}8yX9o+!Ltz{_eHYWcfj8ac0o2Z^
zJaK5@V5SPqF*Th`$-eUU%R48J{_5Xf-TR|~|4aTqe16r5=96s|-x
z?`40{KC%U&1HD(Y2F8Y(t&k-0E|4GHZ#`oLC8IPgBVxUcZ19Obz*|BTc`%If913qz
z`c#^?S<`asf`dY2n6l|bb-l6-1xMp~kP&@U0pA;X%%pH0Z~U^pNa0E*oZ<(r0nZSp
zRAI2f{b*Om2xIi<;>TvqGe7=5m}89EVB_Pc3MaA#J$`&YR8)_w96}_l?(hF%58o#!
zwIsJ!4xtB)_)qhJxGL_t^1Oq!ESI83C+>vfbt$VB^N#&FN6cSL>s
z-5K;A?M%W(50=(z*iSM%LO`3lOBTB|#*K?-fmQC!nL02GRNR;`x1p97(&m%FgU3-}
zA>4YCH;|G@fVe5GTX3|?QT
zbu2;9bGx;$x#W6clP~scRiD7-SDn`R5B8H%FP5e0fJNY9E!8l!EG5%56^&tB_78sE
zB!|LK%{ItJx+~%0rmP*$Oi&ONThhU^N4vj1iTb<9@i!n3QVpge8sC-kpFx5|^(KY4
z&C4uf;qAL(n9mscxc>5+6vZH1|4IFhd@8u6nrBIMUL0@&p&urbt#?)F>lMb5PUG;YxxAm1O$y8DkhPwV596{}M^jfXxpTUM^$
zwts$CY9}hv@z|mY%5^SjE2NKXT}at9(^^*H^`W=9z%6F$ALs;N9Bugoh*>r@kFAr>
z*pyP=pSlH#j^re}?p$pY|AO}sg}N<0K%c!)Oz3Wrat*Y;LW~p~Tj;|&IRF`7dc@we
zXQdZFei3ssKP}R4D~GXlactflSogN`**?TD_5C7boMwd|0*G#MyKipWjl9kHiEaSrzCZ3`V-@dQsVomOTpZca)Tq1Jjab-*8?&(
z@n5^!O-olmYGi_VB
zD~G|`hagPC)6*#03UC9=pH)$@!8X$(K-D{R`*5$iOuSlqVap$5glHG1Fn#i=$1g5s
z=f?@o*wuV@#oWsY2oI#hhJls>>LMTE>3hbNr(&x(tq1IY127N{0J&VK@3%7G5A>Bz
zS6=<;B%@r1;BbC8oy5HWSEOuC5UHCUz1+n$me;tZm9EtUCPo+;joaKiexVnj0V`%{
z_CxNqc~pAIN{IYQ6L#J-ZFTPN2q!))DpqK
zV7UBWi?cGvF^(llX;lxFF4v5;g=)A3C$%PD*P0^)5#)v3<83#Fy^>EH>E7My#cl~`{%l?(DuCv-*W?Sf{Wq!F2w!FRa
zVRIUS7X(}SQTy>AAjzpPC^%_8q;z}`fszw4ICh2syBojv&l@F4*3aR6k!>2hT-Ou_
zJKf&(VOhEmqZQ27yw@54YGpiOKXgmYk9-=9wfu+2NP3w%O6Kr&$^ey3il}FE#`}WGSyCs;IOYa~FA+*2|sIL9v
zOPa~Xlxi9`hLXYb>QYJ?!ABwHq2nur)`r!Lu~4POtZC+0sVbMXmJ!TJUnZ=yWu(yq
zr?Tg`gG%@Dl7F)skI2YS-zAib>&<*0xty>&#TW>#CsZ=t^
zdA*Wav=rpa(6xBTXmT|2RDRm8XxrAJe%P`@GCojkd}F)d&bri7oJxY|mmuq^FkKU`
zq5fl}^I3~QM#7sTpN*ooMIFF7;!mLF(h?je;IbG}HV`FPuxV6GypwYTw6B&kt4-imr6A%EE)F
zgie*Vg2qk>45z$;Q{_Pq*a+P%@DP_Jc~7p`QM#JiIpo}pJN85Dbv^HRl?NiO?8_sc(aM%p#FouarwCD9>1v99^2
zi|B5%<
zx{y|>`|PEmitAMj3eMJhDYI2Yvrms^Hz$ft+82tqA67D0PG;^mg&DrwR1$AI8qjT^#`n6Lb!A|47
zlhf$#p9<0n&OCb=v&iCuvJLN&uA=RYRrBdvj#nS~Yj-H~bTW_C_UWa*lYylkIJL?u
zm>l7*6yhm;87f{|=kBX6-g;dz@5NfGj)C3Q%6J&d7ZAv4rJATU&Gt+jog}Q8wi-9*~E9sNesbb}S#A
zE=&tRBgVJF#C5h23rBp2la}Dq#Y94&kNkWsk|>-o{H16AWzpj7P~H1%)Ld!L4(z?O
zowxLgKo`zBdu~Ly&YLLGvGTxl%=*O_K!1&<6;5psN$5E{Sf^bNm?kR{1>G)ST3lcD
zcD#x}Y;a{RGNUJ02AxpJt>gQeJc**}mFB5PU%~YnVZZTSH>6Q%?wQvVouQ9B&|mI3
zr~v78b)L?)dXcv8VT#4+&*X#!^0S~3S#xCzM=ma_RmuBq1zdx}J8RE=vK|ixri$xY
zd~}lP5SKj3ZkqirvGQSqyR9tb%-}(yUx>+ivENYLO^evMeAl*i>jE{4y^UQ9$E)mJ
zzLox4gU_ToTMI;R^UK6wlJ3;Vt;H}TffZbJ$CRNF>0Wg{`jtgYQ_p%7at#~&9i=+D
z6juZF9_;hEt^^<7^?$CimocCA-umjn;?kMO+p@WI|G~hlW=O}g9s;xT$=x0;1kAL(
z;pyi_BZ01xrf?{)-Vu{(>Uv;i*>T{pXk~Y!rF56Tfh>WyW3Iv72#U)%{!Ou%u9-+4
z@F`@fg~nKmb|uzP!0FKoK9hMbn@y|YWxR6LoxYFcD+BVaA-IUht3@%lqf{!x0suAb
z0i&P|ZXdg55xJ^K+*OIkUdWZNgAvosD%YLx3ol%OFJ|a(Px7j28>CtUniUXv`7-YZ
zG?|xk0PGBQ7hEqglc`
zvnuk=1To=+AN;02KWBM(ayOm!H>z5yt}MPRj)D^F@j&q$gfM
zcX#ZdRz2);4Kwl=P4sddQh1teOM3nHfUgeUUpp8lU#3#G6zbBpq$%gFDg&A2U
BJqrK;

literal 116683
zcmeEt^!L1D9E@tS?uyJUF0bvSoM*-wuixVVosk9694(@q=Pi+{Nn)s@z2;6aU;eG*FFDv
zqKJAoIkpA#`)LIo^S^3#HxAq4->=zk@qO9<^BwS-2A=kx|CBti4K@6CDL7L9pZpl9
zv=S7=KZ(#$xko9l1Ak?0i+HKy0|8F{~g}@82ta4fZY+vtZ8UB@G2X>
z0l$N?1J~%mK4ESsw%@Yku5ZU>S>#)r#H;oblC
zwfG_&=ygaK_{7)${UTFnId;aE{}~6zXByBCQ9LQSj_ghNp*EP0dimdV(o4a#c$31b
z!4?q!S-gB)GvWW~D%%JH%%G4vo3@iE9?%e%05{7N9o+vJJ|G=4=^Fd=ySw}DA@4-rt?xJ9%bfes
zR3O`3_U{C<(-#1)P;JAJDd(r9=re)h#AiQk%Uo^St
zZCn~wiKG~Oxyd(fg~^Y4w9aqH!Dp<1EH;%q>0D}RFJ5=u^Nz-&fNDTHg{Z_o$^h3c
z6xiU3%Xlx4UW|HPIwx58NC0li>X^Z%;teA9)g!Gp9UoccpVr=sTHzv_i`0U)g(}gJY3-d)LWm(HA*X)l)Zk#$VTCGUvWUJv1p8qO_`{X`Ov|a~b5zj#gai6EZy|!fs54LE^wGZx^=JBDwWrs{=`IT=
zWbu`7=JGtt7D0ki?;q9OJ4bj(Be!{9EFXBTjP@zbwmF6AD~KT1_P3
zwK<8H8kJg2O9(h9bGf(tup^8b;(}5@0{R)Yngf%s24eiDd*m(i>Ll*
zvuur=jG#LtVV_pUozkCzgM9As<}c4=uSnO7^3!GYFMDo))vzV$456WM;*q|30!`)-
z-yW%epm4GBOH26j_w|tGE66$Ss#^cxELp)iGTKueV1-MW-LZ-VpsFN?P`~;gfDP0Gt
zoLj`Qn}1G_n2PeIwEY|?+msp@()4M*uQUj#Pu4bNtrE3GMRW}XRJ2k5?qU-C?tQTq
zEN=lbj|BA^SP(@EpOk1%R38C_W)BbbXk=
zD%O=?HCejPCo?XY&Bgr?M~WNOlW{`yBUy9Jo)Tjc>Y>4R`MWhqj|w}z9e4@3QmS?v
zYoc~8I6uk)DYk_Fy!!LVBYxL!*EgWQg6>6BNvPY)aF@hIyibyNF`}F}Z5g@@AdRUf
zq?giO$*Q9*{xvM54Hws$`1vWdh}g#vr`8*Tsg%x>fX=a?a)hzpq6xfQ!MF?(hMSp{
zW|CI9czDq@-bd#9_FTq7X%B(rlD~I00TE!rp;rrbmi{yp$Y;lqkpVljFZX+b4dcM6
zz(TMj<4ghrf(8%=`PJ9bt?lONLSS+57}!4A^G8p#XT=sJDr|)?ApkdFjB)rt;TIL0
z1&#twfMuxRGoOz8{TgHx_mz7!_D@YZx!tiFe^fS+A0fcs`o|p11mf6KJja`(*T=NN
zWD`1g50-^d;)Y|k>B*Mry&?ZKekI*;HF-*Ql
z&%|L<%N~;af=J*)2&&nu`W{o?s!q${WEVx5-!pk*f;uL)pld)etO8=3X@>>PZRv
z^(AmYC_kmBp(d6Ovp+A*n`9A83PM_x3A*7?2~*z}liV>4$8qgHuW?iBG$uePNc2-tvzAI1{Tg
z#jeT^r}|~ApZdAq_2OEbJ_q
zLYL^2L|BdG6UskqQzFuzoo?)H_U`1)FL2;$8?Y?ScE5wog+NiedN(prC)crHnBxl#
zg9v_#f-9ur3Rz{E1okRH5`t{JuuF1E3a%S*#ke$QK$3w`*tC{QIs}ps=+EYab*wlP-H8|BMGv$kVWS_+u9!xG+#j{pvDD8O=Hj-x>E%q65=};yrrWY5NxNRYN+N9
z48tA`yjQ`y$;N!#w)2`MK~qhGi3A{FF-Q!Z5CGMI<0~32tJRt8KWwsYXL+)|@6z8U
zsr)c3b{H+|Mt^iYA_AH17I1pl-w6+~nVOrFaL8=?ZAo?XLlZ;f2B?wiE-?E
zFmrEDw13PT$!_!KR&rGbCf+j2Ibf$#-Hiz>1Rb&(ld;CiMw2D17
zeg{RnX6>{pQGQ!m8=8XQuNwMlv?=BD;~(r#eMF?U*|Z>M00GTIfV$sTRmObCGH3Dn1EKXywXASpeAiRD
zP)_o}EvuD7dVF8u^WA&CA-PcGF)f7KM=5XmFb5N|
z00K+*BSep-?(v5&4WG%|dRN3@#=TQ=-bHed
z^YF7=jW+3bA=Ap~{uE4z^;FH=5bZZjT)AU81SyPbw%YmVam-e<_rY;4?zFr`b>v*K
zkrYB(TAxHf8=^q8D`dF)J)t@Z3-h&8K!$Ub}(EhsM#9#Z^jB(&nuyRpA>+sPSOP*j=#4Ir2G2x6~%vOYjl_
zW2hp(?e0y*Pf#ECP45E_Do^S*f_#k-66eauiITbH90ueK!l3ToyELoH9M5XTfkQrSS~TJM3oH7qxIs=E2^Ii
zw69@GXpWi>R?(40QKGgHe}%%I`s$b+Po<3w-&m6HlGmN*z)de-1*r_lv4Jer2*Ex&
zUyliIg;9s0nED64chyKokyCNGv5aGJ^V{>OT9b}O$i?Vr4Bh@CBrCy8f|!lqB{i`M
z!Q3EeV~0_F2~W-Q7rgB|yyUs9{3H3i($yaKlJCfe1*;`JYfeg(Os@PkYn11gO2eZ|
z%QfVoJ&s-#vM+wP>)8C&X~xQfkTEK1VaueXg?tHHTLscs-e!iZh
zrdrQ`neX2orxp|0(^LQ}M2F3%61S@qWJvOGQG3y8zb3UZO9K?eUXm;D{)!9hCZ{Ra
zVsVW(Q@A%St2oUvyI;%Z|J_U>w-1!HN!QjhpEE>;FBU({_f>DTTq>pG_n9)j=em>h
z(X*nc6AOh+^y_T3cV}yA3i}%hMN!iM(a174Z(nl>DsIxqj%YEosa9$n_T__@&k$n@
z#CFl(BepcY6d`7eu!N*Tn?vIM@N)J!dDk1ay9x!XwV-qUCR+fJF3~}!mP*U<7B|Tb
z0s46>e*FWdOs1f7Han7%Mjq4EC#5@TO*@jax#ekkuv)n<>V03Ay+Zh|3i(s`Y>y5l
zcO!|k8zWCT(jGam+ZNrupC;acCvBX`DDfUF(JGL}1TRUN`iR2?xF*3Gb6%Nlrf}B&
zcZC4=;kEVWYnzrc@N7tQ5QHuUYh6x#6*~7GC2}j?JIcv)|ET`)xZ9gkGKt*#cf4Fu
z?e~1Wa+Dg?e}kMC$@@jLWk|Q}j1Lx1LHj*5Y_6f@h&4wRZlA<4Hgs>uS1kyLz+Lfu
zClhB=hv^lbU(ZcM#Ezux6h9v{#8Kqde4~e2B-OJ;TOi!fnjg=%p4G9*P
zWxp1$i|gwb_vb*lmvyNE4P_w21tkmhig27yw8wQlmG%|CdU;}t8C;&UVehL|p`6|z
z!1bdfTNB3Ajr@fhZpSfQTXAXCi^QA}?`=cm>_d0j!f`5@dYw_*({QNBgHoIzCBCgrZ6Ob`qqor(Ij^LjS>TPfEtr+Ar$m71f)6
z>=7@!EMF;~%R$rY!oG#)-do10t$*B$=-^)G9n4NB{}b2d;o^#3xoZoPxd_>a4x{J(
zBGBUJb6Mp)am=uHN5v)yIqkpD5;4WejuUOP%Wi!B%zkido!mDqS2YtN#l_{62lP=o
z6qUht`U%m&DsrO|>xo}-5M(a0z$Xx2>Le_$$F=pOb7XRz)zOGIGg1U&MZ_t)D=mF>
zcVM3MJl7VXX!V1pye#9kBOxpI9-s54@d1Bb0_@dCMtLj(i7>$BuS3mv2-jkf9z2b6f_FD-&kuQcLq&q&)Dpvy3)uPx9ww^
z8WgF{{_CTJ$N2MFavqknN{058{5%QHfCk(!(@L`agA;??esPFOPYv0&TbpX0p9p6Y
ze{eDsnX}*cX(+KP^5(lQ70W9SWm1I4hn-tKRvi5RZ5O4rkMHO9k@Fm;cfZZYkT*3e
zNC%Rlke&hmttQeWOLfgI6*}h{rb#TJ^+a0}!{@M*mA_IZKiqt+#A}<`8yvdVA#OTY
zjo%S3r-FUNbPDi;#8~ggD75{tt~mVA`(@kiF1W}pSi-_hnNe9r`D$^$F}|a*JHKLh
z(Fu4R0p|58$P0Ru=N6f(b=emtYI&E|k!
zp;gUlxXnz{ZVOjhCE)R=U@54ryr!KyJDny^%~l@@lwY0KIi;TXg@RNq
zavH`1J_QMAO1|Z5M)zG2RQ1Y$XCL2mfU#z^t-i{N(0KJrM2DIjN(tko%BMOuuZrzP
zdOe+aTjOc%nEG?4Spz#$j%4@DlS5SS@I%o76a9O-vSElws@j9oZUU12m-}%Gry&TB
zpuBWlCI9iL^P@%0J8si+H;K`9b`Ktz&mC>j>E~Mn_Be=VH$5tC`A}6P?@$?Hc>pu_
z9VIWBLq1M^&ouu9BCF6hp<0h-k%HHB8!I@M@84fBeQlS3b=%kXrAp-h>;Nb2yy=`yeScI`=X<3bVk^|CR$K|y(EGsc>n;me3ScGL41
zhRr30OEwQ_lwpzKgt_Txw?^Bj#=|KQNSTXHHZWKusGToezg&a=DMEUBrwn?$(es5?
zK|Hxu0#rsdNHu%ReH{=lqLEu(W+4(%h+_OTrSQZ(JWw*gjcKVOi|FWFuCH5IIk{xG
z8Mi?;i3V9Y>1m2X%KovOAE)=tR%}xUgb{G>JoU^^7tpKc^g(b<0W>8=MHaRmHEE_L
zX#4ibUd8P*CqxYRHgtX4vUZS@OxSyzy=&KJ?;c!O0qk!r0UWj{fQCH1f*T+>_>y7R
zAhM1xyVy(T*uAgK;I9G|%gG8ZwzxOzyK^NVRZTo7W5z#$+-pC;_%*9w(|@@D-B^p

AZhw1+D9Ci&S%r08Gg)_XPcj3Qi4{DnKXYc$y$oCnv@?XOT1j#v9-@_rs(dWhI&P|Kf&dG$P>bgL3f)^z zc(sE2g;|l|g5_{Rgi3YLI88q_;ST!rQUqa~+|~AJ=$)e>xBGI|H*S^nE!pTGBqw+N z9)~WT|F}VA&cp|55AtB6*|s?{8ad*sX7%7?X`oMzh~Yvw=;7b!KPTgt)UH=}$Ix;) z#8%!+N+{EuVbucPXCZY6E1yNcVb|`hKJo4(q-k>NqIDnf-j0*=0-tX<{n!pZBV<|A zMmJRd%r?1o@2AA)i*~2kwv!Vd#QPvyOXy~2=v^977AC{;aR^ke`U=oqr->}h{t{0A zqJ~LExdnNGQKM4fZV>D`)-*hmAMTI`uR!&5(K$9sQz*0fKTh4oJ}cMV!?SuBLJR*oTI5pvF!dgL5j3Hl zV{1*9iz-cXwL`&%p_JWi=#3e>OEnYg7_y7O?7}jpaJS2u1|Vr^Zgi*7FFwPtA?nK&|IhJ;WS`nl zGdaiKQXwrrkX6%;4y?(rnWvPSiEe~SabjCO*D(D#N{9D`tN^;cq!T;L^_!fLw88_mVYNMlX7 z=VM4PZlk5)Y?IU_&3%1p#$rH&^@w3Km-cFI4l;%p+A3Jxf{DhMpoaF8ccmJX%vQSF3tkA{T zyIpW{t$67suoPxKvTN}UXrd_!=}Pv6ArLQMg-t1>03 z?3IDV&(*s3=}*2~2H&fNV27T(k(ee;G=u^r{2ERIh&Ux%9ArG?Yver1zCM=}vZYOs z*H}Ewa*>3emAE)ueBSbB_|-h-^Fgugrsy^%M^>f!VEb?bb>mTWKti5)O#&6xbHf=c zx?mKuJvf(MIlbIr2TSHKJ9AcQ9?+UF{Sd`IXI-805`k&;J%E06>b%3NS8`F1q!D< zeK1$}Pqyu4K}FOo7D>fbwn5hO7bxd6S3#4ZGIVYh)t*Y11NU4YZ#D-Ld#Btz?{f|u z#VvBq%LBd*Qr2;bnh}c16YrB)M3L{@)bVM(KkFMU_$UZJ36_9M% z&Qoaf7YCcBF%Qdzsr47qVUk*!AZ@=v*`~3V>LXgG_re@V=cK_ zUZh%_*FEvcQUx7intP6hb-!T`_fY-`dwX8T%k>Y>{)0KL1V66^lcLXwUfUrjCH9Ed zOSIa_H}A3-#Jj7=!QN4jkp@+KXEn|4Prj z+P!;NRnx?GrB{>ao!=2#_*o3u`>HmVZo{LP*w@G5`NUB-?ZIwTt%Lbo2ereF((vau z3R$z9gQ-eXhwweXI@Hv;Mi2i_m zp;yl3*0Z-UbnpSX^#Km^c0qy=zfvoj1d>)m(}bv=kxFBFFHP$w^y!=S8xtupt$>x|k- zKz<=w?gPqy8no$n`g+^s=R$(J<|h+3C)T|?T@;$5+J8uypbf*o3kIT_c| zzxqeQ{2lPG4TwFHY_?6`n5f)`F7m1qq9 z!B_wwE55QCYQ~;o>44Lrj_YPo1mXR;B6gLTf`oPyL{oD2;=dsgqYtxeXV0h2hv!AX zc2%!>oYORsJj3~JRO)<-5jQq>)6R=lC)j(v!Y9^b6Ku;t<=iLGzAMo>P;SzSN0{ki06k#lc> zmxH0KSCv!ldB&gh*L?&+C;`87OAq4$&L&&}eNDLU8ahX{Wx2HB&}T5Mg+Vx!TcRc) zbwt`-hw2QnQ%j(!J!8M)3Bj*!p@2G2T>1LRgM~oS(yI2z~6;s{LPH$aMmjS#jlorpJK37E?feFsZ}&rnB^%ArCj6 z$F;d8^UTz0m5?-ENt-=dCVclk(V8P3+L;2aW+xO0gShBLLnw{XKS3t8w>r9yKRd&kFTvdGMv!qgWY*v?&FL1Mj7k9x1I~=cUywg_0 z2&wz2xV(vFpZ^V;7N@LTxib{wx@EfZJyzqBO1`-kZvE=ZWASF$Ip}4IZqAv^hVeDp z7%A)>Z!Af+Fbh}^o$!M%w=6S}hmZ6n+z7e?Q?4GZ(U)2s~sR;*v zF1qd+sUXokGsMbgV_5Z@xzJGg=#->-3Ltv|2Y!TuXz~%Je1w7cDV}y6rly1oUD>ZI z?$%CM0+8C-W$Ry2K&b$Kc>05lRXsPg8fTZXKVQL2eeVqHX3I73y^p1MfKNjTcJRM9 zG^Zdkc-K7^t`AkcDAAazaTo4YY3whTr55W)3v=U~0>oRkdjVwR^I~>S_S7bUozEY3 zWfY!qd68i00SuR#x5-Xi8Y;{~eMJ_&x;<5`yQw+4G;agJD6qd6=o~CeNz}AkF3t#R zVy{XQB1x@YHS3iX%QiUWQrU%&VkFi}u*{4~$~K5<54x&~gdU$>;*ysHnzfC2yd(xCZh8<*_BQ$o z)-ny&SoLhQ_G2CAP_XmWv48wM@W(>qMi!xDGs|S`d+T4cA%E2o=zqTa10em(&4bS3 z)&7sk599Y_l5g|RgAP{rfT{(i;?HU@>8R>P(KkJ#8Gii_EU&P%1I-3UvprJ&$y4v!ImCSMOKCZYF)2^anhLpRK}Fgys@K z@k4t2{OwCTE`*Rkk=q9*2<5<^-8w-@7NYaN9DAps?Sa;%|H0ps^4piS^p++BZ;4H0BW9^~yu*oWHzgwi zO{)Yib^DqsVyjez^lYQb-a+ggd75E=6^1Ee%B}PeHgxh`3O_q~%*XU&iQ!Z~8Z;AJ z=qTBh?SKftUux-95tV}o|K=P}i#e}n#Q}vgP9MKm6O{bY@!*7Z4P^q#5+#;O34GU& zubpy5#^QMqq>%3G5pwDmnK2=$F`dS1zgNdOVsfJ^0^@!-p62vx{5-RjT{}ZG?F>NH z(=W1X)rpJ&yZYbSDvUQ3M~97Ta^egdQV!qOFL3jt>lGzm&eLMU5sLmcC(#N}%a(=Y zWJ*fc3`SsZZhf;M8R|pjO+dAY!b=iP)(kC+3IFwN1DHW4G?L>^&2}iCIa@9Re!grVxB}Klf!9iu!zL{sml6BF9h8nPgbjvqQp$b9 z_q&BzN#4ZSz{;^+JGrRul*2BXc-oFKpZy34jx~?>MqBChp4w^!C7iFQr&Dr<5L>m3tNf)+|AZ6|@f*QRj&FpHg0t0# z%|^E!Awl9!KVVLy-CxACZ^Tw+Xc!2_tzDPrdHo+82fH$O%U_p_#oct;@UPt(%p@@y zqSafj?0(h>md2f>M9UBTjc4tp?6 zWtx$fos>wX{dD;Sfp;LiA6Co0FFagi zV__om%)b8ume_iw(f=+A_{aijVujTP)0etSh3fJM3gUrY=2)y+K=#zUQz4M~+-Q%R zPuo4mIs4kHhO#kYKqIx~WpscDta1aDIHLfl0lsxBgnLb$XiAXIKhRdKzNG1E{OP1u z@K@kUH|Wql{hGx$^Hnd#nBQDz6!gyVUs|mVAc~IZcgoT>VbL4|*RcC2u z5`_y(O#pO7V~w_Cg2Nsu=CSzaPZzuLhlfP!lACnKt;ND6k~OrxtwNi;&6J%j^{aZT zA<_F|Rx#Cr(dc3RAvdo!y7KaP;0wXkUkAj4LJsDHiEUkqvIUz>Y&jHLdAiduiv+$F zr2okY-JcVZCA%rppiO-Xt>r*e~JlLbwZ>Qx69JwNekGz_zo4!q@mK0%$x0Q49 z8`cqL#FB#BFE^-aQxZMN>S7gvIwH;6#0ptEgrPRgu2?nCWd}jbwA1R4MejYsL}d z1LXwF@T5!gaQU8MGRGy6O38@gMZC>wiwgit=r!xEw>Q%#jiK<20Xa)LBGn9Kg zTNw|RI|=ywcL5(hXgfDKmh0ou8ajBMR<9eE%m}JNue&?r`rPz!I*LVNPPc$#ye3#N z?oUX}W*cHko=zW%RsVDKL4U@nqt({!^dzgdx2cv_TF`TkU*e$^XUO~TZ{UZ+d!(g< zC9?sT(w)k!_SoVroi@V7DEL*dx`bEsULFTi?lu=DfBcY-ZFMgLQ;3qee10`>ZI;-J zhWuqBUfsXywbKaBKW+%^3&gvda4k4**=^rSa%T=*? z*gnYzHno76#(2&E$p({8W%A8@p}nJgUu%sLE`eaV7Onfr(o@Z*H>L4=__dO@L0563v0lA&0?t$APHo^u)Uh@N zN3xqg8jUEl=cJ-UoPELw1L+v^D#WakOA7EUe?gVXGKGvsLzBI4hzVG!@S{{g(VSa< z!RuiqNpy+a*x|%L6EmrTbTd@yHua;?x>Vst$qX#w5?y*bEv&$B_aoXu4ELG{X+r7k=Ht z?ZY`n)2A|x6U=lKdQ@4X6i)r(w>BVCPW!!^y~J5j z)eH=+_3|%Z!HS>^l?qE^B?(zm40Vxc7|@S8NHv$x)JZq1mdp4lH{!1LEjk5IFr=NP z(XMj7_(6IbuZ7g4Wn@(C+vZkFR(ZkXwIaE4jZ^Y2;t7Kais#pvg4>iEerSsm`ZlbVF@^5!*d%^jL3 z?iAYTg?U}9}{8d6dIqdgkadWtR57G^j}Xp7d#7w%lcwBaS^;5z)3gGLwb$pm_qq< z&L9PiXz}P`ZPQ~v;3^%pX2YJ>$(NGO!{;aa`6?M7@yaok@1W$i0fXZBaba286CAUh z*MYf8l3FybT-^KB8#LawwM{#i8m^m8wv22}uPGJeqZItQ3bWUApR@l0B#vummt1$- zqR7s&>e=tw=O{#-NlJr)7Hl_4>F9bA^42uzK73F=*VGDRmVnuZZ+HX#N6kR zjSCFzex&QC@c!;#7|oey#p_mb6{61 zTi!LG?{BPdxDs(wa_O&_(`x!BX=AWncB)U{wIpRYC@^x{u`6?XEt3z&BuzG3ZIamu zErC(!a$RyB81n2S=gxACd8iGa3ih?iu0Rmq#HJgDPbgecI3nth7c=)f$JO|J@uW}z zLk-g}g)iD}maap!mPV)eV~24^yqmTZzcQTx+gU!UM^R$WSq;asD>PKktn)?qZP`x6 zW1W{tY{6d(j@aQ?pmZ3kP!lQj7Fp3dzm7^RE5{xkp#dDE<3Sfb%%Cn(TnL>207XN}ql%8y=VD!(?)*u-vN8%vFOKFK+fbA8oIE zxpXbdG4I0{sc*b{9!rRLANBndWixg7ZZj?cw|VPM6&1!+J~VDm3w|TrrVYg)%A!FI zoUoL$Vb_l{$Yz`)H*aIqL@OTC3;*4dc}gjkH)R$KvW$ROlK{@Em(J`S6UPMET6KHb z9I}dc;aTC|zUYEI6Lku0-?GjdW^o9F)v@9b!I<%7{GPlNbM6FA`0v`bn&&`6oY6T_ z6g#)1)k`N8rLLz;)ZX%4iHf@DX$<3Aek3^%Ur=xtYgG+p^1YnwTUU`irLD!t9C==P z+PNfEyW2^PbVQ(}|83~pOf}%-%ccbcvOhW+IspK0Nq}6L)-E$F0))un8ls}*(fg+t zk1dd$pa1lRZL0sYSWLk&DL{O!8n*f`7vR_C!nIvnJ~uun-y;$K5cS|_W&dK!r}GPR z_=4fUwT+LnzCMSsojg2GpW%m$X(qy$Ve#!_xJ!F4m2C)2HC5C|>7KVCdBJe_P;)Z> z`%QR~cU~rM@%$2Zn&GADzzxPCF8Ms~K6;Q1Tk7$5F8+WaflnN&n!R`oBnn~c>Riq1 zke8(TyUnlD6G=&qeTvR4CG5WJfmtnWH;EzM3Ps^3i+kVmQj#+cBZh#Kf z35W!eRePG3Swg4MW1@NQNVlO`?jn39IN{J=7*pF}Y<)hgojP)|tmnDlJtz9cqG-*z z=-#lR5G;Bz_fn>;q}{4#xr=1T0v+|;e~S5>pv@OLv4G6mrIC%<^el3PI67cXU1lrm z_P;UddZ(6<(fr}{#0OJ82tk5I}X z!2()^hAuPKru}sxCZ_S77ihDLF84!2&%3;#J>yk%8+n%6piU)flbPWl~0q9?{!xmAo#fq6^5|6GP7Jc{GtuxxDo zxd$d|;#B0*Dg$JXzu58Zec_}ep5x&sB27GWM#Msv`*9*Rnu17atVz03{RcCF%u>b; z{u&$UbBnpQ4cyAInm?}o2Tumss1@*U3^q!wWfr$=>zVto=N!=>@+9L`<}s!&hEeCI ze$rcc(K%0v*FaS>o!cKytXFWCcmi0n0|fKtZI^^nFxEXcfQ(9bAf=<=MekV|{x^(s zIMYnyr>Hd2viR}lvhm~H?0I-cgYwE;mB6aR%(7 z`JnDCOa{u2)5F78vQcA2Aus_g7dT#r#mDN1dzW?J0mJIn41QxneVbV!eq+8yUpD`6 z?}tL-bzDC&N{nw8nkf%+U@Tgr zsm<9S+f7a+XzP26AtkDJJ!Xg=m@Kr%WcSRK)-y>x|ez6xOkHw{A5H>{B*$VT-3 z2bvxHJt)!PWwNSpO)uC-%HV}-fO}A+RP>GS3F64HsJ!1|l&C6% zCufV2Aw92Yk*?oI#8A~S9&>tL;|pNz9@h%C8Ydrtb`PtOsu>T{tNndNkJp0FFiEk> zd{RmjWUXR`>(bxpy-A-V%0+?5$CLJDm8X8_1%_b4J9i#_Kl*X^xhA%3ap&QU8({3$ zLWUI9We$l8EV0Bh>I28{tU}v9KtaTUuva)bbQ8ND4HsXyA!X$=kRb#yUD86g*mpc= zR$#t&5*{9&#N=WsKrut0E-|NdafKt4o)yePD(T?jIm>(yR+4xtdytaf}DgC7vgLXo@ z<d*6?BRn;}j^?#2n#x zvF2yzoP3%(BI6V+FWPxMzUMou(W8TNdkCT*jsqzNBXDCb0*I5mL0uY4)y{9c0OoRL zHTfF%#&vQS7dKnCCg_Et#I!9<{Yi&eSQ33KS&*CbYp<(a1G*aX#bhtBJot{W)|y>~ z8|Kaw6jk%I^F(ob74D&QH9%Ve$ez(zf-pn7JtHlf+%r#xhcWL)lfRFj8kt>YF~$F(~3ZV*uEmJTVASU?t7x{+8q z78ah>>;6CAw|gA>Vm=e+%$zf`dW_&u>1mmYY&zZ$2eY6(v=Ye;!y0#MxqqRi*0;)U zXU0P=7tY85EDFA~3=YqawamZ)Gy+{(3(L^0Za{^6;kw_;q zn3_{h!&g8`v6)j3nGyBavWm#ha_|$$!kze;3q#fGh0*~YT^%kNSG*Lbd+M{v22Hkp)!BsZ370=sr;KbrA*xnR3=IEWD1>qWwBJ`Ysgauov?py;cSd@B=`MHE3ZZ&u-llB zL!;*}O%gR_ssGtWc%mGs1{V1PT+z#O3)t*~mcH(e7DjK%eJ$>c^{_vSjGo>u>f*`5iE*P~Ig=%v)}4;rTP`pJYm4T){h#~#|BEHl1TzK}T;0^ZrT z9C75b$~>&9V@yeFV2DL7|L&si*67SkeRC9|b1H9sHl`}u##USvqP}5qcD`aHlj`@VFq@q_V z*e#~F-#jMx)rSGvmznVA?%IBaNv=32Y_E7d1oVA;!Fm5!7;=Lpf9 zVe#zo|MDwR&ApocaPu1{{hX`Uu}ApDY^s0Kjh1~2X^gSjC-teT^DlMh|1GyEeq_I$ zeF3J=N-dcq*?p$PhIuZTQaR=aa8+<%`E3*Q)=6zU=kQCWY&)ay&m+mFa=JJnnyb(= zpFwZ~)O2OtV+!_N6CyDhR_4Xxj7B;pSv@-Uq$~eG)|y!aa2paLdiMli@_-93rnOQdm$?_}cDW!M4nm8r_dca-$Q z420z8{dp1CXlY-ft;EU_;6Y&$I<&1!XLsM9AV{KQw8o~DXvjLTq$C7`!LI}QGc5ae zylo`Cb9)6LSCgHgPp4uYXqoi_(7JY$it39C&ruzfo7VV`x~`jRT zN2w9q!!ULZLlYpg8lAQ81-zZTY$em#f!Nc@sKCKUGYF-f{4IA&t6hm?{)AY zuFaEOPiOW-{P0+!C5Zv=aUp`9>{RH^ybFa~hg3-8a0~STQQ+sE=SZZVbugxsf_+w4 z=NpRkk+Z|$7i2g z?uD;tbrKUG;8}j4EyU8%na`w6{ zKG;VEZ^Ma9*;IfGw8e%v(jtC8qo$M~{wq%8=$3};Fu~6tlWe|Gw7O3^E7Mu#Bb$c> z`EmCJb;y5bhK@5dtNq(|s-DgK#|3#Y@t=kn?Tc^Uc<^DZo+Iios+$WGnI~l+?SGh4 zr5<@=Cj`&jw10t!S-Y`zb=g(lEiL@{uSxpX^kJaj*-(?ioqE+h%~p)vN;0itc(%@0 z^`Hh91NUP>+;pVaTMC)bxyHEt%OCj+NNRB-3$sa?)2oH^tE*Ix?A<*Qv2DbsEugsV z6W~Xu2NDtC$pN2xEe4Lb1~=M)uWc#`TBPicl6lYv5>eg_<~*WLYH?71~{DuV_pe5Av`H&>c!i;Y(*3fR8N@^)g`k#E1%z{MM=S7_@ zT}=8Z=N3T!8&k9`RAx$w$ZiYE**vrOqX5|9h~y1m|14P0dkc@J4@& zFH04JBD@Z0x;3(scF`^m_xP?_QhT=sijZKZ#P+UD2Fg z=V1A*Kq3h*;kVeN+3pn@H?<1Hggd8#v^QvHvu8|dL#}BDze~E8RDA8O2}>M&t7KPW zi!`&JvGd62G|AZWX&o|$dP$#cE#Uf;-q zUXZ2xJ+dCzlXwL${8#|GxW^lBq?n;&+G1xULYeN6`%+PdndZWv&i78asmbzu3Nx7g z{|vW?!mp_Q)H$!)iAwXcA0xu#5H8n*#IxUeU(ix$>1ML?2Q=a*#MyZA#O!fKWxAnK zp&W>Be?|gAq(xlrv3L&yV$M`%hqai%^A)b`WxVn+G8?dQod9aT%LGPnCc!9Ff^gsU zfzDpajM7PoJ<}eyta(Y!Y_c?7cgkaF(M2XQLdZT!e0${%2EfhE`1@-K(9iX0?cvYlH9zLjoys_k8cKTs~0 zl~#Lr(RgAR|F`=5j&B(vU7;Kll<$wepKiB`rA;iY<_wdgT5-*KIW+bfVWYHM_I)CV zspN_n+`;-4{vnm5(TR$-C;#|*XH|D`azM%MVP39%26U=#qBpPQLf3n+zEf?VNczYo z{_t)7p;hq?%(T$kXzG6dF%JTtA`T!RLhGZR@-^I3Tq&~7iG}T?H}cIBoGns;{!iA_ zg062rz`4CAGF?avgF2!dfz2+JLz{Gz-GWBMJ}~m(;zs{{ zn*f>58Ho)d4eLDG=ylOyR0!wCpZ8DaVRwFSw!}o0&Mx0#+nKam=Gz6$ZLq9ltk;Te z*ri(*=LLO0IaB$ZddvCB#hD=OEY}aaPY(EzBS8d9r5{`fQ7rV*5m`529rZF@PNU29 z#z^s%yNmjuJ=`p`X0X$z5MxeO>Gw?X`cIW;f@f-kF3*(<;*`#$5|0Zh@sy4ho|AU- zqd4J{v!kL;8xa>13mcfz3R6qRK6`Xp=z(D!lcyLS%IiDf(tWwsv)mtkC91t-9`|q_ z0PV#yD!5?zxb!s3QoF`)T63S_&AWDDRNy)mOhD7PbhbB_Di4+4-O11$_3&*=o|~*Z zZ{t7&72Lm<75S%{j$yg~Ri)@S`!;PGg_s}wHpsxR!$tjqLQ89WSi3fm+Ndx~@KX2# zc|(^2EEK-c?I3Y!G;FdZcR&L0_^G!ws+GR4MQ5hLAL{i2(f!^gU=@SAVOpS^&9s(# zPe1O+yx{P=hQ9Gm{l#*8cOu$DaLp$4uebDO8BDubgC*X2jZ-heNUwHktX^? zsc`%35Qz{4%EtM&IES7;OsFXphWn_z{@EGaNW4n@!1RJX>EbPp*JK)V_e6B!5zZks zGHBKfACLNPXqWPzEPEks$CfO)7EkO3m&8FT@xn*LGkw#)^^8ZMAe#b6yx7FQ3A@hOf4}MtNc=I8mVfFhJ&{FaO_f?N)Fp-{ z-iyBH*Ic!pwugW#56$x`1_g=f^Efj!cS;{Xq-sy_)kTzSG8I;)50VQ>tJMoaxNZUj zcnuy+sRm5HfuFaN+TV6#?LQq}Ep2w)oP1=a;f-BTA-UgvI>wuHzW10p&+qn1WqR#F z(fyFxuG>N>A>q}v_rhP3RYHT6#0+#`RoRM95VsEpdkDqIo?v2N#1sFC&&Y~O+w;+g zxLm~O2$R=h(wbx9?&tJWM0puO)`G^Sp~nPG?(8sIdOzNonx-6tfdYPJBUB zzYzC#MY5P*>bZw(WV2*ZKFlmE{dVY%I!Kzg_ZZBZ_-%E&TWWFHU;IJgm8| zS`;lahS9@7ZMKsf?gV`;s z4GrFc;NP9L^_ubPBf-MS_B(?}dc3}$G*;0Skn?o9%AD@2XT2n4iE zLsY7?7zpQXOf1QP^~WHq^)z<=88;nM5)~+{J5Eq1d~ya-Uoqt^^3{+&)6R`F?er2| za43fcN*V3mtZ3T}^-B$LZ?;?gS?^mheFV4@Z!hi3Vel?YVsdB%=IP5T4QQ2ye^bp_ zrM0#`ViOrC@>ZJ-e7&){sx-Vo)ur@9CM+;F(>q9}wkAaY6A)=q@o z3k$flJ*z7ZU(_SNDcz;L-1JX3I&?}Rw{|79AL}Q-))3Wa{wK(lFmh{YVG#TapwSOv zF5lE-?fR$)b#x!|J|87EiHoxsfn}7a#MtU4@)iXxBg*TEj{^fr*1PdY4AvyQA7jg& zi>tJZj7%}3?;lp0m=G?e7I{vYoB`TZ*I2R5TpFH%E}R3Z67gaR(RpOs`@b2$n)|b2 zRQ{CR{;GjIF#BY5lvwe`J+#<@Ni^HyWGALzbC|NRRhuAc59T6zgjReXHj741E!ahVdw zup!CzS$cqmp6BiS0~1I2vblS`NTlSQbe>CcybF_4Z2v& zid|sj ze)ds0_jrWJmAxI+Kn^lc_z{HV&9RR;UHmoy>;G{9_!XmjfGt5D?S)BfDOj~m(6vtO zo`R{uc5E~1u?;1t&H%@r_=7}C(2JAnz4?iHE1ATr9uWi#Xnt(*F|qW`U-PXVmVhWA zDAJ2Ieb}o`d+i>Pq?14~BO>gT;NW1^I?1<+U9=JPP6?9tX2i%(e84@*t;Ob^aZKzR8MBr4-%fr*9Z3C)t`1c^}x4$ z>Y&Mk>We>p6H2%P)woTcTIQ*TeJHBQn_Zc@&NG2d07Wemf6>omn#fQg%Z~7@bJFcWDXDW35_MncZK{|JmC$YsttGfDuI(Ik7=P}np?BCo$o!lRv#~hC zCAVyrOq^OQbVT1@xS&d1iIMz%Wb_~!OVu*IL&(Zau55|{*U{;S`mKGUQHR6-Gi^MQZ@@|8bGz}yV>yx? zu4TRfy*!aWs!xAT%9{O`;dB4w&!scpWWxEY0ugGKxdklyvImT|XMhDS#()tS#mhiK z?zb|bBj@7~NsmST<6ZRO>6kBnp`c^R@ zQAW}3HG8U1W#i%^WeTEucVQ@9jT8&HPvRWA(nA338<+SXo@&q*wPhXaGrGYwc6E$m zJ*&@SnZil%ulnRa!DLSs-Jr!(R=+>%m{Ppah8FSJXW``Frqqz^NFlh6SSeb2rL4|L z5_`~Nitt3Ay;Zch{k+2VES|apW~&mXl;O)FsA$ zj5*h%vr!)yZF3}*XnCe7J$PND^-93Yr3oIo=qv8?R|)k8$Vu$mOS2MC*|WhWQt<0s@aXEQ<&M}fA%9pwcD*Z-c+qo6PD1O6K`! zZ(dA4y(mnm&pCr~7CfoAJ+5%^!|>LU zq;n=XbF1MzzPXB?N!@CjuzfX&F4628&=r|y146UuSFR(+6dPb0>EH{U!}p7)13 zc;VctZi?5RX%#cShL#XDff>I?HEOe;3iTebXAfP3(#dAI@LebR#@~P1)=ro!TWz3&6@9MhHcYt(m!pJf2qGGd&%H zK4Icols%yfL%5oQE|D+4!WU!z98i4Q?50rFVI2r8$LCcP&ww&;&!C5lcW$01w=Tm= z+iT)myiL870&Z-Fr0md#T=#m+?a zkS~YP;?4?@|K6tNVT;}v_``@ZvOl(s)2!iBLU1dHPVk-YIoys2ChE2rKc zTSbLS4A3_G*S7M`J!MzkdLBQqldOwCKBodFo=u2}6|ZQOm=Hy7r(Dn9+F6>VuSsE; z!oyHP4|#*qcR#?N;ZJ10uYDHfVo{^trPF+c_Q|%#$dRe+NHwe7gkrCiB=Q@E<6HX< z#T7r7)kB~FapNAV53hoNT5W}??{y;teuA4P@_~}+JxRf4GTl+~+|E*b`veHu8FX=- zS=y5{v9Ca-Ij}tZ)K1!fth_{VpraVR@l-VFwCu=p3;Sf1nOaX7U)KeIuLazU8Rzhf zzj_q#Ok{!FX@OTcO9GNefC~+OwS8{$+a9A-{INCjLD7>oh1&N^*2@17$Je37XpAEU z-jZ5IVh=+@tcv06rX#toxK*zH9VT}_!PN}ya_7T%)}aR}qv*g!E1eNXRM|CUctFFe z45Q@-aw6(;I!78i!5K-L%{~d08O`td0KNC1t)s``R42+qs=Msrfaj`1*6Y0PytD9P zXz54Yi$GYGtDIhI613RQ(vS?WY?Y1+5kfnA=nNI=Rmn$3RlvrQ#Ur`wW4X{q!SI4g zdWsaSJ<>i+(M@aJ=fe@iK~fctG#*kjMXMWHl$SX)YWE_hY>P7Z3H(?2-OLq*PQgAN zX1W`BMs2$S-BK~BR)K}v}6`&DG%W z$VdfmO?-F=sJbtPJXpQE)P5X)BHZh?#ZN(cawQ&ncCn6akZk$UW}?vCVCvxKeG+_Wkm;01!(mYw4%h92flYf^?@k5pFs;bzpLxxU_2Yr8Ycm<@4kD8~-L zNSvy-iw;UfNj+p=&PyeOof7kEu-fQnvXF=LOi_J5`Tfk4+tGmJsX^S4$oEd6U|kn0 zg-#O~AMUmPCl>K?CaYiY6#r=OTC)>}i#I4>yk8XfY4b>i`bZ|@_*#%~;EINq_~_(q zLjs{{R!lCgQ*eQ;p!5%q&tnz}iu%JW-!p(8kslPx;E5~4kFr*OCRIf6+>@(D#rCp& zI0f?3k;e(*L%~uI$RTJl2hyl*+IxM z8%3Ln1DgSbrDC$e0CnyLOz_v5yH{&(EU5lvu8?%B;4^b@k5~lBgdPA z(PjKq>H;A`+>7w2e!A$PRI8An{@?F869GYRFw9f zKe_%1q|hPC2>$Yg|HL`guZ`dUMWcBLBsnV)>_7Wxt-|ub3joyjH^jbdXI z7%h3VKLa|^Dt;)4lm9UmZyMIyWGNA?EtT_;?lWkr?39MtG&w_C3O9po9T&1HECXvy zYTqzKxAz_1?mug(m;!sE<&<_|jziIC%;MFe?TwelR)}|{;kB}GL_Q*Tt+YTNMV&Uc4tTNLv@V1oCNz;i>CarGM!~3y>ovLsi^;0kw|u$YkC&=$=U4N_|BT?k;Bf@chZ_Qz3xo##KcdZl-NsrvJKu#PY}6F?F-;e zsr|X&)Bvz0dzQisg`qaV_rn2?A zl&HKjp`zI_;PQw;aSwI(A}2|Zsvzo77THx7*?#okS!s|9#ap8Nb533Zb6Zkg%yMNw zvP>*u?&63iZZ(Os-}k(VM>j6M-3ICSxh_OFOg%T>HWbe0#}`Et$?WDYj^DQ&-qt3F zyLxP!AV}oU-FF_HDoBJo~R{7YBdHOX3f^WuU*FbxQ` zbi8k$%TqfvT3G#X*cInMT*Y@&lr*rTYQxT*cd_7fISSAzBC?!9RnMIm%^Anh+p10c zgE=o2*yH~zaWO6}uv`i;y$81fsM;|ea;|mir^(AVN^4fX&(;E$prnZ z0*Uaa2+s|w=9fT^tfZ%Z-cthws%y|)6%T=5nOb8e8tZRW(|eEJu91@#pIN*6<8&4H z5CSJx1BXAV)p(lI@6O$-PsTs2FzQb*bDM1(!H5&GhnbShS2sHp+%Q)K_?VQU`fOyT zEiR##PErdFn?GU?=-$5!PeK*c>@JSEWiflc?Q8z{6zRGo>FJ;->Xn=x3J2W-t!2fS zD!Loyv3&q{Zhg5aB)!(Zr>m)qnKmJrB#B7U<(bFmBXinu>I`kk+y6^R;u-#l*@yqB z4Xj$i?fBG==6mYJ;GvFaY8^-XCi%Kd`Tt4RN(U%jsNN;Cn`hZCPvMj+OGo@oWZ}y* zKHL;i7(-GHce47BQZHfz7cAXA@g`XrA~GfQ+|%%$!CUayE4OOv9yTQ;4com{(i>{l zH~5^{gqHGDZU567{x8v=TzpHtl;^wwnVfvnJE!Sqk!>&0NM|~Ky|5}v ztnKrAtF*dVrb%N2m7@1~lumG;4N`3-heO=`dZogmbL2*xO4{MkEt)ahnio9sX2Iv| zQRblC$KoxYNbv%D&erfP9}t$ehf<+uud3iu`Z98E?d9yM@(0I(f^2c@^5y+Nx;qV; zj7UqL#Nia-_f`MhbNa68D{s!0lAixTzMI|gnsN&?xVYXi%f@%PK4W_Nhb!)lwt&Go zRjVz0Td1j-Yu&}2ce8zBE#BT-MYN^rZ+6WT!+!yor;_T70-830i<5>e*>4vQQiQ;7 z1(&Pv|MnEK{Jj~0+g!J@SS(J_QN3?MXiE?jX;M#`K|_K<7sYs74ov`$H@tzH?5|GV zX6Ke53P!|i=MAw^NFM~>u;zNh>gdlF*%g+U0b-MkANM($qB{vw)LM(~+;Gn3@A;oW z9;x2i-Bb9otpvYRfR>1SH~dt$I)1?;qP+S@I5)q;S1;1uU4f8%6oTBIuCA#}f99T0 zDrk~MWxvBiE{sF23ei5YL&MM6+1^;-)<%eJZ%kurtDg&e`}K|J%elnT-N{jUH(QFh ztF`Ghd2f<7#?Z1T+Gvxvfov-Nd+Q6F{J_y8$`J(wI%Ks__H9;=;%EZTV8Hbirl*op zF>Z-;by)ZJK>2E%GO}z?FrrSFhsRJl5%pjL**M!=^^3TwL(dbNa%8U^NG(QNyN#`= zukt#-ZTO0u{V@ynBPaaUMyrrtu<4pk$>|mQCnsBXVgxo^(vV@Wp+~w1h6l?KR=z%m z4Z~bkI!X2d2=?eZiu`e_1|4cI!k zil!$2pLNs`zb!*Bnt5%edUGj}+&0hiO)1bkPG6UYcfk#Ez>G%ngJYbnFc%J ziUc>lY34=7-)5C5r#IATT+Qan`L`o zCij|BnU8+FzJm34H+p)H1NBJPfVJ!q`z@UIRk)w_bXk@5)whxcnNfE1fuM4^n1l>8 znDVwhMmOO-gi|o_j;97QFM?WY^5^&R77OYnu)gh&SbO3MKq=CK;P|^A+IW6oWJiIy zj@Dj~>Hi*c7vw>9TGHxqS|j>;s!%H^^EkZ!I<1CeiEw9zo6S?`GG%0pSijWZV7|r8 zrRVNg!=vsqDp>T6Snw`wyiY#Ditkni|Bby$^o`mo(9*Wkef1?pU%F}2Mk|=X?6HU| z$y8_k)Z|C_feNCy1$DghBVOy2X3idc2>DTuV(|}=4N1z(HS(T7DH6Qyn@b%O7D2Y^ zU_Z7-Y_c>d@QM;P20to=S4u@?D&CE~qu~}e55=PZKUs-V8DdKIy0PEuK&WlqdZE^M zKVkvR=oKcBz|>2LsPCq*VJSOm=_F%ETT32b@%=&2vm2VO$v6=)~wD<1AGA^Ft@HiXUxX+(dwl z8hRb~AS_=&|B?D4em>NbN>gFsM96pePbY@1-&(XCtUyU=Pz+}q9RG8R#fR!j&}kkG z@Oy6OyF0bI$S`FE`Fah~2tng^u|p>V)J+tu(v{x>hDYgN|^_@SvCcUr?S?! zkeBQ>yqet?J1+f|RZr$i9{20buiyZJ_M{G`u4S&MI<@DLaw{)MIZoX5c1hUfcG-W` zDm|qxx?O~&wBA4ViT#+*de|)&hra%cmzXW${)5%XqVM$- zYvc2L7-aUdjDPme7~8XA# zAh2ntDYo}+8TF=CAgaDx)&yEa#eVi?QDJhnNe9{5^%FD1vaec6!2u(z}$G* zIbSUo_Ob({eJT(I$E5pZRS9i+$^L7+g~~D^B#3wh{18o z-n{DRv)6owwu^jm7rVaSD+|V5por6F2obz^CUm(dv$J{vN!jarYqS94TF@l4fRt@$ zyhA1-OYA={rxtRaZ;!C>-L}8LqiatppZIcrdk==l?!=9)^PPnby896(mAb;y>*SKvS0|z3h+66m)n4DP($P#zkw4_HS@!&CEYV!@6>|=}(Exc6pqm%xmWiUy7I5X3z)zX%keSh|lJE2>St2P_wGIJY6-f@Xm~@t+7$YX|N9e{eipA9Gkd;`F4`%|dVcE$! zz$hV}@0;=?$tjGshE(^coWE5=j|OI&tfnE5PWDrG5}P;` zEk3eglZz!p>Z>cf9$X5@X+r2_Go@Ft!>#QMEl0@pX2DS#mKUwJP|mQFyszT08#};o zZfTRD_TH6pTfa|Lf8oxJ`}SN#LAPKtvgvm5i@SrlO!(ZsP1&fU<1$<6FRmY)ozJcb zY(HuBe{HkQzB-2MH6#Z2ouJVefr(iwgceIZ|Iu@XZ}%9xvim-h4QZ>yXq+gK{e>sb zxgE8x%a+K)K%+y2O1rfDvh;}qK8c?w)gI~cubH2vHGm4aON7U_CW-do?U~0BIa@wmD+icYFuD(7?s%&Iw^L z?Z)epiF@94PweqO_7mw+l*4Z9AOCuT-KD$+r+@SjCG^@}A2RpksOczn<+^SGaWDSm zEfq=>L1M%?Pggkca__3DZk(JaDdq5UW*O6dDLcPIdpz$DclqPAvecV*rc0rRm8d@( z+I8(Y0!|M|waU}AJis3bo7%+CC{7_oc1kkz`!|YvfU+U5E5yjlxzWoMj&zH`VA0zPR2N zy6SMcp*@yPhjfI$%gHpdDOYk@+<=q+p_ZA!W}exQqE)WqQ5M>|B2N7rB|b7UomAlS zU&3aq-`z&IpN?Y`UImI^N}O)z6jl_9G_xD!6Z1*LXxk?j$F3YCw=%-Cv-(c;4UEy9pYdi`?!f(llDa#ce2KJpUs?p9#BtEINKCbwEXb!A&7o6Bk%6)g2=Y6vTPp$S>5lpxgPUP<6JiwhMDD? z-AO0D#=eHR1n@c#ITM>J1!$(p*b^UYrasG&b9j-cGAU3;Uj6v4y|9Z#6uEEnRLPO{ zZQZ?Idp_S;i=WPgDdm22Fv3N0!f%;|P(HK+)s=3dadQd#)1#+X5#j1F)$eI2n!Q1v zTmmbMoPR`h3E$0Q?}F;ExeM+t%TDlLgM`pFZ+zV!%%4kI@kK{xManykqt~M6J*O>v z)lQyY$jq5!m=#I>I1G`>HY5Fgc^rDlY-w6HKCfjx60}xhJFjSKI*)msizHa4SZ%Bh zi^r%1R|Xw;BiU1FTny_@-~{8u$PDwfD>R$kQdHgNnQb1ZzMGoyI!^k|E-L}GdN^!m z>h37mqlHZM<5Q(x6CzGyJ*wj99UHT3wGykI66sJ8-t08hNB`VEBS#d@_0*ah5r8GS7ae+o$`) zS-fh^n{M$t$@v8=V_Z2f)hA-Sj~PRpop=VA%BoE~@q&+kZNJ4Dvkzw^brG2e0tdcVgFEfAB)1pg97;k}J%bEKdR#w}v z!izB2qP(2~=>R?Dy1wyVf#mgk`1Z#`qsy+f+~=MgYT7jNt(jwuy&O*`X_Z&zTV!+9 zZ}3LT?okcex57`1@d{_$l_ed6nT~S80a$S#e;#SIKv0|(ZC`>28RXzq?PoQp;?c@~mt>H?Is0lQJ^oabH!ZNkPOV%?|(5?HDTCHj!S z;TdgrNWxyLpvIkmQ}w}R$GF+B>wrBL<=D4y87+jMFP3m+TSCh_s);_J3Og6|4bL)s z2Ap%G$@#CKKQI!eOevW%?!GlRSKNl}M-6z1N)Q%fq+H7k-(Z%>=&X=fJuPEHH5QPZ zf8q#nn@#E1jMl(`ZAVU!?zGMT`yW*)9p)8Yr``Nr;cs<9y=X){sp=2>s0v>f5vb|4 zraPVmO23_lM~vvK;(m=cnEuQ6Og52!y=RnxrI&rhwI1yx0;$;&A1(@%T1LsXlkU>q zbpTn%tVf$}&4#b+w>{l?c-|7mdDyBt+@xdtooAlrVi^BwohJ`<5Km=#;}WN`;k7-8 zM0^}5r6;mN`VHs&|8W7>;-2}ajdrK^`HtKzLmLZaF_ykLIJV*m%P%g_Dz=2CM&z5U zEzuI)O0yvReB8TsnS9F2z!xpjBW)^eRz@p`iq zN&n>o%v@kHOLCsV6t2MRmxiS-U8MmoNN(Di9QzB(r+jY~g6NeQNo|NpLs*}{)>(OI z*UUK&H|qd@Nd%r7E*H-4StvMhXU+n^eP`6`#P6gMM|$LvDL&u=vmTVLF&va@37CW? z&aPMhjk?Jckl%LeGBPazFHtjKdA_MGRnS)4ls+)|8Fn)=$~I4iP$Wi@<#W7`oD^~M zwSAMtWmi$GFN=o4VuA>RR7hbZ0L#wvn|ZVWJWj* znYdn*{e;*_hn=D5ozL>_D7F%u z49Nl>huA4>+!!=pm)aSxNhbB^)a46XI4mI_P{o6WdGvk#Rf^w_(AWbo)7+rXCZU9S z5T4YzF{9O;L9*V+rJe(+P$$OtZD3eDwfTQ5QClr@Mau$w9&6U^!!wr8d13J==Nyl5 zReCpQ8cV(xRgyG6F_P6)AuLSJk-{ za6(E*u<569JT6zOV=3 zkdn`sgZ}AyzllBGJK?7ApR(CWx6yCBn)}?Dw#05>+Wr|@pyZHg^A`+1r*w>x=Q+b{ zt~#Q#7_;>1#6*D$hN65vFzkiQS3i))N^lu@OJ9objP`V`=o6Tns^izD4Yr6y@SVt$J#<k&EazZ~zJdP}L3Dd{YJfA0#IE}!Cy=*^RWcG` z5EZU&Y)O^3>QF~`Z+)Lmzp3IiHl^sx%eY!yndv%_>D2&{(51 zl-Y?oz-H|iM#18}3p%nL^<-|ojN0oo#%+QK-wf>vI#jOiNN4Vl(YX3kwNB8d&r>T* zV8Vb=bymTJ#q}^Yz$R={<>R*d1#KV}&**9X1smn5|JL$R5}`1!6i&i=2b0zLzRq_n z6}T1FI3rv!M!I#sRLg15-ran+;bm>~zfx($mk~4%OwA5B_7Y*HVFsg66YXy27{K7NZ_ z6fyi*FgSwVZEq5TIH!5_PFy{!YDTIT$1cECB=)%xKl0^V;)JnKsX8Fk3zG^<#;Bnh zMONoIxLbMe53ud55~s|ed<-&j?Q-fLY6G7pirEBkMFDG8La-NR0CEm7?rANbqxX=M zIp83oQ`|{5G1V>iyx}9SXIBS4BlVk^?j%1ai^Pz*kh|0fvAyoY*v`P7upw9vq`IdE z!{>U3rH$rkXZW#0N5bg9-9O^G5_yK5rN&FuWrBT7XRJ=*8;ZrvZC#r*b&+6 zCGOG>_drdfpp8{6U=@DwWC>2Y22Eya?UxqTR}K2JxG#=BHGQ1bmmEVh**z+8T>evW z!llMLpFdi724%ne+evIe_?tm ztOn*bE_Pl@t}VMyo?`XkDMr$5H=om{mco?q$wApK3%J$(_O*Jkfq&_Oky9Hoi0o#p4)rvR(ykTxV3u8`=#f!Yt04VF zM%^S1;qH0iW%`04)L8n%)%-Lm#wqbvNi?urI0 z0J61lj-^9i@Y(dokg({+emrBdJ+Yz}8;voict)91#|L*Vtpl03wfsm)vh$JUrWWQA>6mrzK5oqteOJ=<2>eWi& zn*S{traFB^;~V&^sGR~qUj6Elt{Te^+2m!=>%gkgs7kwlG zgnzC_f~1P37w<3<5BX-d6W*4oOX@7+;2<5)kAL|5H^(vP%0Lx1T}M1hw_4lV#pYzv zwjj^-AgT49OBQ-R7`eF0@F55VBF0rdz3j%vMcrt7kpo<8biq5O>+0BPx#!;)#~C&! zp*5CXpHCs3@zh}QPFO;U->z1d{eMh-Ra6^l7i9%46fN$--Q9{qaaycEfa1m7p|})+ zTX8Aw?(XhRfJrM!B@NB zOGs{$y6%TfEMqEC7vnzD!AUDL3L-N+TjBBEwHf5%s6yh`@!24y$05&h=YI=W6=4mj z`75+Pvjgn#ifGKU2Q1sxMg(1CQqyeKenAXtO5CK(BJ;TmI+JXaKh0Qc`M3a3VJGG0 za;e{J9SQ_#u*IpC=*F#n?p9PThO?#Tn#l5bmHxL0Z0d2j3;!<{UkD`@uEH0e=W@>( z-51fYAT~-J2B#x9n z+xI82pYTqTw0Xa*AhG~2|I1NJ;yBg5lx*k^gMq^vd7_`bl)7+(oVC2A5P%&`G~B2F zcb(B;m}d;$zi@M*l<86H&D?F;`vxnl4gzxnvurBaI+xS6SCFoTu$C(QjonGIU408 zHAsyXF0}XRP?bx+sxZ35PjgCG^CzL@40DC)(<45I2v^vgJwk9n49i*J=8h9&3xG^Y zO9acwl?oemjd;&!_cPNL@Bhou!Xkm-646*CF2Bp#Ba*aEMLO5AmH=w|w=AgEDp9yS z_|uf~sa$tq86p9({kmb43Fuk8#wYaa3?6Mp=WIB8e^c``8_|?BuS58Lm`oZ|;(p=x zyML1Zw3`^j#ahUOURX0_yStTcZfM#IBtS1Ly|&^o*B(4Pmp-O-PjfGDG1sW!M8?%{ zXNLU>|D8%ZG-MD`W&T|sti5Mmz4=V~199WBSn!e%n8~-)Kud{=XJLEfrbpY0Jy{=7 z^v_@)sdhm*xC#Qs86Jpv>iqnZ>JphrtzJ^L1MB(FijYM*6>$iqT8V6J0}YFRQRXow zm+w8JjmTBohkJGS{^+kkF^xLw_iNIuv-YdEjtqCxG(G*O#;8@Ex7x+7!Kr=`UWi$) zTZFNchzLRazwqxeKl!nxyv{Ht9}+jf^?<}Zp8qoT+}2Ch&4KTS`1D{JQ6B9F4ezxB zBGbqy>_1O#wZCX&J3_}r6O8?NGxjY|6*ob@6Yi*4iewSp32x$q4(Iq-*HcHNY1 z`^3VN?)}A_v}dljqV~gVd3;{Uw7Uwnki@~28@Erv_u{J;OFZd1FTx(g!Yi&66HW5b zpv|Iv4-vE@Q2*bnU)mop8yJ#7H+~=MY!RCCTQ?LRuIF3*y*J4{gwZlPgNj{qI(SQq zo{Fo;#_0?o)g+9?E3JZ0gOT+6I{NeL0#>)%PHJ%Ivy7=1GQ{p2k;Wm}ua=M4!U_lK zoUbyCN<$WSb9GNo(h!+ZlnaL+$WDI13SQ(}7IR(x+PcvAB$fC!PHowww^ZOH#A_(a15h#iW`Z^c9jmm6>nwo1F6ZLHuTD57IPKTl=v+LUcOE zFt=aiKBQzcw4B4@x7N5rK>kh)Ym#E<7 z4u+pE-G2^vBb_{Xw^sB}GxlqckHS1%GNg=p$=#4oGLA$H^c2^vW^W#TJdC{-00*Y~ zm(D%nLG+e%5qA|{6&*%1^%`Y#8O{xNec0$9`X(s=3`H{CTK{SmkJSz!)|ABuG z&eRUBmmXigz&0q;LM_s5zB%NWmYNb@;%cMBe43b~)Rh6P863N zg@PkK(okTd^V<-vtPlD>MPqKeeX@CCq&jv$iPd+9W9GyA%2Wgc&%zo=|5A}v?%S{DzZ#?V^Tj_lIOi=3A z(hiS${gG2*`#sKO2{Qg$oXn79!%8JsT3^+jig201%=Sbd7pw`bRU)(rTfUX>tM2I@ zP|Y0PCMzU@4n*$JW$M8Uz40MZL$PusuzW$(16`ydKuHxLswM zPg0FsK6yp+BH@euH_>>Eib3Z%70~3NVU1y9YU>M^dsDH2RIs(=)QktcNyKR-$J1sR zP}o5Us#qz3FuNr;0F;kXh@K9-E6duoIB-&L^f=+V#03L!kjviS4ScJ zrP#m7wvaY;?BUKh_X#Qj$bC@P4h5qT|3PDJCgm=%dh=Hv!6M}?9~K3<#XQVC)7iA+ z1cb18|1RuvELBpT5ImE3;DP-!UUCAV0zi^8*>u%T9lHs;L|zxY;Ng_17uV2)6shxu zDVf+>B`l^PU}F1erJ;kI)L+Va>HZt#xp_*Nz$7`-1voECj|72b=T4-B#>-WY_zT#S z-uLn6gQv4Ge^z`D^ifp<-825btrF%dM*ZD^Urc0sg1ZO+{YD(y1H$OYzYgK3$H7|G ziUJY@aF|RlD}3KS3a0!Nu`e9w@IQ~G5S*HMjOW-5+e-R}r?DVLU@{&yEW~A?W1kkT z2h2I~*xNX_kpN_rW7 zdzPX@vGS_%cvNUNYJ}sJ+cux#NX-iS(mKYhHmodV*d)Rplh`FRluM0l0mqt0>+vUD zt-pJ|__Vp1x0seu72J}`F@d_MLA(_@c$j5otkib}>&Q^eGT6-2UMCWQ!-)&K?Y_OQ z_cK(Fd*=9R#4bW*Wlc_T!X!?athssupx^*iGBWFCN^b*(>3c8kQ?&J5I>36%;IA_x zF6EX;AZ%Zi+JM%!fVTT~$*^&GbY%l~*?GOZ@Y(Taafc!w*$vS>?k}w38W79` zZ`?I#jckWz;w7`S$O_L@_^2&3srK0$~9%!P<>XJTPJCw1zNJ5i6+TpWCV*r^+w zgkLV3!trE*Wlc$Ewi%j=I0K|_GnajShb{pZC}9P zv#tA%((Ilb+H))t-XP7GBNAKbu8WY#5ZCqHDcG~??hzIrR=jc}<*G_vak4Zd8t{3dw=HP4&BOQzWjFs>!F*ir>g?UKouH;RE3N$Epj|$JQS^E z{>|Z3!6S@D{fYH7!a{#Gu#Mf>){g(uaW#!q28Q^)DwzbwoLcg%qKkIzjG4E4!F?Ff zOY-P1tI4@OkG;8kKjQ@K-j8Tf|G~f!OW2i|ch)R$ayJso{*%*2<_U(Z_Qeh!X11$_ zucx^X4*D&7NY&-!kqL|7%#EQC5`WM7M~8xqR<#O=8y@gHPbgdML#5{zqU*62M8XiI zoAD+b87A9+R93|$$Uj08Z zAAXr+)nIq^6@s+V-sdbgVBlHG{5F9c@8iV&&zd+ExGLAtKcf4E?cf5gpWw4BSV{ z^hOGzX&~v4da{9cZi*GG3%erh*t#9qOsA)*J5(10_=-%yEhwd-ox%ZF-i#tR~1cyU&Rqir# z&F&5g(L1E&E`7o-$$b69?OrhFygi3}6lqGMC_k~v^F3eeFJedF(wm;{p;%Zp(HqMz z#fxD|P@9t`;OfQFmc_wcI4RG_+K7vcB30Ao_(DH}P_I4HVrRhle8>qMe|6*JQ17Pk z5Z$eXB2bI5!4Rl1AKVS4=9B6{^=gbxSh1JHX}_oC3xcjOyTtQ7FBVZxAK-a17a z?RgvTW;;Y-pl5t9?>T0o6M5WmX>VeeoC=yMj*|w9_t)L-khRbpGF&yGm{mAJ89Z`m znE=FN;%MTV?(`x9pwjoZr_Y~6+2a2M54cU&f&I4zTRrIRx7dVE zibf{Hip8$EsThk{87%1V|1)n(mg@l~7w~rRoykWLyhfs!M8?>Nx?B&9F>^~5e^>Z* z{h0cdgHSJ@c&7?5Ra7Epj*m#$A*Ry4F{fy9fDdAA+?NRBh_(gWCX zU4FFmSu}hTkVs-n*n?1OX()<#gE~M-H!lfeI!yjJiyE|qsy4^QC2(8fBB{VLt_$qq{`c*rVH_ES{6t9-;0^wW(R2gHzBZ*?6uwM^P3cq zLt%&FcRfX&FT1nsbX}=%GggevjaPNIVD+5zV#6Wy&F_x-RO#eyXzrmfm7mFkF2csr zarHoNoIYB+jS!M`k3S3R5nI}`4Gl1NUUj{1QFNtxk1|A4jSI**D4A6*Jo;DX$$PS9 zbFmH1LGhV`mAX)Cd!xl!^VHyWvHG#kTaDHu6xAd3J2816YsVietBdt&Ryx%6DZOK~ zUw|Xuwo~e9!x{MTVm{LXgm2!f)b`HHqBoOa*)V_ZSley5~R4F|qDfyz7V=gSW(@t`A+!}aoCFJfi z&aL@TC$+8Czqvo!uQFh_MH|GI3xehFTEZGTvVg1o^yG4X1O>*6@OX~r>rCJskI6Pm zz<)U&5rwEF#ineLt5m95%6-oKMc!e&B49louTGe?A}ho)*U^UFUTMxv5QNHU6_|QN zBb8jH_v4vRcU<3>=2yzGj>oR?ArUyKMGp! z2Qx|Qqadp6M+h}|o)kz1`R(*>LYfpb;W1#nW6WiMIfIg92-x>z5`<4{8lh`lZ4uv0BQNlI~ zlRqQAR=6yn5GejPnGu#o#M!tTbvXjD6ZA#uUt}fMce2s^T^S|u6Sd(|7i>dpl>H66 zaZi;ceWNI$t7zx=g+Dl&Fo%(>e&_e?`)~&}Y~V7HY-i8bY8?D&eCCpSqac-?Npk6_ z9wTW=IE~o$)`<162X-OH@=()y9hq>nR4=(y~cF%lY=3U`W1jzE% z`k8z9Vu|ihK%?oP7W9&xG)SPA)|7+AF#$!#*UJWeEhh|moB^F&BkW6Xlp)qCqO`Xt zu6F>85Jy{77HJ30RnCPpDUEHndTb^K3*{X@U5vCbEkh*5XD@QUQKjb!Hw0(Qyc z=Iroa>6JYVbn0zoyuF8ouUHqPLWF@0+2BUgqhVQ2D=99Ev~aFZwo=WNBBr^0ee>|k z#PRFitbn|HNpBDSbCz2LzxpjUj^jP=G#z-fff#+nT&90KDNxNrOJa9kUAYRgEpe_X z8^W(soZCcf6My-iWaWSIh;hR~4+durP^rw$KY55M4f0PoY169ID&i1&B9i+rlv|?4 zAjr7y=@LG8qVi$Gn0A#+iyhRSQ*g1L**RS30VUVDtG36UBGlH{=GjL{6$~RDnEqba zk}d;>=a3CIPwC}kKW3#^WohDw@~aq__1`52Q63EsBB`6qvQY(z5t)+f4Ya9B%3?Jo z&Sf^ADK~d`TLU<+^ICjOTfYFP`u(g2UwEt|AM$s-E&ufH#TecoG*`UXuQRPS=NwY@E%p5az+;qi^8*509Ahm?A+{mTEaF}1EI60Dm#KUM_oP|_Nt z9>5U@dB=X5*@2Rtn>4@cO{i@wIbS!=Y<$3Q*|5Kz!N>!9o819cp0DtA?3VY@+^gdsc6SA)0 zHs5_9)`nq-)P^r>$eTmJp3U?g zA^GIpewo;987<+i>bJzkj@v> zz$51(P9&n_nN*ofw@l5uh_GWW(z?oOvTE=Cx4)|It9!D(y?PM07XV2-GB z4_1luFQedDQ(TyueV{#{!%_n>coH0(vIRH+29ClSjEf=xy$Z zd?K*~&~_)m#COyU(~ZnYmkiH$-@G0P56{F`W!5L-IXXZf+AuriY|o8-*7D_Isf3W% zq>qY*k|`omu=?o}F1Nx&s!)V#yYeAmB4&h+l%NWqS@-aqNe>V2#Ae0&Qk176Ob6qU zAo9r(0cv`D%LJ;`|H3&%O%oY&Ei(GnMS>J(VX}-isa7~ZNO(e;uuj7zDX^KhpZWGV zdfG=61%Toj2~kGThe4bqUG_h|=!z_NNLzITEwR%0PHh_roUgZrgQ>*y8SL6Idoy!< z^uG7Q>2_Z#|r>A|PM;(}Bt{O6V3XdzNuAk0S zjg`3mujM&Y-mTcsc>7quF4^$+a90?sJm|?}E26Z^WE0xavxyU8UJ)CXG<$RJZG@ea zx~nLMcv=_2qGD`}iQsH|pJ<4_>ADiVMnlXmZ94(;tOy;L<|If@;l|(&%XsWUl%_t^ z#_?8(^uI8`caerpZYhi_6mQ9H9ZBZd;^}iOUNfDGx8et-9S2_;_)0ePo9Ths2DU;w z{&wOamQHYdiu!?cDMWnM{%eDX+}hvw{j|s<-}z~K+%^@ko>}UTwPqIN!g_Fo8*N7W zQPJu}As%DYhZkb$r4reeAV*_cAoai-exMVW>+E^IvIqJ`07UP{sA1)thea zDr>TNjco(26#A&im15Z*44tfQ(&`U7GgMa!G<2c(Ao)AfKIewFuwsCZtk7qoTi^9u z=EMqkp%ifWQTu}8;-Y*G1CMe$dp4LBWA+Z_9en>0AIXvj%3(4C}TXAavgdzR*%{|u{f89Ct zuoCX9!|p@Gq66|YNF||X(}iWigNczaj?~t>1$OOIZ>KR{ZkW-x@Q2+`{$`J}?d!$R z)<-gPM#J^AzrQZfAMK6QHs!lxI>$JEgEv2EN;ofW6efyZWu7IZW~+kV^fdKnWhkJ- z^y=f0ykEtqQX|govjfNgvg9YA%uR#4*14hk&Twr~h;5eTgO1fpCGyE3M%O-(NXIX* zFGNDLh?%k|GdI;0Khe}7#se6(C5L)pzr4XKHE`SSA2wu?EPsPa4|jvBPMU;>azb3x*oS^v zQW)KhY{?_t;ud!Z`-tK6q3|TNXk5pcY*pAT(ZQn{b{M91iOzUrV^eD2{Rj8wNIwd9 z$8(zKS_`+`kaL8d)dJQA2#8s}|hd2fBr>)Fa_raOa$_kwc zNHi`zheF!t8==u>U+gx79)K2m@yz9dbqk*RL%*;FEeZ&5w?yLN6T#oO?V3;K{k9F# z=cdyhd^&}EHD8vZTbt37>tGgJN@8>WlE~$pjQm|6XU<(hsR<@?lEWK5Dk}3z{>0}$ z3dCh_&ybc|!P)jKi+uN*S;$L4G~~QlLl^Gm-8JYRj=eB#*tvr=M!8g8_w(a8&(;s8u_Ra!;2MdXkR0wU;m;Og$`FQefLbN-vd&!D0be$a z%u=4?`>dMd!bL**k;ziG+Jl^79GwBol4qf9gJ4$fZJBVc7&8;sRbf670v^#IEPwQH zb}qBV-(XMSVt$iqgW!yjuOM_m(SAOUz3}myx65mv_PKHO3#^w%DKI(#yYK zMV4tK`CaQ<;g?FD(1C8u{U*VWiVU`rk~uMvTbb~9=Y`4wD>igEy7pCHr` ze&Qb<<5Zc%qL|!OI7{-qHb#1+&sQ?2WUs<+FP(e+!tc~j2jibkyhsJXEguxE0Sw?-oaDf29o9W(0>(k_i#$GFntuH{| z;dNoBkv?7J>OIj$?&%gr^M!$j$<`jSf@iUsJbyBJj-&lwAMG8dn@zNMx}|cR&1u*z z)7^MamSdd^W!_4kvY6if8In3=kK91BX+P{i(io|U4idns6+!3SqfZ^IqXSA-#Pt>a zhvGXevD}p?jrWIM2JH+cz3I(A);v#a zjsIB~hGe#jq!7PL*7Cj1dT_0`Mm|^az#?FSicy`{g?>J#4pX9icqZLU7^4&@?rwG> zGHH;b`}(&ZERSi?{3=aFhdB)drq~nH*LUbSGN~N|?mIM!8(Mzd2BD zv>SS$gU0YO`4by3Ubaxh-1uy+8V1=kyw%LHe72Y&v0y(+O*e^W3=rtfN{Sj!CtI;K z>izD0SwOd&<2nbY-7CmAWWnP|5Ud;Y9lbi*YTP4%Q+G($S~77kV@QeXK-2zsWIk`Z7B|GSzaL5_n%K+>&8} zoOoLN$3Z3{Ujckt?W+?yV zQ&(4E6a=Qsa(wy{3DTE$ME*Xue`BZABxW$NLV+{4zy(XqYz}TBYa1mbpKQ``|8Nn! zri~%c!X_%8e2iHyL{+@+xX|?6L-O0p7S60XqG@)Z@-s|kW@x%pFi!*~rr@ORE?^sR z@r9|lO@K}$lrjM~4tln#e0`NeiXz7sW(5uOsjl#SF9WBPHFT!l8P@5$buyr595>-? zh>}L!1&IACP^^m)Ddqe(l4L|`UNBhhw7@O zBd*uttk~$55bnyktGzmAySOi8har+sWV&^`Tw#ZHut&av_ z7tG&UGec7nV#KHW57ENXYCr-wrK!3&lH>VrsfD z4bkS*fK5H1s0g=#p5;2y7H!cyBOkhshqdygWf2+IgNJHV5T8QHW#9X2T4cegbUopA zVgEr;ekH{TueP|SxL2G3>Gub&MZ|~el|(!QAqD?c5T1o4Rla-pFtrQ6;*)uuxE`a9xm)qGLyTO^yKf8JNkxs}rY9qe7TtiIzbpVku1D}L&=3Jv_Hy{t=Bm&HoRlfREITnr0wW|0Bq863 z{Cqz#*_8e4qj1;v2@jlxN9f*Nh%_*VQvrd9V3LHk2-hC^lv-w{@aD)ao=~ zaHurQ8ILZEP4;Oh9cagujw!@D(}K9$?-WH;&oo{h>J|9(L@b#*(~jpZgr^!D%MKJo z1l;#M?*U53)YC!3NyY`m6!MH(u*jHeR0s!#?AG|ZBS+-tBI#Wm2w;V3F191!V{YbU% zX;vI(gNqro$Z9aGC~pqk1|VR+v*E$7*sRFoy=fyvPPVhLruxd8RcwT}j5gagy1ucW zfpkL~TYB=IXN54YjeOZIPi=eIEt*KHNZ=mw@H0 zjeRJW1^yA0|LDEO4$r>1zloMqH0dz!PFc!1q%K)f|x z@Kw<3jS-c5_&HYX&-VD4AH!E41dD3*;~H)L^W%^Mx*hvjoL6gu%qil=+>@;~pSKjk zCsaBps#O)Jl+GJ}Bs;u1()q8j?kD|0YS)_Qx z!?~6g^n`HZSD)C2GOmEt6^xfnEiEAe=iP7mTlUjpAAU&u`w@?!0(pM+{*k) z0(~L(LjQMI`l&-0wUIV|RH9RC9#R5;nviY$DSn_>-m|xZ*|C^6-DxHvaX;9m`oYdv zuWb7p*$;d^=78%*Yw93iW=!mm5HhHMQ+306JBj#E%YQ*%nf!(gRa*p)B{+8FpBKwR zwCknSVGUo;DE43zGa%jG=}i+J&%b9|`U85RKM}`rk}O~3Zg|9}pZt%6C_KALWHYP3 zWT?}KCHentX&oQdh2ibGoBl&6qVDa-L(H-c&X1!XbrryHghd=19X^zTY|uLPwhg*BDq zSVKW6L!r&P+`ThJ$W5v{gtc<`v2_rQrqc!A{TJ^(^Mgm)KsTLnjhkrfH|t_3zGD5- zg0=aN5}q!@J@w9@BOSwmOiBeXHfr{E~?pKwLt{7q?#@eK!OGltN`O4y_ zl#86uC9Yl%EUTcU-UVukZ@5}0ODp@Hg6I@d=aMK(qC#H^3?GUh2M zfC+eQm?3q3B+H5m&NiUgkXYLH6i)KNTA@hzgEUGF!L1L%)fMH2)HR?v(pa~gVJH!9 zf_(1+MN-^AAU)-;bB_&BjUIYv}2`rk5%* z;N;H**V{ttKZd!V&1<_pQeSuBybp~C^#0fb()n^gi4S<852^l&F*eZ?ZFUQnBavG{ zDMZN^7*}0D2|ZRYUUL`SBq6yfr=@ngYWJe+vh`mVcaq>;5?-(C09C9?LN8n|CxOIO zq#+PDZ#ViK=wayBeTCwCncXgD)=<{J;z(BN-;n0Z&qek8|bo^3nqhv>+gEy)(b+X z&O<_hP*=>Y-Ko%mz3fiB=qgYBK*7b2?B+JV?cV56NM95UUT}lFws~d?fr$Q^7bJSt z-ubaWlRc^1#)T+L6!Q^auD0qspGbiT5w99GrC~>+PkI27gD)f2f}I)N_R_`{z_0xH6!d{w#zq~GO{~Ol5sL} z$Uth<>1bNHFq?gv7EPLDE}~=ac0=^zKFmXV6_Q1Uf4X}?&i~>qJmMUL55(^CjBK<5 zKWty2*JH{``zDy_?L|ifzm})Q^985Im)+DlTB$?@~BSYdjjc=(f06Eb|(v7{Q3@3y|lC3Uvc<*keEQHdBFGoGx zKr-FfKTG&QfkYu~xifw*VMUb4^ex!a6Koa3d2kh2_!dIbaTseD3N9rXm&5JVPvE`O ze5;8dt*Gu#qYuKds99o*QA)N$jD_QiIlxv`j*qYJ~g75JF3Tjxn-dX#*SV9z~T zi&0%4iQy!6-;X%e&Nyt+M3`fd=D}S z)MsTt?}HiTz#!7^aZ>{2X+1lY~{9i8z0He`m(U z)UKtHs-644B&IY^1NJW_HC9D__ZdO7Y$g-Fjpe_P>F#r4F-M5$Ta<93%`5&e+p;SS zg+}_B{i{Fk2zTpm6TkUk&n~VqH}~%79W~?`Q+MMec8v4(D#N?5S7i0z zYUBP>hu+LX8RY#>_0@T2IoYMTR)HR#MY)6Og^V_uiEzqhisU1W0%Xyy(kTbSKLOep zhpK!tmM@W{2Zis^U?sBS{}LaACc@n4TTic`4cyy`}-#f~v6iG1BO}eO9N~hKi|w z@CIbRG0xBFinkKt@VJ)bQq7S`h}>ylwPl=TCaS4|(!|jfW0zEK-#alu^J-(TUkb7& zVk}`~ChTg>$b#LxDYvbgs1m^fJp_7EQsg#la%`s!&kD?Ok0#LjwA9_K?09EphT{`# zMhC{P1)D>UshpQEH8qcr{~s2>LYq8dKiIBX=iD#%%0#nhBljI&q=)lZ>t!G*>c02RtANa5YFyrCrpf$e@}drMhVkh#H6TKmI&P-VjEI9-kZK^7v4_r zg)#g&BFqmn{P|W_VdO-am<~&Wc^#;{@1K+`^tjLUnp=g8vyBi0k=J1OucDK7NRm#A z_QpF>yS>0)OiMGHmP7=vTdN?_HE~5uJrRG#WuTody1C-pp~6G%p=-v*Y4bm8w4fjg zsKNYk0BGJJmKN{{)=lDP-wFQ`8=s%n5#eF+GM@chY-EILNK)YZr@!Q$+PKHm=xZ+> zRzfFNVOgWXez-at$`jrYgzd6^VSa;sCqFiFJ1DY}%Fpmh@iKvE>uTq7;HNpuI!03k zL6P0o^KMAnHES4M4aX*b9bo##C(z9Ui=xOnLMG#i?pQ@?vGG(pun~W!?#gGI;Ke1p z**}W|t_QTUg(2-E!L{_H(@bf04Fi1S2qkz>&-bvQNsu2eN(ig>hb6n7SQOXIS7i?w zOemeEGG(AF+!UgpwF)!k>!um*(u}qgPJqeJ8A73F*U_}j~yS)y$RJO>L}+G-5luX zj(d7S`z>VWPB*YkhI#aXcgb>(U6NEbrl0Mi!pY-rd-veH5BLpd{o0y@Frqy_U=G5b=7`Rjdv5lSzET{*j$?KG-Odg+mWTJ)cyH=?1 z2NVE?jj7$=+Q_}r+h(#U_{xxrem1H)(fT$5Z9^eEX>iI|ra&N`BuF=jZ77jxD#=La zptO=}0~(95wl3`g1<82{gj$`~c>#Mp@SV1NWYC?z;rz*y4XZ1L=`~cb@1CPrsX?w z@3VN=^WbSEXj!PauSk7Ei7KF+0o4Mw#Ri~4-gmmP-G%Fd*ysh4j7(#(BgM!}6(6!u z4|MPW*Tsnh?iZiPHL|Vt zPEFe-#A>LivI^@U=kSRv{29^qvQXlws}!}|7l~7UH~sn|n|Gajg?JjNr~EaV6$e9L zGscJE>zQMdjp;;78YdzFQ`FeZo4GDH&)!~&$ZhyWYUGHxn#n+IA9uvLQ4MHAnQW35 zEz0QGvR)#9(nV(6-F_Hirs%|&LLzO0BUakLrY4KHx2QyLi(^XM?sp#@`XYJnYFsy~^pb12O0a(3WJ5R<|10q@7S3BpzQy$#F*>%?$Lok}P-4?@(^R9s14 zozf%+9l7npFq|NI3X<=yhhWn;M)cz|M64fuqAm~nss+`=ywIC?xEf`CoAtMxSy;=1Woaerop6mz#|V?i4hZ&(I(R-t@JN$YBaKm$rkZ9OL#GGE@F}k zRFVQ)pN*MFNK~XT6IX}O72ja)#%MUj=5g)#57Wtg=T#gmV+)RL!FuK?(sa&TNQ6j8 zAWzY`|E{cm3>^+EU&PwliJdd;M*nEB%9*1u9|lM9co!L0V@?6xW@(2U%T~HhIO1>V zsxED*Ln`)<{+VpDZKpw)S}1Y4od>zybB;j9fw*>@rek&%O>1&N>iF7n(CbcF4pbwd zels;|;qB6F2RPs1>=Rs$%rVK(zs*Nub2UrqTlKQKVVB2pA=LtV4Vdl`)%L`}X(v}C zUqhms0%`NcP%;bR*4v8LuRXRc zJs7BM2LU^8uXrAu5uBT-Oy1q}D&)qTR?A?L^sQi0CM)7+2D<6!2QodAN|ZkOV6m_? z#gTpKtcy{MCzE=e;8_Ys&yzpe%!66n4RI9Aw=Jn|g5|f=VP)5Z=~|k{UG;{&lv#9> zBbyO4Afz8M5U&`J)Y|Net4eeDpJO!-YAZ;D_F4cTAjw+q6(_T7AU1X+dtl(K4aQ6Z zFgx!~mONV5p2=a{5tbT)vXE1iSXw9vvVy2MW~=CawiXIxNRMyi$39Fk`UE$@dclB; z>*Twq`}1ZEKBfL>8+BO+4fw)_dr_E=z5(`m6Z6Ay`i4je;e@@7p!lnKye#T*)l1NO z(J9kfPbSkJWmwF}yD9UZ>8_k=>k+epw0&9G}}qOjMXlgc5xB@W)N#bz+} zOJ~anVO5QU50B(zPYqn-gdx|}X!eyxo%qC0iyI8ce%v)+Gg-^fF3pBS57(Dh$~zR0 z3;9zp56?P`68>4uF}I%PGB@m2PQqw=Gd5k~A>3jMg#Q8!`6d=l zwvB%|R0t;9Q~&S-muqiF#kXS8vJxqV#_f}KqmVog7=uMFB}(O9C5e5nb5_Ds2OXn;$W>J=LM0DF~4yk~VW@URhqsb5@ z8INA2WLIbWvr}cG)47k1IBk2e225C+YmA0k)Qj$zk748`pyPiEm)z;=cb|8}g8vUy z@8Qmd`@N61N>O{q775y#vA5dPDy^b6v1*srrU-)AEn2f^)vmpFN^GrFyY?0Q@#SFjY5+1UC$JHB;wB@0WhldEL$eDUc z_cor}R3hwG6G8`E3y!FjV3_s`N1af5q$YSlGXIGV87zYQtm!*CV>W3u;sJ@ zjLhKsd|!JwJ`?$HEnEX)qjdw5Ui+5bGGcG8=6Fp%7QlnxHCoKk(3uA!sWqX^o?bB~ z_ki<+Td5x(Q%kp1ghm^ehS$9K7ucerJICk1MQ7Af2>t(AF_bRp=NR80^opoTLx7Vp zB2x0AyS@Z(=&UT`q{3EKH5)YDCFJy<9czR;m&)>6M+3S6`I3Sc`2tq@E| z(jI=ALRLq$V(~H^I?>FxB#|yv8~=w@dAluM*2uDhvi9^d(CwbW^ka5$Jww(MA?L5w z+Z$UvwjwV3jBl{#(g9@741*203YnVnR{@rgV~}nHg?wvUq1ZA zfu6I7_>H9kNlTbig%;JlCxGG8e)A8edh@yZjc=3vOJeT)C$j5o+|t`X;?8CYd+WfQ75D8h!f343m1N|J@p~6)ceSocEXZ=%Xfe%> zpV=26x{Oo!>aVfuo&;t8Kii6{XAdaCIwa$~vp1OxE7SK25Kfikk+i0%xdx8~z|STQ z9t}!LM7eDx1#O)`T|xIFgro}5Hrb)ao}iUt*aX!h0N0azSykM>Pc7||;YD{fgeU`~ zCKt3HtXI{xA7j#e1+ioQt!8~rReSo1{L{`<7oab15~1%}7T;(=V{?&7E1=@TR8(0b zY*UWB?DJORA_dw0k&oYlM#m*$3gt$2jE{X(lrO-DZ*MYQBfii;?zeN~|JWC+T_j0t z>|oy#oqn9+(={de-E3AA$=sqN$4SSG!$H;#L90NyP+fFNt zuG%$3|0Mx$MIJBDGgq#jlSj2mEp>HZB82JxFXA6Pnt~ zV;#sy+(F0*4G^OqlJcEmy2=Kg%%-nwVcT?{VqITRoOI{ugCUS|!*JtNWT2%try_$? z>{^R(D`G80h|R5BbA9;-U5|*9Nf#N)@3w3=9t?9u2E;k$h4@(AUpK#U)o8rlWaG6| zQrazP^Ru8Kj+%7voqE%p!du=mm-E#-fcl2WPuxN!uRX@%ULZ~NeMS{hb0?3->$2u4 zu69%rYwF`OJDdn)JV__>RO-_MKGjUJtA#I4I27LjD7N0D_Lggbj;5t)!Z*K{um5m! zPyNIftx|3>%H;J(Df#8yVv!J%Upw(d04E97ONDU15K(mJ$41OJ>t`0juR<2Q^)kc% zt5Lq%kq1C%?pXUQU&f~=|4dDv4kLCBV53SBr1^Zc1lXxAqD||tCQXKKazMxI1+(*K zX6Qw@`8l%GRg7_OSZ{DV3K1PVuZ$V~A+ekv+D@&vA9lHH!jExJX=Tu$vx=gc%}Ag> z3VfJUiGPTaCjwr&tJmy#A7&BO?6nZBHYqYJ9eWj9#z_jUzX;x$K=oiomZNvN)uN=F11uD!8{? zcRIt^Kv(@P7UXL_Bb`2cSx;1ddD=T8$c$`U$?2rv+P8A**AL6cGp5{UlUC==6 z$!8n`7%i?kU7&4z8Qu^u@1|T>)1TF$4)IcA>$xb9#NUeL{_Q>V<(c?DAdg?@?x96B z1GR{z1Y;cjznW%I`IsC3nz5g*(#SD=zKAxb!#ZYa(h${kU;}Fyi+gHjDr3#JOYuz- z`=dacGAn(n9#vaeDIqMsZU3YX_j_C)+IV{K`gBQr`nC5<;@92{>=hl~NX=3FdeQB6hkoylzdI^Yg5qKHHE7^rZ zkOsJWfW&X*qhU!|(TRSVB1!G{fHJdi2DKNF)0|&mOPs4_vD$wR2HyL(N4O}N%~r|H zcPV{K2HS<5A+>ja8ACcP7YlJN2IMDg>=B76Sdiw#w~P4P0xiw1#qnY}BWR~9#LD1s^uz)4CB^GU%GBuu?kxEaO-Vqt6+Jy4M?A>dj$W;@K^QJ_* zyok-O#frh@SU&~MPX~DWtEB^9EJ9<0awz=v?4mVM{<^dCyq)f2|DJTs=>@q`@ZxJ$ z3ag%F_Cgol?`UgSG4C?2mni7z2#VWQYH7CO9lTT^z547Zh{Mb^+=`VZz1`L14kSGLhn2{^g+n`J+MB1P#I6@WBdZj!4m4*=7cN(iy%1 znku2BVX>j$_;xMk2s@DDUM)8#fepJf{Vn1A&V#ACE8pnN+Irru|J*>UIr&{589?o# zgO&6aN#2!nlrt^}@84@{zkI*Qk?azaz{z%IVk^u|yqC>5E)ns%%r&j>I2=9Bpk zA7vV+BeMq`gP2ke%Jo12(EQu1r}b^C&ZxWqy44F71UTbN=4jBdQ5BVUt?}0ZF442&oj_dY zGlqv8b0DYQKb2K_ssQ8Lbyw+$U*uS-asYlxPf!!zx+M=JJ=`>Ao;EfV^J*d!GoJt8 zC9_=?>@>Xhf{q`-VE$plpJn)D+j#N>@pk_$7k5n8XShUd{G(ozTeMhczMC+^vV7`^ zZGoq~HK#ebQjcOgZ3m@rPf*0JSO6C3OWm$mpSDyLbDZQXoMW>=^s(P0(MyI#Ncy6i z=u0t5`oTaXuO}n-ufzg=g%`bTM#@frU-Kp7>2Y9uciO{j+B#1Ixj(Zgrd1Lov;48g zGkv`cpUeKzwV-l+|4X2Ad+DK8MOMip9w{HHA5-hW$|{EcJfa5f0WHxqb7-b4DA#k9 z{j0GT)_5KQN)2Zc4^Jz{dA;bCrw_Q0M@{#aMh<$2oM=_<5U^q?vxu8rTHq(gb}>4C zJ@A$OWUpbYUui3ZSJ9$1Aqy}=q|p}mL1f}aLp*SAieqE6gtRNfx;$c_*<_+y58NIN z!yi`h-oH{gGSmR95WpeZ0dVVeD`-j^jj(zpPd2%63+r1@ zr|kBtfTA}b7RA+D^Y=UoawC$QAI&gdA6qng-ap|JV*52Wb&kG+K9+k*V@1>f1! z^tNBIS`mm+XP55~SP`d+dgTUIs;Fh-Rbi+g{ik_@cO3x+s&3PxNImR$UZe1EaUkdd zbFtssIP`;Y$P!K?cEfy!2%PeoZ1}34U6NGYZNIPS@#cY2+g^lmb%0YoQ6QsNR^69$ zd~*I(rXdv~I9EqBEP=t=B*y1R-je#LIVqk#kK&p>D`S5#B}dl?bPg*zmPl}kP-$sgR*)IqdL>BH)>k~cAwU{l*}EAn_f=TIR|%;& z&+kJs$FThFdR6%?bqoECS&x;K!wEIpQ=8^WR+37k4Qakh+$Is!H%r@Cor?+IcLeM? z2(9iYA%*hMOPp0AgGJU*fTjf#X3mkQjTbnlg!(Q+%pJh4I(e!oCNfQ4TH0+A_?gq;^?6zAr9R1|<`K8V2+G$%J5g}b%>GV${dv)o)rLm+P85%zy zw0h5QjYWMvWMnk@(a!gK;yrUyMo;&(sQ*=y{uLJR3u)ay{;G%#%kd=!wh9o=*=(E2 z^t0Q*V-BS!6W8Yh%&&o19yOFmXtxP!`6h9$ORp< zdBYk**;mM+a^(FtglZ*O2dof5iN00gB;D2CGNJBsstV!xDg83QP$GFPf?h33sEqz_ zVgZfrFMci-%58q76zZC-jFqXQg?!jvtN=k*?^HdK{p8YW$n)#b(lLGKtGIvPSW$~3 zeyB(QVU}0eFi8SX?XzUnRBE(;{3;VtfH<{7u8$g*cL3;P4hp?A6>R}b!xQ2W;i@_I zXg~YdE=fe-jL@$t^S7OT=?;OEpHenBS92^KPT62Yqyg?#;HK(Crh(7CmQ;{TmKe#5 zxzI-OQkK=veqfK$XWxq2glSqvro3H9z*2Cxhs-FYYZa)Mv-`tfJ%73GyU6Dk zQYFKx-mmi-eM90@p?Ks^=oiw)J`H+!_TNl5443T0lWrSq$_OJ-aE-f-g(+0w1CuDJ z;QP}rSYtP_*R;UoiYFRfrj)h`3l*#+n}u${v5qCh&*rf;_OD5zVdCgZ#*n{dc$o*ADtJ9{hWowq#C0 zL-06Jyp!6S$K(~8txLA95M(DA-uE?I(j~f4-p*0KSpLMBpk9W4#dlQA`;agZv%)~B z921gdY`FU#a)Gbu;u6nT@*+mL;vCD!sOcRp^Z)`y$E|WVBoB*yyY>B~t2{v{1amOH z_LKVlz9pj&Wbi)c2}08~uh%C|Qk!Y%Kmc*vGfW&}DiL_kYh;ACQBdg~)v1;zm-3qFCycW@itz_NrPf zh7pnW;$HY6;9B?67~aCmz!?qpR-RXCp=pbUVHV=%DmYqEC9M}cR@BzDNdy-VRNk)i z>Zi}qi9?>B8>&$~WBa-YeF*Q>aEX^%m-z+i)+)NSB1x|D~wz zh`-n5_T5x=WlRw!W)`0e3ALW!Y)@jF^dnuFih``xU*TzCL@k3hm)QtEFMmB4qk`e# zmyiCWq42bln1xM^Z}Z)oa5RVnJWIn_3iSTbRu?d%v!LL&PLnoq0Is>YW*3F_W z-gUN=ss;!`BO?FuvuE6Cef-oC1(~5TnTz0A?=&Pk0`)jgl7Mx_AwS8AgWCjVJBq&uN}a}njt@c!BvFJ)p6{Ry#)`hNoY)0DqPs0 zTrR?DK`Vb~_UwI~@Y2d(TQ|`Ad{Y|EM{VBnn88~7t16F&BaozAbmrTR%`ngjHKqaM zo@``4{NULcsgYdMv^o9Ln)?lzZY*#59cG*C>H=YE)dVh_AL}n~_LXI`N8-0qI8hxh zS0RYOyIK%rcLtG@91U%^0ys{Ul+JJ2h2NDc`S}m5 zP$nN+Auo@y=^Oq4KLPuIUKVI(&JL?P$J8=E+Lw8SpaF*&3G{~H_jbXem>38lk-fq> zg{AR1)GX#HwQ0ebQNhLmG*nxxLGka1iWJ;SRSR{|LNj@6Fg%*JPZw47u5OQ*mS-|V(v3cl;k$$5xJ{*^ydyBS zpBQe`8N!(@>gO*e%W^P1q0uw`Ff-J6TWo1c5;?Fzixfsb2$9pgtR|`I(@#jgOiCD=I2T@TJoD*L#Mbs&qcNes$SsveHg&Y4-XL@-YpL@v;BVK4Pydxof zv%Z9nnYwG+60)I^`ZO{s32W<&OgRW#ZG3xO#_ku-rOwIbGSe=;eC?HHw0P%0QJUe4 zE4sOms!K$7gVwBx0v~9Fh0xB7Eb5hD$<}(VyS@=FYR-lH#v6fUx_Z1k zVukR90^|KIFegg{pmZN>R=0zX1j%k?Lqo9@Iirkwmu(DzLnR>qN$K#5WTg%MEWNa3 zw}qIDgs$Y384RB~HnaANQLjDx7bdZR=JDO)U$X32AGTBeOI|@NwI)(>&(Ch$0VVqXuW8(GDL*)CC07O~q$VsaS;LJH%`%+(< zIpj(CwPXd`tv{L#26eLr<6WmmB1TqhE@&cag$$@HZKhEoHtJv7G>)7nbJxFL;Jr2J zFhlz9B{wdxon2*X``H*)@jx>iDtuWYE7#F_QYsb-d7<=N>+Qr2I<0wm48w+jZZ1*>}9;B1HYQ9*%se?bsW z0b^aT*@YZubTL`$eG}>yj-G^#B<$*}N)$#7I8q6{(|2>#fIfCeZ1gdNrV!1m(dp!g zFanG74up~q)__&S>S%TPQ<0YTUd{~0+i%4Y08^u*_~?apn!sLPG$1NkZPXTF)SlD9 zyv8c7S+-f-CfFZqPXr_w7df~48>FFeOsSMiYJ(cJmezEVj zl=XxQrk%Za8EgoK`Onk79Z@fD4JjQ@Jm#DH&J>S3Fs3E?2e=4cFuv%agx~IEYy`h@zKr9%3do`=ouLpZ%qqcx#)yfh+NC0w8pt&#e znv2BtN%(y-z6K4^x$TeB(_iFuWJlF%U@CP9Yq4717vs`c;^&vpPFJ4)3PNfD zTiT5o+;7U_iz!HelqN|h_2yK&ckv@}?eF?Wg5#oE2<5IG!vx9AGm#}t{=!#l+r@9Q z2}F}dc;0-!d|I(j02Vo=6H9GyRIW>Ou8FM}jJIG6S%-H0 zk-pU#fXT@;Pw@$1AJEd#w5As1WYYfUMu3+vb3+s8Uj&o1-6 z#9nfF5;(sP-yGjI7%J1dYYNQpzYc`VGixP|wuoa+!Um}QS&ucmMf-{sq6y9PZKF%X zS4EK`-k+!HL6A?eg=*Q+Pl(}s5|jLcA{LlR9{zY_=1MBWuG@pkevU-sbo{PY;_-L? zE4=S~+hvUloMA}40#t3U`wpJeTeiBow zp2-c(x?s&@E8^u8zG)(6XLD*u<2Vhzd6e9WvAm#5C`@ywiF4~e^Sa!Se6DuuYzc90 z%zV~q3_EdsMe#Ne-!}8SYQly1b8vCqQHyze5VKDE>M}p{; zoNHJ(P6|WYW>14~jgP^9IEXT_McN8p)WtVHyT!r$Y69HQORO?GHF+6{7FnzSO+F>> z$)a*wj&4l>UIYJu`Su~!fex(wY_adhsIHMC-p^zIQXcoY_!E(*!Fe&8>PjSgLu+pV zUAqs$x?*2`>`gKiojl+>Mm~JIMdlz zA51wd6gM~*hS5j;4Vfu>p^WPhAMbDf#3qpLls@RO7QdRpJR30{loUd^;0to3^A!nu zU$x-~(E=oSdgYlB_;@tR+v1{}EvXQcEbuv9FXv;8T14It3VX9gP$xPWY>ZbA){6Q5 z*3^uXd&=KMyT>ft0^V7gd)e8Z6u9tIm|b-up9pvL2Gvyb)R+J#jOx>vSEjhz%zZWw z{`(NYx8ypcM%VY~c*Z+S8kAM+r-YeNW({R)^)Op0OW*zgxz^S4L~9S|DXcH_cw zJ^IJStyQuoBiG)514k{u7ZhoTWeQ)r@MP_A0vw=0DqiUIC0N0JtcohH(=?U5${vZ~ zX)u|%ylRECCz$?ip1fD(H%^&-o=!HWPu?CEZm%Qo96Lm?opmsTqjTWIL{#};J?6tw zY1Y2d5?q6@5g?m~c1-9zF1sDc^Ixi0?K;JKJM=1xR=o4HjNw^Tzr|`_-Jg=sK#H)R5Ge0f*A7rF;0$j4Dp+Z;TD6^N# z_h;V<2|9mzWzdQf-yi>!)`+wSdMP^Yst(mZNX5+0eps2N{I)S!lA7Tx#|)aW#4543W7YFlH67!c86{tU{jIl5)yT8%*T6#TIXrgo zkxQWCM9x)sKsqnN?_2RQWj<^mM?=D$>r;Z+hJujSWKudNCAM2%|BUW;VWCKI1qEp2 z_(8IZ2-&3SYRde)4AL&(4x69N%#Ajl%QR3v&=m4HRiBcCw%C8B!c` zo#d6RD)p+*&K580^0MjQ=%DC#AXAtGdke|*`^`LY_-Ixrtg<4~1-ei4aN~A}8hp8X zjB354p*{)_P1cuwpm{P^_4`e1u>+@C#VGfKc81ZM(%h+z$-s$~n#>vPm|CILtqo8= z8Ao*BI<*@g;657?-0%6bH%X^Q1m$&sR|TIa5U=yutHci|u1)lipMpNHE%Q$SU%aBv zwRo)xUKoR!bi)#Gml?PyE65t9sy?x)EF6w$>`xc2c(4_G^)JvJ`Ldtq`EY%~J;TeC z2J)LM1l3r^Cq%Nf!)WJIKzOFP&<6{URzh1`c(NtkOFwszk35;b@3%3K-0(Dp-riLb zmbeaLmEOnX{mLQ;TQB=skW+6~6SJ}%{ki&G%?0C!_FU5M-Y=8C0~ktSDumxXrK0u4 ziTMB8Y7`W-a<{SeMI=Wsd@VOgTc$6o{5X*yC*s&no(>1d&vZE8KrxfEJL_$h=5H*2 z|I_6C&$}%s_X*?b*SetQL@!8KcY8g077BX5iFKRHsLjU zukv$_w%;dzY!_c*%y`c=l=!H)E`brnDWw(o;FwQz6XySfmTsX!rGFl>R{Wi;F%#QL z@?|$lKHM*kpy^pKS5#9h(wOwz=eeRQTLR-w@&4U1i_bo(^GP3`>GcjlkQW5_IGc+9 zXH#h&a^Ox;u!_MR7tFYXrpH#PZ^!D#Cc&(2&v>!QDx$0OSAbZZ-4{a^F^8hN3Po;S zY{qO}g4b^zn^@_PGWrrvtLBzPAf!$|`*P>q&T8Q{QgBX~K{+m{5)Q>V32K!nT&D;W z6o;|&zsvg6@I))L&9jXDaa_VtYwvxYp%qJjzSTds(?@eJqjhgm@cE&TO5SB_AMyir z7_L3kBwbaoP?fcP_topJ|HG`8uDH=UqC@F^+e3PMofb%b?rGSlQj6i+5ITS`t&()`399V5Q3k*!9a7?yb8R&0lZ&`3ws2TEl*INLx` z@Wie&$U5NdPj{gey_a5@Bo>D=LFFCdV}AoQ6f6asL64|bw){XNXqBEVrQBFkehi+!q^imK=0!`75jMX#RhJZ!+i%^M6;d3MgXo`YB{(Sa$W=? zS3DJ}l1`1;7zNqBj)h+u{0(m~U(`oQpX+&-cV828cK@KZPw@R}w5aj(8%m6+V4*R_ zKSJ$iE!9TJe;I-A`Pswuh@ks`=Wad*I8|A7w~P>UCcHuK%*2`wDRU;@L}R!WxuyA+ zX{Wl;JHVfQ>(LovYN3MUwIHc2#JV;%I<5I3UW!l#WzaW)x|`s;)9_|1{=dz*)m)Vw z`f%OpP9i5}l{5LAAt%Xha?634{FVqh1iC-J8l2ar+Nk&b36cLg#9=u*Pv5#eF5x>>9%CJ*bj@Ij|B*O$=;}Y&_GzP*v zD_ilLvaSNY5RRY$MlN`{>U9o$wPPvC> z*2!o7BL3VAwpc*yOHTlPNZBnfx^O^PU;VJz5M4}%_f$`;MkJdj;H?Fo7 z{L|wbfAe6?f@+wjIN@rVxG|Y8OJgcUisj@a_z&%L=1{H|RerB6fVDUpZd7q?#sHkn zC24rfcVpD+OWvX=CcFCzAn0(}km3>@?#`(e%7s$8paZMaJATK$OeL13W&XX#?@3qX z1n(lZXg{eR0I4OHBpwWN*t{cE>IsJAS)}>XZakCSDsO6c{kvFXxxOg+%yw$Z%Vou) zBCffmJ-?+N_{rh?-*ho2^HMIvhWdcGqIGX`Qkv9RFHUni=!B`&y=Lsm#`j_#v*&x) z1s5BJ-PwSO);u)!Rk~Q02v<#x#0@NSwiGw_K_jYZk+D55V_wm&<4NVLFG&Za7%3EK zJSYZ4#Z~3d#L=>-WojPv^lOk4>WDkYNMs^VO(!uSs-z#^1xHUWINZjl%xf2pIoaP= zIxU}3Zl1Lzm0eV0fvHiGcLMHpt>UH8T}9YnC;l7k#XVn07L6{e0Hy61BfNfQDhWRrg0>bwAtHuI! zNJ7Tv&7hXzIm39v1UHXE86en(#{vD|f6T-HZR)+YNXKwjBR3;| zCFO(D_+toLWeTny();2|<&?Z}Q>Uq}DSBCV*eV3{OiP_(pj=5x9`;A5xN~m?av$mX zP9-2h7U2)8iIrZ%BJM>|Ro7e7E9Xb29YlkCE4p0n#31YN-QOL_e^9Ydl8C;NRpL~D zC88uaR2D06XWc7TRlu;@J78phDKh*r3qQ*8v3Ga7&N44uLNKW{CUPpF#$s)B&m8kM+HXwp7SZv5+_nF9E6?+}}h&&+dQ2->|zemy|bYn}bE__c~p9Sl+8~XSc-*ivOiD_1bkF;A)#rb%1d$$4AyM_bS!lf%8RbWsdXP8SGzuqjL(h%c z83F+!>+PC;V0V&Zx1lcq@@8S0#ilPCnxE3h#)Ek#+xR&Z!W}7Jp@L)*hUY+9N#|~Y zc^hYvC%`w>X?|~q?*~8ej)z$spou(7Vc*%RLvQciguhmSHT^aBRtvrPaP&5Rpy%Nr z#uW_YO@n9+qM@;( z2f=PIA!pGR$TJM-5#NXs(XbzC-Q$tc@>z;Jy(Xui%7Wmv+iPy4a+^7tv6b$lTANxusqb^>o3mW&Lw96hfj}_S=>z*$<_X>@4RA(Rae7d_u`ty7VQ*_X z$P#3y88lje=*BHmpc=Vlph}p)askN@+v$_V5qy zA1qo}1^@xQzxb^`Fr+F^zHqR8lk&&;qfDY1d4|5uMtl%u#j&`J?+vtZzKHbO=z07& z)ju7kA{kB()w%**Wy&^wqfiwVnR-+7zV5ydb5A?{Xg2RIl0G2yPXdV$NsDXihzq*b z^5b}g>>-V8;kpOjED2W%XT~%2(fh|@s z{iDfvoJ#XF{4L~~*VG@ZUp#Lcc&g4iC%X{B_zYW5xe~)UxFSdV zg5n+V#ArBfAqG{LI#;k;ZJXA%9hq=>gx|Ax#eH;W$0RbvQt@pO)$!#1a-*%@;2(ci zl}0iMIwB-72*mVekHqcS^*({*jgf{#8)!Oa zYwmn9lGn#OFEcXe$G?%>#Gg39-w?rAAyaD(ZRp|ZHeTtJpoIoXFSl6AWH*7T??HF- z5B+79e_>2v2hDKZvJ!FXb^5v`<_NIhuFcbc|I-4HjMZkv^O@yS;@pLqIdy&IOMyC-3pjp_OYvi)-AeBe+FfAZpwQQ?wwiyjRg*|VEzJ$P z`6!jB8scnrqvM$dg2S%1DVZ?v$Gq*P>C3D8Q#3b}J=4nz=+k8vc*;Cnn=LxyVHB`&R5e@VaNis*XX??c zZyY;3*fjObjA%v@_QwSTL@APlO!&H_v|G698s=`HKDY6;@CtRry%&B7L+qpm_ivGc@)=~Pf2mPm5%XdK7_a8eHz)OH~$qy`DgJ7 zxcNkW>rhyDF)-$e`iMUY;Wx9+IzFJ>r1AagDYGB_4jhMB32{Q$e$CDhXx1FCZD-62 z6XCL$jJKDZhWLet=Zr@=20RhzY%M;(18ygk!wrpTj-s8ObKe(QV0DGwZMMI=w-9p} z_=(BjTg0I-o0?L`^~0{exo|DDe7n4^N0?V5`B=}FDeUAx;JV_U8Q$s^^zn1gF-dZe zeMmUst~j@!YimifFJEU#U!$(~=5vcb6vu44#x@F7J;&)jo4iDdN%g=D-gM{lf(eUE zBPo1bABEjMit-WM2x`klAOC_+%}yf&=44$kwP~wjeoNp2candDpW{{+&&)cRlqAYc z%(1gV=%q=jwW?8lz2(DT{3-!y5=f2C@ijMUC5UNDc6zw0#rg8cywv#aSHw#Yb;J|VJR0gg$SocWSzFqr=%IH7?51-l3 zVvu8N8on*WYthzw*bmp0>1yU}zw(aU5&Sv^FyQV1`5BadJ(eF-%OtML&0Z*^Npv`p z{YxjEQ}z{ZbfJ$DN&R{5ijWn2b?Zr6(Q3x?2d(_aqI~;b-vxRwU`vE|i$f1i;$Vtp zK;MAgcHq>3RMoF2uV0Z~MLb2~nNPV$4dM+=C47&+Tfmoz(^Z!YR2W1B|Ewk`$c`se z0xF`vrpGy@5<68rRik0hZT$3hAqtsUPx30gfMSG$IghS&o#Gv!6{jvP&i>93 zgh&rcFzQurIen=DHgh9+$ZVKEeX_mh1;d!LF|N3l#voiz)l9_bEPLf1=k`An=GgRQ zPI<;n5jgRBhj{Rs==gDz$H(=ht=Yl<>`}LM;#^Qveh|f-sR600m<`Q z{4sK8gjM$Llw_&I{IBp^+cIKN zg0?Mj!3duQo$OuZ4NL$W%D7Sj_ezReP)Ne|p6;JJ47;+s)qZ8(6{>gxKjpjSpSM^E z0IhzIA9%Wd1E}A)WUCOY0A~Cw2Gs6hl||wyl84_D9KOoo@xxfcC<7CK=sKNDLdFR; zxK00Ao#z}U8$A;8j&_K_? z>Oq!)C{NM0c?5q;%w|QWW^M2S573fXVNvn?>J?J=$yNCH(27D1-zcGr*`A2WPacKk2&$Yca(@*hfyBK zH<_T$m&{Jsro8d(nrWMH@(V6P7k)@r9hyG%Ss(qM9|`@QG`#M1O#mjY>$}lA1XWzI zNf>sj40g5Y6h^(SaI{uhUr%zmTg#U9X{b9mBdrrCz^G#;x#l1=<$alc!xdqVvIz5a z;n%B-Z1gMu^|*vtXx_^F=e86|Rtbg9OMQeHOyJdy_I{+b7wNA6ZC%$=MCqfpxW?=e zj*MLnvSG=QBTS;sEH^4BSmNl0bu&oe0nlJyU3ReWf*hl9&36<$n}qKLi99Tov#oW{ z;9Thl^&VEV-U}jc48Cy7RFS@y8aui1&by5;2wvU6*!D(IO)Mz>G-k_))sxoVMMqhs zJoHn&eL*QGF1{(Yx7j~T7xVGclNPF1aT88*3qBpP5~|?wekM~6bW}3jsio8v#%NFo zoH-b45l>KASj)Ynf034TXUh{hbfpZ&+hY3bhK$A1s=VvZK^?vwlz-;Q(&HtZfZvK^ zPFLi^0a<3r+NZXpX09+8VWZo{bS~zWFL{{tX(9Ib=Zi7NUkRlqg33^bns$<;+R^lb zoJl->sQED~Qf6L|;YjqzEs&*JeqVWgrM^{I@VQ)aTfgyLub|s!Z!G=)w>QBIw|>&r z0@Y6G63QMy-0BR9y=}trHUZt0D9mLU)~DjX0R87!$L>A2$!M!;BQTVSZTg#ZwvF{O zidzd=ma8+V^(!BZ!^=Ggb8O*O@cxmgB$6vXnxrtW`x4s*Z~OYw7kOM82P>N(+a?o7 zxFC=E0TqAnfsBQtItQ;`bS!z>56Sl}$!@K*6Mp*#Fsfq^Mr=Br^;xZJ>dTp$s*Y>ENSoApt-N}(<9kAIbc|pP_hk%$s4DnWU7V5pX8dub zp>$yJ_hW*RLXR)TSf!CqYz)ZUM?3{CYbtjOxc14SxQ%4QDy%-UkXxw!t)Fo0OBn5+ zu3Ol7e2J?4y>V5IVsid4Rfr8(?A7dSd_uz_@bwB~Liq}xx#+}~^sq;71?RH9fOD!m zyX+c)*1Bp9cDIGDP3%l>E$vFd4-oYiXh7z0{-uf2uSX1C-Wox(oaYorpL<8T5Yx(V z#ft5-5P+~;g=2OVv?V^~i+%z6bs%%xfUPp6G3K&^bYK}D0` z2q(D@s{x@_u5-Aos9F6bYJ%oI=6;QYomY|CQD!ZKxlQ_s1X1g@cYHVOiQSh*AI|j! z3mwRP!ZfJp*d}@5i*uOxfeiM!cEoI19eu!_5$kiIgY zCr~!KOmY^F%?q1`Qdy>)Z(ag9;m`sB(C4LksK~dI2SI|C*qh-2k<%y1TzIu#K1VB~ znlpReuSM}D6#&oB#An0qFD|Q%-UVxCnK*rO;F4PUTu{5{+)IAm8s(^TBwFG^3v>se zR$7f%F%J`bDD!q63`!Tp`PNP!FL_IM&p6y8l&RSZBTheTkI|<-y^=$;{C_lkg+r75 z_qKF*cM2#S(%nd_AYCH`1nDuld!*7e1VrhE(UQ_A43Lr1Fv-!p^ZCBNKjA+2$?H0w z>m){w1lR8@G+E8#FCZI8fa;~`bMGugq4EWr1|E#^;Bk&Kp#~ha^@5S5$q>Ph=uYeh z->B8KyOL?ie|-Pwqdp?5dLgHx5Kp%%k7Ah;dSyuQ$|y(&>>_<6(a-Wd{yzYR(tA1O z4ES0_M<0vwcM_&^y(FHDpWbX*;^&ot5z}Bd>Z6^@_OR}(aO$Bv@4Bt-Ham>*QUtHu zPjAs}Xyd6(7pXVc7m!`i*Y|=hSt0)wMG#+~u1d{Y#^}_}K=;C@mZj;Xp19?;f~g)u zR|RCX9$nU`M=vICdSB4;Pbf8eu~zByi+`2bbc%+gs}xXxRlh!&@B*iTTj83 zh4Nx%+71}sN3`pSYI^i~9aSU?k9c2Kry}kRWp_-1b@%DsmT#%1b5^q=(hG!xaJ5wT zxqtf)$XbW$81yLr=j|w%$Aj(cb@tox`Lx)U&izy5#;+or%&YeRLJU)oDQ|z_CbeUC z?qTx@?TQzNl5f}H#l27L4#*4tdQQy#II;C{@g-JfUjvg?RV&kUnh@+UxA##t^%PDDFW zAx#=aw_G5Q@4m3(^0mB*GiJxTi*Fq82O;v?zoH{-L#ge^?u44IQ@ z0)h*fUOS~tr#=*A{_K|bCLkR!vMQ_(wvs7Qj8nacfF@qWrS||v2>A0Z@8b?Cl4mr} ze=N2Eo!=GtYl*eAWn+oH<%56SYX^12I2hGg=|`AQh6Wg|Ck3)eaSW%gL@^yWpY91`px z34GH`OjE74f&)b$a6%Yo zG>G0V46G8DovG@i(+X4-@_^NerV5$oTG>BH%~pKUb_S6<%65JVk^>9}^nl3EeiO4! zbyR<#pSNP5OLX7*av??kf!On@|9$W~4m|hL>939*EM1ySg>txKFlKXDKs@r>N_9W--_U?P&;&(!)B~$09Q90p1wNz#S zOhmO+PC;-{4~@$1-bv5=81flSc-)m=c&TUaD z2f7-v5h*IlQwq_kF0Qt+Jiar*bc+FK5qaEe|K9bI);2UUjmf$c97JMrx4~%G+T5z; zpGt&kLl?AORrakjW$RwBD$j4(dU|T9&w;f#?FDyfGW6Nm81A!Ambt3r!9WcZK&X^3%Mh9F(7tqyu0Pi$v`IeepOX5H{?Tg&;Wo7rRM`zV zXO|-TRQ3zYbw+CbYyHeqzEIOxrWMGrAr`XlBh593^35Z0TV9|xLl~{ta_=XUT7$A% z+)0GBYDG*)!3XpqRxzC*^dAjEc$<NO%^5FuRD4+gqT?O?Nko~o!7gUTxV*WJn?V+jM_fGNS@#fx!;-m=!Kv9%+ zD$|+Hj|>~Sxik@k#DV&EB{!zDj27uL&XS*xeqGRZxv!XF07J=S=Xy+x`f29(|FA+ChZFsitRNJ#BAwJ1P@Pqf&5gg`9H52mtE&_@ zO98!kk5Q6pJxE~?&!>=6w$y;|;cFyW#}kYZ+VW0Y ze|+Z&qx1&9PrOr;Y|vB(aKnJ(yhZ-(CAy?qDbIW;KEC{26y5&z?VQ%}r|@_m5NM}B z7!GEQkl+K{@k9kp6M5Gb#?{2HZ=hT`#Mmd2nrh}X_0Q=$yKr}_-RAbVV<$erDcCBC z?W&nt>Fh{+EOKlhw>Ir&vAuuuETc}PD-Kc`0JjbP$oa+P7bo|dF}8T8Yszt$r&Gi# ze`2=IPT}SPd}mV#bA|)!eDjAf%V{dO3jNJSug6`jbV%&^ZQnmm*Nj$KE16zxi$E*E zUD$O$vTI7<@{Z~v35MKTrQ&P+76%-V`MjCIK|5+n{q$bCS3@U-s!*SHcs zgsSonw#_>;Op1@UPHq|R`dJW2F>Ut!K- z&dQg(v-X5LymJs!=aNfT(?f6JY4 zBMClPnpLUI9D+QA;u!qayOZe+i!R?IVOyqaU9JDp6+e(7^R<1U@8 zXUr|Oj#P*}*nS3YMO~G-Y`pPOWjG@&(rCGEf2)+3`_MkMET&=T%fLnMaMVDgHF^U> z@MNcaTc!=KP6Qm^nrFV7u}K-2Or~#2!4+u+?H|%^)9R4WQ#=r=5#9_NDB(al)-kO# zs!bX5RA${Cl?ts_k|+Y^>hZ@I-a#4kdaVRyK03c; zrBqgm_~bC>&+@{1`F^p&umg7CKYTX4Zp5F{o-OBZ9f6+q&o>D5U;lY}(Nn(gh@S9_ z^IT0#N(lW;b}vC>^sPo+PkaORx{)3WX|$=1u=2VV45Tho7*~xy@Ki2^#k)G&E@cPH zYKoV|CtbXcJtg$aZCnQHje@wvbt}AEL>3S`wjFNg>Bxju#kkO&Uu(OO&DWjSWF_c3Cbx@omqsVMKjTV= zOo3L9EA>?VA`8lTmg^J0tnl?ST=qZ6(`$NGB{%^E&4ff-f=ktIe|7maJ`+?PPa_I3 zT(EYNY5QXdll92&J*a#t=RE7&zcb!K^9vZZr6oZCrAYhaK&|#{=t)n%UI1KU{n|z) zW5+;8(w$!2R%K?J?Snl%IfzHJ?Jz9&f1n3W~F zeWKReglfT?ge=U!>aQ)T`_>G`pr=Z$?tcY^ffemF%;fo7)vN`$AY4 zyn=#N^Qu1Q$Gsd*kNQ+kK*@K~pr!|+DRd5o%e%>EK~+}|NDTb>e?ryn;AZwTVCvy8I+6uQAedB-?KeVX(5Yf>Op$^WePEoDh~VIlAF; zF&g4Kzr;(^Q-*KD7AqzZeQXaznXg-zP+ed2`fQ+>d`bc9&8Q5Ek40W3d&)z?hDR}; z@5ggHIrPWWlln6ol|#92DR)m66%@N(gP!&!@iXu|ee;Wkgb*^V{A;sJ+nVaPBOBV9 zexPRc;A)HwYZH=kj*j8w zbUx04m@aXe;&#g%My(srO(^hahjo3)&^@UVM0iqK6Pk3(kGNQ+adFm@3|}y02%HJ~ zp#aN?G=>jw#ShG|+GwwdI+HK+`#^ecO~0|;@=fq|gMhGJ!&| zw(rA~W{NGf!D*wMDg}Z8qgB9KR8X z_xB_QI?YE`Zp`1y3Z;z7NP=-3*;~|chQ~^U@{9b_be&2@jVhuU@0)o4s#ATqBfq>k z1LY5@F_*1t9;&tzZ_O_6IAI!)LLi0|8s8{GvFCX9c$w^Tga(BhrPl?stz_cIH>pM{vP} zMikf$T`@9W&jPfb*@}vho2`{xm^XAwttryjJqVlCb(G{@vm3jdh!SK``VN$?hYU#d5Z|KFZtyL?ti25xh6y z&Ze})V5|K@H7fk`K-8q|R~e@{c6^t$<6nRK8;0;2?MFN7&doMI)k87#3r?|CX8p4^ zUOpx=9wwv6d16Uc+h0XBCE+!{Y(6YNg{O8FpWQxCiZ`#`OTqp)lW^=a>o!$(KC7Nf z57Ql(Au6q;2w=)`(%--_)t}36JaOV*nksov!|l*oyJt5xXiMGB^CYR0i~MS?PSmoh zEcK>GqajbqL_etso(4&)sL5%&QJbikPPjgD7CPa^CUNU;@lUPL#0U`nEN5g(^liF8 zt^TWVVOU~d?Qr~{tvlCr{_=R)0j$uCz=u=L_)X{2>0Ve+`D?pLQPYD^c3EnAzR^ZAae;27;zF=w8~Sa; zklOY002wmx)=OrU#^r7>!Qg0biR5}sVvhEr|taD?x1p37OqzVgVv zRgauh?pY?Q&%pf|qc+p!u7(ZnES)7w{(IT#m6{V*;7XUaEZC0)UdHR%g*S5q9^a9D zZVf2hzFrE)124qNdy7tjlKL)`7zgKKy(;rEIgb)LLUard*mq2U|2m{U?P>Gu zWhcuoFa%dfxKtfY+^IuuRoOgGU8O%YW4Zb%Z!x!z4BGiVjHth*z+jDAqT z6G9Hzmw-=~X9ZksdOD>)>+eT}P+mJu-sYzt(xw#t8uFHKDbt*%wSC96HyFu&LgTBQ z&f7v9M9*8MES$y&=tA-{!B!DR5`}e!-miOTu1bWbgwz$8(&r!aiPlmo5IJ`!WFezGw|CKB$LxHn=y6x^Dg9d((oV})@2TrKgV+IWIfoSUTR%`yuPSZclDHR&F@g&z98ZKM;7@qHRsWgb2Q77t0cqjdG zZj+}-&7i6RJ2%5arNilj-MQXb(8oF;YC9VFwn3~#^IoT3RvCqLt6Io-b!VUq-iM-sIy|64puGp%qG-kY zJM4l5QB-D!6#ZrYsP-o^tm1^@9meIAJwDVrqs|Uiwxf1iPX|iB)}Ed*L`he zpKnn67-y#_=N@DZ-{y^6=8)CyP>p_|i`;o`tybzl;#Y!Dh}GjmJ!_uRTn?_=+JtWcnIemZB3ai1~haCJ5LC&4P+wmuCwen}* z`F?)qC-i$+AeX->iQc(u_*7@d=b;yQ6L8pXOQ9)IIHduS_zlWbX9SP#l56`kL}Ld&};A{4}YCHlOoRhVF^^xMB~ zXDI5E*mMGbQYGlfjH+Y*teNO*pf%1u-(ULLQJaQ`Xu8+7sH|n&!PW=jO+o_bvf67a zuFpbJg7AIHq~`6M)dCqi7Tgn|L&wzM-s zF->`TU7kyf2b^e)V4~=$dx_JSCDJRxT(RmH>^X|*cELYPAfBT{N5|ssmw5>N2r@?G zk9x3(5XF4eXW?A+_C#f%Fl9VNU;HS=uD|W9!36v2=qRomZFi`v1kITNr!3}~K=&R~ zYeA`sQQvO{9D|YtX_2JuyR(p~#U65g&+}5mB+LGdfLW>qnIs|5tV^qHp{xBPi_%oG zpkeTbnSg1MOm|IeJ}}o~UoQDsnr55&xw-ZqMf;s)*e-kHAEwdz7nj{HSolS90V$V@ zC!5(1eglDD1&e`Xf^lTE4W#wvct35UK09mXrZ_Xs1E5tYvLVI;Dg4_ItmCRxFg5m2 z>47KVJOmn^A6dwC*Dk^&Hy4tyP4AmvFhbA$SNi#c!68Yjkx40?+xw+b%UVQswU>xd zmNWs>k^R=%f#DUK&d83%K0{0H$Iw#m?&`G=-L!mcaxS(WbfzQbA9Yd<-n7O(d0BtE zw1lmMiM9p-vU&Q-K;`?$s{3h#-*fWd{@I+Z`U#~HV~>*j!zs4f4IIO(y(3M7w)w^b zuT@ZJ`1fr&!@^B|!`wona4_psxu2T7s3|Wb7gYEyvLMPBuTe7K?P84mh-Plreo842 zZA>uLy)c6aV5r0uT6yPULgtNj1U$)Ag961gZ0?trLjkv3pY#NCb;PH;D&J2XRj2Vd zb|Z$T5xm&~>(4lKq6=0vGv(P{et)ryzUAxt0(DTyefCHn{OT1{wB7H&f#RiS5_bo~x8bccw?h29lobhA1I9?_Gg^w&g`GD| zBkL^Z0{CvEjr`PJ(D;rKft0(r>E|XfAFOUa@aRn9 z%A5XSy+yk`gAFfBj2-~w#Y3}t4B|o=6f;s;AQlcFi0qJpl5J;2v1}*}s|WbUG%|!K z_YFM!*nz~Bz_B|)*2i&Lc5mD}FHsg!q*jQg&pxwlxK(n>diuAG1#iqBlm~n?;wf5i zaYk=Z=-6)6pxD)itd2>}M)Q7*9+fbC;n6&tW_e`HSxXP8kDkL$ZSAxrzcEHoVC{q`chflPgoigVS9k69U5V3MFh@Z7ol5ari@%>CW8J{O z;2UqZi{kL$Nawx=qdZP=%l)oUvjp!WN>MyK-h`~T;VFJ84kj!>opZ?4Ps04Um@fVp z=-VFbZz-qA_qZSyLV@RZW5}f}_^rR<>f%A=?x6n+Ldqjh4y3{MVVy%W>5-Fut2$ZM zOG3S!xmCG;pKX_3jx>J4sdQ}QEr;#3q1dzAR6EtJwJ4-7<%FlispF$4{#$uEpkgq~ z=N1?>l}JvMETy`rB&UdL(vCw`!ng2=d!P*}HhVSdcN(9-o|Wke-rRR-G~$AcHJ4dc z>fu=g)AtVyJgfW9oM-w&bwk1|b&#u&^uQD5c+5Re`0L=yhhd}#$G8WW>f4#4Zsy~u zmk%6NeETl_4Gl+{|3mlg!^59c@mO1hfrZM;Y?0mOTb>iD9SJq~>4U4s6W|-BSZX$P z$ZeKsWq<_t@(+6_pZ8~#Jtj=CS}at*w;`Z`i(UV2uA5^Ir#ekY zZN92&3v`BSAJ+tA5HT;IMCzIL%A6d3xLi>cez|oY^?Go|{3Iad(3J7>d3&y>MoRl` z>vZCfh|!l;1MdGKmccIc{KsGu!@hepwoMU|saB8xL%X;J9YJZ24CY_bWo7XADetk0 zS_Q{vuo${I0e@>3x$h?J!@8Vh>)rDe5*8cfAy`jmNSBjPbMBr|%cvGEr5K{1E zG-=so0IyU(tBvH=!=|pDB=G*52Uk^@3xf-FzjEkjsRX+}94!u=Y&)x$28I&2>M5R)%rcQ4HUaC&RMarHI$ziEI#|%9)TxJ*n z_0Z&nBFU|LY^|UNkoZNGx+!H*+e?pH2x#$3cd$%xbPe`mMV|2Gaaf3dwR|L&bNCKX z6YToQ>GQ(yuK9>%oRN%QMUK7J#iw!`1n8gogfhE_LLWVhl3-J>M!cVYV+VSI_(i{d zRZ+OSUHN8jerhk5s}__2=>8>6vH}t(l-hm;yDKN!`h6mI?iNJI|E^`sR*rckBZ*Xu zL~Za*{9KxQZPN*Sz=fFx8a71hYtMi!2zPia#liSsG_{B(-Owe?ADx|CMSm4c0^@;pC%}+BWz6zE3O{t6O;2dza0uPG^=Y zUbjbS=k84c(!XD@p5nX|h1*EYV~K$VpwV2)50^h|xN|$z8J&ciia(G{>;#B*Sj+A) z0mM&9eJQm`I{f(}pQGt3wHx^>TFu}Tv-?(H(3CpCd#0mqO?`S2$ctv*BOrIRg6wGr za=F~O>WbYIE4+eg1Y#9H@dsQ>hzwhr7X~N0AUNT>{ho{LqSIUBXD`QWL@q-VXyQM+ z{N4GK^0Huq<}^hGnc%Y9krS)hww%UY&9WH{bhCLRgTbKj63Kz0EzUz^INgfw>T-bf4=sQ8|Gc|=<3 zIJ1%|Od6I_$#B?i>3&Z`}_5iT{5yH_CuWeov@SSMleQM;Du$i%NU3~w1+s%0lqeR8KLp#&_)(Z z4uu34(a{6Zmz8?#@N%+%Nb!P*0zw+Y=--qg9Y1eFXRxHxZM@0`7wxgNrq~3xno|wD zNy+2yt&HakM;@Pt1F~h`r3B7KM%{tgNj5L0IfJ+|dOW zsh4A&8<3p%t371#^E4%IScgmSmaRsX16(QH>&eJfZqr&*$kbN%?>2dpiRw#XZc9Zv zg-U0td$wZ29ZY$CTk^96K=m>LJ={AhXvoRx-Ev$jhN?zulB1{LP!f4v#l24LtLw8H-y_inG)r9)(}qOxn(!e zn?N>%V7gH4N~G65&N+ie@oxD0EoGk&-zf&B;fGzuRhJn7fm(k?*V5Y|*-XcE57;1c zqg+_jwrTji2V`}72^L+6O}{BP6T@!`c*iLg*S*7OYf0Jekn$qd2Y!hHaRQ06u{J=^ zd((*>R?~Bv^am~*#9OD5lQ$-)U%QB#*IgD){c=iiwdk=`fk`S%s$l>RnzAIs6$#)= z-|>wy}D330=MCrPJll&F~955>}^8_ z*1+R~dwr#^=~4QAm+A|{WZx^&+lY1DAS23a$&D_uenOI{g$#H_SNB7}m z1SB?)Dd9nKtb{~2i929f1pY{)mVq?XRJ5Yfm6p&Tz*|-S!VnUX0KcP;-nUN1K7CY5 zB=N|Yd@b@`6dmrC9v@+3@A?gAnJ^Q(jKWVX(Y_!KPicGyYBu7!%nI&mtlPs&fn0;$ zWtoQ_P`VG7p6JfH?y6+U1WF`4>uz`&7%~ieYGoS6Wb3BUV%4c71mBX`{;hAC4V^g~ z6X(>>`z`>d990!VDfuB*lMCfSZf0ng9+&mgx4B4SN(b4z5sa*P%0W1Dj3p-`fy8gK zVx1q3H?~EO#&?SEcl+udS{kjFZ(t`IH31h zT)Mm^@mHJQ^^I8+nek~LrP@di!B~kjRv{8OT9m4|6aGtuQyR{?{4iPB0ii*$4Qky6 z(g5>Cu^h*=*4Hx}DXXA+**pLXa0bkkU4E4nYIjDOdzha@U1Q8YsvgUsNkZQy7lrPNo>nb8PKBwy6bKE zKW!5e^(4MhR@XC$B=FWe@jQ1m;w}n0Pb~naVq_gUFzdS2sm^ zEy`z_Zc#;xH5{hlBc;N7a`evY5(#{z1Z?fS3=69Z^$SZ->U*hl;hesO!(|h&i|EH& zYt9Bi!WZ&m{U~Q2n^W;NLKgRuWjS}{eL*ELY?Tc2rh}ghzApXIi)`?R7vz_}5}DQe z`knH~1Xv@vsz9uQV|DC;1gV}NJaXTG=W#>sXAp&$M|~D@ol^X4%P{5E%@Juel}ue% zTRAE#&46!yl@OfCbZ46z*~{BdlHlzO&qxjpe-XTc6=C{#d*6x9P7>p9K?R4if9)r@ znnFW$GPu2r(iINm6jzuGw}qVx4lxx{Fl%(+wD0E zXOV+l<+vhH*&f3AFnDQ3{wt(E{=?MSPMTBT*JuU}@qdIFP{+2$r84eEI*-qJEKKY5 z$3csIMN2HJjLsS(6PF5jC7>%<8)u1LpQ5MtcU7&WT&MrV(lPi{@kJfRXxa#9%>jD{ zLyR~3EyU=!ZWOKu!-s>5EfU^7*+JJRoi1St8rBv`wJ7{M6`0ien86P(YVKul%J>5R zZBv(Bi0Y_Tb${_T)g*oQ49z~GaPHl&x|8lG_%-w5QKU|Dw8bZ4HRB9e#T3&f=!f>q zBceSZa@m|G`889t<$$W&O-v&GF5=1Ij=vS!{q=SC0^$}6Y0g<&;w{_drsB0l?31$a z(Or`vKbdKDLZ#HX@EhU)rSXY$fE8_ncD}x;$mSSnAN&~>Fx0B>f2Q)#K0I4YE6g%X z5I8f>9$bSiEtH?D!dMPqE(*;}6$l zSV{lWaP6M5;W|wmo;T0Xj3XBiQJDK9@MsfT#W47K5tHfz#;qcQBG769479GuPYMor z=v!_TtHUxY5&xC^R*ku+FZ@RHyq(jObWe3n7m#7Aa@g*0Pxn5CDNa_)7c<%=3RE|t z9Qpb2`IJ~JdqAd{wE3MEu!=t!UM|JxDd4baIUu2>&q7g#EnHF0U`}7_-ZdVlvd(<^M<$- zxIETx?ORVf>HUOGxqjhigwQQsa5QQ9lE0Lr(Ba?kL5}$Nz^o zr&BrPOtuX*4%tXv%Ga9`4@;nXVXO>~IkKEDONe*rokTN5o&yltwZd0)Fc%-TGKzrB z8&Tg^)Ga(~ex?+i#Q|tu4aT=UeFC@UG_J}ee;^T7!O(s`$wf6)(EcYaJ3+h=a zV^c$VL5)LkrvxJsUX@hk1~Yk2mr}WrkTXy*D(MU*W%)f@P9+vDtbXel^!ryGGM_<2 z-jAD5g_!>VtIpin@_#&MyVewv zN5hMD{DagT8?AN5w-ZYZfb)NgE^sEC4%z+bdFZb|Lv&uHsPLD}Z3fz2_CxE)laDVy zGK6Ca4Pw^Bgw7aQ5T>B>0c$BR98{0otc-&^2NXK3@>VKPRIjhfD*}P7Dy8cX7-9~$ zJ;b9f8Vv3o_ag5AQt*YCZ63C^NKbX=U$?YXq1C1WOxk}M2#9%1pby6 zDCG9XlW-k++wLsD>VGxx&@|;#FlhysW>HiBHoup7*{MDLWD7DH1V=UXzP;c9Md-DGeS={x;u<^G6nCzR%tAK!t_(%a+f$No&5os8lr40jsw* zzH)VM3S`cjV20Uw6Phu>7+b7R10o_Yq^;=-ktk_6wvJMALBH=)f?G-PP;cy9^_x zI;*>_T-XNiWD2&)Z8uxaxk_Lfk%i&{DOXdXmMZ%+QN7!s%HcI@e__WQc(NAlPW%t( z-b$j=(d{j*cCpe_QGKDO;qnu5G3F=4{Xm2?qtbkTxnK_cTn)}2C9#af9fP=?8yHrb z{vYQZ%}kNryB3lk^|i8eDRQw5UYTH(8DV`kB^zvVdOuDxF~;QP&Z?4pm)+lYo5g%I6Oa_Dr+T{I%PoM?f24j75s`tx+)%(x0>y6@rg_t+*Dqcr=ZuK%zpX$q#Zjq>Pk+! zMwvPHgIfZZe=z(Jse)dc({x#E@QH#Q9!lsbFo9lMUqKR2$mQeK+xUfnHkN2g_caqN z>PUP#>Z#yIHH?8!8x@8LKS58_j;Vht^1?ndwAOm>u8%aF_7h_ay@awzvci`2VGwd}dV_(y8 zoo1guO|Co>d{vZ!pR=;Z#0^$E(;Cs13;6a7tuxTzc?@<-_H;bn)R*IPz_7@0rkgf* zb|#x?z$JK?dap|`a+50gOYp4XV4c}XdhL;OKf*MzIQl2VpvL;_I@?{qlS14`9Rd*@ z0duFi*YKE#1@CqeN>}CUBUO|9cu^#z=c+1J%U?9J=Tt? z5d|@-@&npD;H;ui=TovfH?ETSu>jO=Scp0#2%zp(`LcUauZ^x?3Wu|Zwn($P%Qa@kHaQWnuqm0 z_na=VRY_XDLJ&8VrQWSl%do->BY@MP_eSv6pRT9RvD@f7KE}-5&`A(>rphdXth0pr z4RSM89MhKctrEA3G~iAjk`xJA-j)PSZG*lpITdho)oz=kf(LDtEAMtuqK-hb(YXMp zyNZ_0TY4Rt(>ZfL7vM6fY$ycLqP7($ze2z1S{Yaqvp1p)`1BpF9oyvGDb&b4vAW5a zS+T0dY|Mh9tr%aFy+=oIr*%!C9FQT1=Ad9!v2cVVt#u$+^KYUZx!Hs`Z-Gh|K!>o& zynneT$z!#YhiEi`=T1y-ZP3+8*2>9nV)Xs1`Mwai)J;l6_uIdP%K{YjE+*TrA0t$42#UL3 zwXnHQgQH$Q_Pb{7su@0gu=`-R98`++N_3myiTL=!R!bYhA`(mt&R8hDp4pqcqqcNC!s{a=hSyFa84)m*ci^liSl8tL&4y};4IUEu&_U1@!fLk01cojq z$@TQdz`ABO?ojT~DD-K|w(_fO&sV)u;Y&6|bVj(73-e)jtXH@PST!VeAdN{5W|!|j zeQ0`S>b4(4Vn{Z?S$Mw#7;u##dS*euz^*_O{lyRC6T~~$7-cCtvO83uPAiIt%laTLZXvOph990iWq0c}@dYb*m)_f|^Wxt?Y&IL|P>4g zb8ocfhPZhCN7hHOBkgH8&5Q@4VpjqwdU(GUGW)sM6ur}6L2KzFQGGkM69n|8)dnh9 z`>%}>V)k#0(>pSBh(QbOmG_5hr19O}T;5ME$nz>ai#KVCTNr-RG)>-8=ao5iERXySk9KD+xkoNyY!={2f=x-r6d$)ZE(pQ2>U;ndlLjb}uc&|fRsPb@ZBLS{ z00WPlie)sIN2g|^5%s|sLv~nKVro)fhu$1Ei-%D;9G_STc1SKtiov@VUA@7rSXiHN z>eBRV#nlXdmR{TK$_o+WnJ%LvNRNJjq!Z#q01@xard^`1ncPiK{_Vxp@Yo)81Ri?W z9&eM9EMtE*p(EB37Lxj?Tr)PtW@#H7;kO-*F`wMp@sCE@6|6?yRN99ySw-xls<99uu zNYuOsi*_VQ0=O`H3hXtvGcrg!wmcSN#p$mrr!l59T+>~)UNfGG97cJh{l4|%IX&)7 z*&ZzN-<^!mE?3+kLD`PzuJ9Yz?*Nw71Jf7{4JOxk+Pw6@hMQ~I3Bbytn4lY_Y5w75 z?<2@SI>x4EEjjp-UL%21{Cd=NMixIqns0pb)`zpMYrnajXY#MWKvMF4E(lg828610 z8r3J7t6wckb1*E8K0TU3bFb-Pbx9Cw1!MrJ4_8YIik^lo;94ubnB;O0NDxR){u_YN zxx4ApbnC0Dia>divRm0x#*_|GOyFgKy5FxKp~)f0sp7#x zR@9+Zd;*8y!bvaCTRLy+Zv$tGr04c>M7NgLG{%jD;KHb=%(eRQ4FEY}N%EtH6#qa? zPhK3DYZM}xL#7pJheQF*#gHg6V4;rf>r`3l2?*^@Gab!oE*UJzNgBJ-m3 zLaT?14FRPzED>A#YpG{NA_jsbo{P~CE5KN(P(1?*s1D;I`A{;@M@gi0NC%#9aDj#% zWWTpz7Y{mqz&rw_Nu-g*+%E@hQ9)@|_TqOuB}?gI5{AW6QxAGr^i<(;+g8FPf9Pe= zfc8UVJM}qPI4-%HoTEAK{?Zs#<%Jy~?O#wW@1%~qHWmEcoto>|50rs7^OmZ4_N<99 z$yErP9)Z&T_P+&Eaf@!I*n}*TMS&*X?>G7)F~y_PhD(8z2atL*6Syr$U3I)%MH5gp zu}$!5PX+y60xCZ+B&h}ck-Tt<+Hy6@`I>g`9|LU>m_T0d*=Hn_&RNVV^<%=t)czk; zZy6SKw7r4SNK5yCFoaSf-O>z_N_Pv=A>F8SBi*1V-61d_A+(qX`BjW)l9#qb}uGU?ovISPuDxQl8?zp9GYXa z#@p4o;XK2j$Yp@-bc(oG)d}f^<|cY9_BWB>cYqG}zW8ags?X_uz9PP4=;=tNmcRB2 ziM?QXv1qbchhW6n+4B@-AfO&8(IFt(tir4181vIid@^rkkc{n}0^k6R>&R5xjJJBg_7C|dTYzl~$Lv1D_HNXz z_F@PEqU*o!DxSF(uYUUes7w6RLRxS=^WL$$6eiAI?3`3g;JU_$a6s+i!IZ(8(Qrsz zbEv7&hy6qa6pU920jz?yG2Y9z2`b2<@X z&E|_|c{{pu&*D)$^nz%?Esf)W!D-yQAt(xrV4>pESG>-_)zY?$EK&Pgya@))(W5qN zFrJZvt#Lfdray|~buh^{fBkN6Ohs*76K}E0vg^+vE6mj>wNfWeYr)>MqvWN*=QE){ zpD9O-xocL-avUV+koD@U@W@Yxc`LSc+6#pPM>A?!{^ZTw{<>}CO-MRy8V=PmR;R^oA#KYs#9qZFA*o&PFu09_|aLlDIU+n&Bx`I zP${c~26|yWICom}_o#K7_TrA*c9x&^AzpdHG_ZMT?A8e%Gm`!}o%7;rY(eTNe*(o5 zMaJJDL?#f6pS6^VE7Vl7;g?6W^MXWqa9f@PeO>RqV8}u7$$9`dh>yHrzw!+#UNQn< zfIlGco}Msm94@?yXF>6V9F9z!$UU{f9|JVaz7SnjrIU^c?$WpXJ(+dL26cjV;U)SG zW+!(;95m2&l}2n9OO`)y_^>o)=)B_&ify<(qc4fQ1_fOck8|s+)u+-9Ja|Yv7?Ybu5m@XFOnzk2%hF0uP z1D~HN+|as_(QW3(vom)MXt+h7-UKZ~-%Ct>o4}Q_?IybZ{3GYsrE7f-;kK?t*|huA zwi@=WSchzLex$q>dQD`~oVSE3Ka^V6xCu0sabhC``4BSUKZ%M3_7eho>J-Q(G`yDf z7gv7dTc(S#lAGZ@E>m8X^wu9?e)dHeCth3VbT=zmWZBqXNw*&XSG{u8 zgGYTrmEIGnYD0RNRw`ix)2urab$o~W{p=uZGg*zMvKew;7v`IFa%FGr5JulC?DC#1j) zj9QkwJ@~vE{>4DH8ke3-^iP9>dZo`mugW)u2)Ubd_1YldTC+*`VF_OI30@0jsAfrY z;nUm`3O5Ei$^5XMvT@~=kqiv|;^~W!C))RBI-F~Gg7(4KACrSatBlNkUFN?%n|1$A z%|NUyepB1FR>0h@wcLRZ1Bz)Z%S@7u4xZaAG<(o!oK?D|u7pES$kEDGc! z^(jzh&LHP8>4FxtdN%pehj@7J{0aUmRNq+y&Kd@1Y^0N9^y}$}2UNoYoZtGvQ7Z=p zD#e=?#aFle3lLs{j{^YF>?B2D5XNu#S4}G1t%P_4)Mz^_Mb|chS5o+Xp2$aY)KypT zPal>TwNy?tP@~F=Yi`_2+_986BrvF`BE=lYBezlP&Ci$wcYyJsF96&J6;w{0^lar* z%mD_4DPXepbdsN~c=wi+%q<;w8uT6fYWHTp^z(b&W39|j$5lv2GG82%dQs?T2d5Iw zwrV0ehgD0E6nnO@^#{bX@}2v7JAZs#m$}-VXaA&_F^Bg&;lwwN=Y1iyLE?7tJ9od2 z%EfoH^eKTq`9@5pf{Tx2L8t0vbx#M8yPiKJ!{Xg(-1p!LtFLCh%+n*7cBPv+$TZ*n zmW24C=lJvN2j__NhO!1VcgDt8-W2G6b#n~njPdJW z@25rhSZ`LnpeIt>E|T5F7$!Httz|iNDo|%C#J%)_Y|m;>R_l{H)c}{wG-^B3+yd(Q zFBwjIt|aIh9~eIx0^&UO4kKOz0}1fT%w_xWg>i-DA~uFN4}WqbQzMlpP*2WnK3$)B zf~pXHpsv2zN98Ap549A+@=6EhKX0OBOht)wR**pnIa|;`R@M*C_2C8HB5-d6(l+<@ zP8D^jK?Y##7lmh9T4k>(6_}Q>OS(`fb<7X@jIs{Zh-S(3ysMlY=oRFvRl-vZCIxbl zT-S>d=8a%%ZsmVqIUQKH}r|EdoZXa|8@jdXC}9$UBTb_|uPl7fvrW zWDxQE;1h>jWB7A3!6<;>lP(ptCtTuI9)WPFxc3@Pn=D3CwNycRYtr{hN-(r_ik1*)w zRDgo(*}cH#g+^~luR+1pQe}nZK<*B^q#c9hx;o}o6{JLTUVQFbxtPjhLVt)No@$vj z>#>GraLi{Lnr5xp+tM!0&G+WdpY8|~!I(4-`r|lrh%Z+pIzLLi?=4`5W2YT$s=|cc zQQh1w-BQ1I6a#GqYE|CmXXwGM3vi|x37AYO{2!U0^sUd(p)4vt8~yzlgOhv@MSaA6NEa3_9mANQ*kz0<6kP>6X|&Ey~f$GQZ@QhT<(?AeSne| zu`(@pc+gj~w4W!ZoVCBl-3i^r-i*!JJFbFJ5*zTp4R3S1?L?-MH%A|E4Lkmc`iv59xq71JgN~k;P{& zFRj+Zd7QqzfE0U*b46HR6rVd0K^qAZW_k4=BbUF-+o9o3Ec|qOB+RCn60lMYmIm~Q zJrS$_SIpM(4>v3f5#6vg{?PM5fwzAG5)LGjc)Iwd*Lq9Wg5%JgS^DieK5r*M>2)N^ zB@@mQXeq3zE-q_QYSm55-7QhOv8T*+p2i;U64(=Opw`k5WLkfkw^`79HQ_43kVx66 zKmI*Y<2aTPR5Sm~ItE8X%OHdfmC^5#f3~Hm|Ljj}w){=C0&W8bbq)sHJ3|uWwenZ9 zz|zv6JX&#D20AvX_L}I!W4NS0P$|3M=G)Yk?I~;P^dkqeb|SxhQcVI>&bpI9Zk=mc z;F3@dAo;;S(dsSJ1kw#>(sOK2g}K`J9ofcrI&Ow}-h!U5n*_#oc-np z4_1Mqc7y|fJ$cXo2n#3E`4LZo6vh@!7yj5;%2z!x;&!y(AftRs&YLwguhlG#v%53- zv}`tRDGf?L%K0FtPXl)!eMZ}(`SP=<*>x3?&$fCyr9)_c+u1rDt(jX8q?qTmzfbsx zdI&`PT`aAAqH={3eaX5OeTmgmrn0j@e_d2+A&%@_bF)zLE)dHMw+_@H zC+#?HJXImax&t5bNuC?z@@#;gV=HoI-`~rf!G+@0UtKLUdc@4rFLP~Ve)7ntGm}FA zWKt)kMjnN}(GIK9i<3np0j9RbkNU;&Y?IRmAXvbuYtQR(Wfm`;QU%@Tv5JPgeQ|yM zIPlMF?x|KD6ApBrTHSG)CM?8GKQYBz>~@7r4T982(?XFNq{>> zO|Q26|D30pJ8Vqe*QN(SVQNuE3G)0(m-yt3+S6B%Ufm=&$svgu{6SXNcf)^`Z`HH= zmcyxlLkViwpxaB_wtTSDpL+`$5u1ZRomacc$W2vhhzS*E%kj=g@YA)%gDgcSubrN> zsc#41`%m5ODSIX}^*3gHkeg5sk?-8lAZ!#UK1DItTzm1!zwUZ)O+D(ckgD5BNjw(8 z=Mm0Q1T-+aiI8npM4fOh%WQ09_xB;Rcn^xD{NRY22RT_JQEza%`{MH4$4t!H0`1zX zZ@tM>|9bs>|I;NTVfWfUX#UgY==H8-!RdWL)6UwAL1OJS=c-+8P>Qfa2ZL<=U&4(_!`p+xVJVxo`44S)0E?v^;s?P1mhkD;kE>R%<+bHa#QD| zm5r{wU|eD$%UeEj__TOvb=ARSlQ;7*rA}?t zGIsm>x?=z7?fa499eK3Yl(Mc7k=X|(i_Hogt?X7_PqV~_a$b zt(#GTjjX%FOyQt!t#c)$HRfn{<`%0eJs||K{+s8m2+9VW(9|;l9-r}F`M30&e7ieCUS0s)7WC^>`)85A&q3^ zK_w$@om{1}UWegY1MI}`a$;d z-%Q?!qb`U3lT{!xlV|VG{;CPxE58Cop(DN{J;2syFRAV6JrhH`&zgm>iXq5<@zu%= z^OQo~F2r^mjq;nhZqVpj$~zG+N}$LKrU2zj^IcT1+0iTd57f0hW6q)Nu&Kfgu(@y<@v5M0|u(HFeZGL`kbomH>0-1BEW z+)5@@5?^mC9>nF5i+Er|z3(w9jCu7m0?u?>)F0PsrDtrd*mB)n^yIM2LMnPJkYo2L ztjrWOQhQ?VveBu#<~bJ?hi+6h6V-EfsW&`W{j5$@wcTd?L`odt>k^qfhvA>0)miMC zaD)m8#L7f})7;-kFn>nn4^H4&Ok$WP5BWP0Vl_Q8aLWw}WxB*nQwAiylN9 zoFFx@IP~jaX7fvB`>r>McqBR7j@Z3o@mZngf(Yy zN>lcm8Nd;`MvbNvb1}X(?;~09|Nj|s#P{4O=nKlXwz*@52#kSUUlSXtukbgxsyp%Bv-~hxTE8)P~z_t;qv#=Td z{;;2q#EJIbj2@#;Q4d#eMV5F5wL8hb*e06dP5f&^}F~6&;q^V484*O5q9BHb6QX*XWexuoFSM-~ohLU|sr{>VGO>*=LVzoL{-PEaS1rptKI9mNM3Gp7h4Jygmj@ z@i8PcqFiTEHx4aW{w#jk{4q4rOIeomf6B2n_D4PwjB6_NU14X z%`%g5-JDY)m^yqXtw1eF8tro?KZ&1eTlzC8*jeSCj6 z9-G3AVf8{)-Lm6;%un(I)kDfTWvMPu@%7DwoCPN3v$$7c4dTZyX72fHC%UZH{_14d zlN}#jqEWHEzmChseNoEh4Rhh&F8aShtT_-RfRHyR)mX=z zWAv?YW8SCJbGl#5Bv2F?lY#wML(#I`-2{H|V1*Iz8})+S-4W} zq05F_%c15zcj@|*>6AlG{M2D+D=LO&nx*NBs>h^$t}AvU{h;`A32#&(86S;_RT86T z=`1A7WAA3?>P)NX&)YgrBru3JMd5Yn8VyWN*Tm%k{a3S z;Yi2pt*^H-1e65hezeYf)?A=uMlw?L8Qf)|FZwUfx{0Qr+=KPXDX#^FZ*L90>v@g8 z8~lx*He0Las>wPBj$j}!&isH6yDM;A&Ec$ZW?01;Kfag3il*|!a9%mTw==aka)YYC zSAT06MRiCakCd#&9-l9pJ)U#{9;_ow)E%XT~LGE~1L#l`gxIwX;dqpVF-BqdkIM7=hkRQN63 zulply?nVgfP9r+haZo}e&N(brI}NA1U=OT_iwa!!JvvxO89{rZMd5DZ@@i!{m)bE= zuU_H9X5Lfai(h{K&DlKc+#QPqIhk5B?@?F1^1QM;+FzMv0O}L!mQ58=2$xRcXngGt ze#e)-11tDfB{ek?lXEjr1PcHy|0JOaeHhU$Nk=m95f4{v)MwOz!Z>tjv-rGBjrLRD zkz-PsS;e=`awk5t-<=^LQ6DOw@l$Y_xa!sOC_X2=UFO!U=kars6mKC>@eZc9ma_Og z5qtFX0BsRd22JB7!HW>gBQ$_wezPm9tdI0qEb!0?(?0CLob!FW3?=4ZmZS8^h0moD z0q7GjnF3^p&T}ag$~4fp7_t3_?4bzI_JeU6^_6y^XV9^X>5eXm0Ans;S&|gJJM4D+ z-M{u9X}xA=c?@Mtpxgs+|4t&j3P-ezn)EQql3EIAmDg%MacxD&EmWfg=G#~s$|xmC z;cZ3Vm$$$T(g=Jo$nc1}w|5U^!;eU!H3^^y6~^NP>*nk3DYN#-&?Zh{p zoJQDw=hy>Bo=F4iXDg0&0<(Ua76gmbO$AsF2@7xULvU+3j0k-(qGL&X9}05Ldk3=^ zldH~>OVnD~05wA$HPp5g$xw0A8Isc#8!(U!Z!*QA z2TkB%uJG>^eoX9_3SdIqgQH)6>WF&{iF+Aq5*u(B=?^EO8V*=!2q0X8oCP;(dDXd^ zr>MjLxnnxqGG6BQ$&fhwj+k0uSX)F0dr0RbhY_KWkha4Ldl%&eixg>n-~VedEhTRc zZcyQm^=s19T|LoW($HMplCo+uwo`R~+n_a19D%*Y*kh&4oy-&ACBfQ|R@B(T%0ob1 z!H^m-G}9!Pz<$;7=*ciG-))!mgD~|+3fUp=ly*?9gPe3Gh5ZP{2h9=S0c91vs4g)@QExj&Bb-a5hYm( z^rPCE{sG7d;U4U_M++nyUbgO0vqMd^aHk<)lG(1?udF@O#r}faH3MIMK*t*`jfdLW z3E=HiqtNZ6JLk9NDTvJD1F>&WW0Jtku`^`*H#vzsw@d_r(v|B6+|>eGxAtTAr@{r& z5{Jt)`iN7@>LsNR&j}wghMMuydpbU2PZ-Xr7v>i?U!rJeO~5T`sGC}OXmf0(_G9GTx#)UyI)(JbYqsep>JC=PHKV5#zSWDqq>(;EB8{CYjx5#T z@PoRl{jv0wRaPzHLqAT4GmS`*RcHlsowxLq2s`T8WX^LZQS4<`a|H+G{4WB@OA0UJ z7*`IwW*lqQ;EASja~8*-`yv?pOz22<;y!# z#x;uMi0ipVjGtY0^{Y=0N{*qx>o+olcOfAZIwJO#ZGx56rz@-T zU}3H&?p{A!SJB8K-xeM3JZtDc_`HD@sJLav^{xK!pd+K{!iL363FR6UOIg?De|r1b zUK#a}CNk)&4p+=i3extES0A(C*Y}+QF`~zg3|;Kf1x^x6d(MT|H+&1vrG9?k;Bl91PS74*f9oWJUN7q6PI- z&Q}_J!@$@XKoWaPrTIA#dHBX9kNTOxsW5OIyw$WP3#dC_(X7k@H?xK@70D?bdORYF ze2B*<;Q3U%;4(0iH@9*tK^_FDKnp<&mP5YrK#`-)N>o1Fc?F&gH_)r{)d_pN^h-LG zyt*Gi{oxj`Da~^S)BXI&4odP4BIxl4xEKLmng#Xr3I_4`OrtC}nufxx_0*%NtlfKQ zs;xbtOzc=rlEYT;f+Yz0n!@(j5tx8#4I$Qvq;lvut#$#x%C}9A_S{5Ypp?FKMssWk zBMN$iuPoL#YbTDMk@<ZYHHHB;mTd>0gC*jrcorHou%!bK)X#GlXFIWg_mStnLR9IlMnL#|yBJ042W3 z+>N7*x#M`8{QPM#|Y@rA^3TRO!bw?``J3O)>1{75u=tm=tF~g(qp3PfjSr z7d~(HaGN&aLz`Lrk*JYoYV6!vO6hG;z-j_#_J#K5E=9WheaKKt?fR68mf6xl8Iu8J z^e{Ev0&b-=PZIL9(f1pql$rTTU94` zxGT;ud>(kz0csw=dt*XLY=%>$=Gu(pqDk|2#*^r739LDCDFPh(%XDGbUc;UW z%xV~wuTlJ)e{cNF(^3Mj$W;^WpAGe`6g&nb_;ev|_WbDcS^rxZ_pWh9x>_i0%v_y)(#E*b{$i zML?S_n@;)|MKURtOl;V%AeqD7st_*NNq%zJJivx(tFw1LaPv$0Z)5rI-MB0lDvY83r5SCo=|+ayvh z6vV%_sPy<*_)f?Dy^dChE|g?9mnqgk0DX??Vf>FXSNY zHP0-!we%x9W(Z7hJK|ZSNMt8V1hl~}y#rbb_HF^A63sGF79=x{qBNHUrCp`MY(L@e z{YmDj@?m=ZTC!sfbC4t2v{QcW{@yYzxB< z!zLj3zw;H0*=x{0{yfX?>L2!2O2Q7)`c-|&BVMH)vD70E*zN#TOnz((#&*BP++E@F zIc@X0kkh-*&u1)-<;HZo;baT}Z_)^6Izq6XJ@Tb=LtpbVO+BBDR+k+g7%y;@RUBl9 z*h2@0cI1uiT(Arm&~JTgr?^Dia#)bSkiL1jhwnuRQAhdn$tlMPDq3h02-R)9I?-|D>=A2Kjq>a7kk$y1{tQONg;0Y^< z$%J^{Qo!fwTP0-M9lkv(u_QcgJ$z!gRxOBRYkC@oYk#R^+Bvr2#YJ!R`&lN#^lkBO zm}p$BH*PJS@Dwzs&2Zn15ao*rMzt7YMWjSfe2bw>1fg<;tuaPHQ9$`&_PQ|?n1DEgo73i!_7N?^`ak6FJbKfrkCGh_W7hMCOa&DDId zB0#VO70O>P+qV4HOZtz8@m4eYE_MjAv~C~Rhw^>NHt-uYXC6*5?uDz_6{ffc$j5e-QF;}p?xf>pQWYfC76PZxU-T4HU6nzTddG(lZEkg@%-Z6EUnKlu5VgXd~;Px(f7jsb3>LvKps z&{vLEZdsj-A`hPO*(O@A{i7~;Vy;KmY87v>ySL01fBdg8#E`IGCw?qW zSGJ7Boo;R3$;nrG!eIPt09-yOwYy|q*8btUStVM#vPKXr+%)d_BI{r*KM}I~-C*q9 zqfOEdGjBV)VcA{DRp&_;d^h6kw^EU(7rcPq!PxLtYpVrR^$xmu<@kny%i44JvQUtN zeQRiIGXPRfR)L;jRr5gG&EKc|2zO8R+MB*RUd7zLFmSh|L2zbGB?=|M&pS%%*ozv? z|DVIYtA8PUcTIfyiu_W!l6u=t>_XdirrZA{U#FhO(34NRrrqP{t-g~b=fZ+3h+JiF+N%EHo4S*|KrTuhC>IMPkkeeev!AK0?~+sF0`vIssT`T@e@!8XrXU1 zc8pefe6a;vxPMf>JH{E%zJHEZps_ao78g0{Ba2^S3&C565zH97kfotBCA z<0Q_QV$PUNpvt&IX4XCOMCYMgLo;$;dfL=9=m_%uVmhdN#s6SW+H^-p203$fddCv} z+20~uU!E@q8idh`-5SP;A40vyv?CFn_3EI6rW&`}v2{6h@1P(ekPKVkCl@G1uw#Zp zX<<6*thrd(voroY_wqydZFR~U74lTa42D<9#B4!kj>HxrHCRU+JeF>c-6*edM!DIf zOO{{xfA_yUo9R@LyLvj6T&zh}5|v|^&-t@Xh~E+#+`XoN_u+wsokB9Tb@JZ+w2!BaB3HJ9zrlSrVt=nSoMD z*Dlr8@0z5G-7hZ3JdHC1wcT}PgY>4opq5j~ktJ5*$rM%SAq*4J`fQB-^SBM_p0UuN@n^k{ZZg^{E)Qr4JJToxM7 z+H7tUg}Ke68v%z_(C1cv97%tr-p@W!T6M+k_@tuHNgx`-DRrU?6|_3aU40DNk%&S! zQM|in!Um`JO;+$jIY1$^N$mbIV$srHSTdnJq5TcFZwcqv`~rbvvFqmYck)*Xr)MAg z>{s-pWdn_`S=Pxi*gh&e1Em1JxL|uT<1kBRh$=5pKz-YNWg%T`u` zXNjRZk6AS}p9vLPakDG2vVR~`{vfn{SDPW^%xg0(K=d8O6Bqpj?$dQYlLSRTl&sa#dNp_{xRFz4Pgb z;z;?>nG?5rEq*O!@?h`>(HUW&QbfM0iGP7mMy8HqnMuuX{VA+wG4r%M(aMFptHT^y^a2AF5W0TtdDtgrxiC7-nxIw;2jYD5|9e0dEY?Uh@ z&kD#>8$c;Wnd&#ri$9zfs!|;gMZ`hXX%368s`4zMkN#@@odMAmx%-hf>v1LM{K9%_ zbM`Vd!O6=+)o9%LI>q|w)K=-%jvbMGK|>TDaRM`PRHxB>ed;D6<@PYTZ%gt zdgrW{{a_nCqZVclN&Fr7a&}E&uUir{V#n%x_U}U$p6?wnIWKf1d;M|JE~#K*SMqtl zZq011zr0mYU(+PT{IP-#BYIp3V zY8T(y7@$+BWR$QWZ1u;Y%Nfn&)s0zz8`>>H+D7!wAD7Jo!Q%6uurP%**AT@4K@FpY z(&e|XG0-Z3=3~6mE^>3pyA;lOcQSs^e8}Ubl2sg-Y~0F9?vWl)Q2Va-DB4=c2^&8o%6Saao{B;s8@{SZBXu6(k&%Q$<`qi(qg-|cD0vC?x z>}S$1{S&$jhw3QytMaOqT*0e`KmOKj^Wtx0}_Gp!Ro4PECFb_{{KXo|nZe zQs2j31c!U}!R^@-6!3&YUpOSG9lzUMmhAu`U=!8Sq(2iF7sgnS5qFiKUwTyk`Dp=a z(L}HMvN2C5fxK_5My&g8&E>|~1LEB)-ROOVQLw1)`My5oDi^NCT~GOJbIRHBEr?JLmbZG<%XMg{@br313vf z1AUuEd^8F5q_6Yv%!oQ&$y}!dBpOFhF&Sr%Y3n+bs2a%b%LYm*cM#@(qA8VpSxkI* z;G8jaJ2>VJWw631Cy&NUYLCMc7LQRFpG>XQ;8~!c|y=E?eGb zIG_3}lZ{v@`H;b?RAdG^3cG_3K#(teY`e(H2;=66sGT1leohMk*cVB+sNQwgu?@Ut zgVD#W_|Z;HuT}wWZCi+s@)3@1~0jle*LS& zcubL0R|;2vx%$nI#!&FERk(f%@cV)tT3L$5&3XN&i<}fQrJzjb@`e9#0SpVQL_dt< zP0Emxci8eUE1@TnvWDld`L1H+t`xx~oli6Wa&)>dZs_d_fO+Td>h(DC`VN;cZYp9t zqjv&5hujH=MfrO=rRx?RUN47f*bXM-)?~~Yw*84J-Bvp;C-VksEL`T<$OwQm(<%Z_ z-~Kz%%~$kQmhpppEN{(p2(T*ph8fwG7AWqnaeXiB+{~;bG4AsFt8O@=vm1}mYVbFE zBI0q)G>cMu2bu!W_RW{|)GDDs-6_aM_h~AuLbdsc`b?Fn2RHK435qeb6M&E0yM-ZI@UwT;V%}d$>aNOW(`2 zaJ!j1av+)Hay0?!w;y)Jy7?JzoIXR5-279A8tZ;{VKf%}GqyRB`$9Hn30}PK>f0QK z>RZUki<&Bsi-$H|hwLr40w;m4Y+%CO{&o<#UWxEiQvk_h2y(L?b1&6F;W~aGddH9Y zB%qmF-lu+x#Ze*NOyxRxSR@ye(WZO<&(M_yX!ui_^8Zv78~_ZD zgPYlhKO-|+C6S^QU#OgCUs)MU6hZXxRwzSv$ZgT6$nd6dGexaLG;=iUlEHSau!-iu zp>4aztQHR#42o$X?FqKZ5N64vY%~{&T?;f$?4+?!NgE zpMa~ol);#luiq(53*wlJ_TBY*e^CN9q4X#3%CxS2!?8}XKir2m7Xa#t&(${a+Is#E z5gGkbIjES4>XVaE#{?7JRrTMbhQYUX%XGtAvP`3QW~w(8@`VkV)D~nE!KZ|Z>cT#v z$jgz(?`#)-PL10?Iwsus3CoBR~rF&HRHcRS5v|HiR2}RUo7oV zQgRksCt7&ty?pbs9Hf8jg(KU6jC5_( zr-*-1YVyK%-30!`%4Wr;3InDTw@c5FlAVJwi%}-nnD+`8dusM%_L=*&uocBoqfH2e zRjCs&ZJXmQE!Ux;x$R^wGC#Df2fA!Gl5eLSIvvYCpHvSQfoyt9B(oPZ56{CXOKWCh z#9C-=1)@o3g{;Vq%IB%BBuF1#Lw(bc^-9avkB%Rar?$6f9pWtrz0ZVBYtdr@aE=PE z;|gk?taR7V+i1ym|4q+RyV=BdeC}W$8Gh1vn^8<&ORK4MZL1`O4VC%c=nqN_o^U%O zHeOA3_5A73fUpSqn=up;K1e+rADIWc)TfSBrE@#xw!ZVP4;*1fZmJ(|=PeOKXG#yN zys8ZYQRw1sh9O9kGJ~{cNXQm<>LX<+UrK^m7oD&BchdNTn;jU3N@7NkYP`xY1Z8Gs zK}u^SS)y4BH{E%HGHw6!(?vC_scJem5&m`W`mdy{cMGOB=B0HEwJF3P1-Lg zOm}VT+uDYLXPpeBB@Dr!)ZkNg-!lyt++(9D;2-D4{O8Wn{CKAEcV9%l#^@&}gyxxh zaQnej1JU2G4!1JMrwQrsORI?wcjB15yywd;t^XS|a$enNI^iAXj6#Hw{|AS&&9D#@Aq(Kb+6UldI&ny zW2$tzgZC!?8Gy~KfP93wH2!mRH1$D2SO{cO`O?u4!d&&X1Iyf6Hx|!Kw+h8wMQ4W>@blA^)Wh9SKvP!A_?j*hUZJP1NTs11%2|pPII3=Gq0oGU!i%a!4?>DOtMRFv$jEH+-VX4B>4 z1%}SBX_i{rhU=Fz|4R{XMpV09qdmJFvqV)r%dZLd6x^3N{p;JLqO}WzSlaw`a{l)t zqo`FIv%-D$P`c!(YPq2K7sv?Ts$e5;=Dq;vSYK(x1!A|Tj~XxKPYj;f_wauqL0yUq zQ=e=nOrKoHxUASQdKUUt%Ef%s#`6NS{)z2ckI&Sd$)O$r4ZktNoy(#5(jh=@-ZkIt z?d-xOxaTTwwdn~U2-O#GpE@+VeYc(3=Xim&b zsfAc~N2YA$?UTvJRo@#=1%LVUe))2G*kr1n=~kn-z$_l!6&Ju#^`%25m41@P;T`|a ziey3RxtMQ?7cZdmeIgenJ^x(!PZN$q%9#&$&NI+<|NOG04(;oPb zd@V3I6qCqpn z=)nZJpxe^@5cU=h|D{#^FwLZU@U8RHL0)f&W>Y?q?XT1d&0wY9a@MezugY|k$ zS~;$i;FTlIs2KGTKH4>JUOs zxROe_e8C?lb4;$B*4w1wFabu_GE)%3SD~8f#WlK73OlNO2U3i46s_sDBQ&Gxmn}gF z!R=2go)3}{Js#Sla|4kq9$_pg7;)T?tHlqIuzemOBf@sWa=ivHYe=SV+8d8Z0yb?O zInYR`8X=vuuw84E_;m*qy8+#hsN^V347lyOpPOzKD6JSxG<}jj&m>KsjBO8$TZzU1 z3fv8$)E+OPe-)aDwrGbCTGH`7#6UPY4;cXoLH4i)Q$^%T>a{SGUOo`nU8Ex^(5SREcH_L7|M%v=I=sg$^#|kesA^=;%}FrLcd%x>WL#MTu!9YN1#c)#kY? z4+cDBdGvnIb&jfd*soa)>L&i8BzVUQG^;pRY&3kC_WfH|bp~012%E#i-zYUr-r?u6 zIyku+3|fr5A%%rz{>|2}&0K+b4eJqX15;I5-65$7Uq@#?OEq>QD^*8#PW&ydF>V>z zHx$&jzm(Q&Xx2(QaY>|tHCC1ONRzi<;9(J5 ze^;e|oJ$QYAS>Xg#yr9S*v|L4$7fnNra7yL;~8`=^^d-0r89f5vGR-UdR!nDl45wz zWzkuWkyiQv1xTi7+{s>$7|{Cy+@rP2j9$~H+_MI|$Y8<*{$=s~8QIdE9$ZvoR^Wh~ zZ5FHvG(V`5RtI_?fCde_T{AP&OjYBGoziQ^0*pudX5R)_{Jxi3em#Z_coGD5%%C5i z$X4z^0PN-wBl6v0aZ1jPplMWv@n4Lv-(OUUSB^yWFpeJh`P;I2dfn)f0*I`(U<#7sQgX*`fhynSb_mESh+4=CW1hz_~Q>3wy(0 zy=L~5o>)U~!DFdzi2#_7fs<;SSM|faI@YEqvjgM7Loou80lYu~xc}l0hZpw|UTFu8 zui~sjrffE1*nUk8dq#Uap4aXnL1QZP2Z0&G6#G046x3M0MqhG}wN|jpB%&*)+#eakYZ_RXH6V9^po0v`ApDmzW36Ya`CZaKw&_%BV zfs_lSm6~=~_sY1UW_N`xjG>;TU%1Pq{f(#W1%6gMwWXdSucr^)8YU`x`>zBRG_)?o ztK^72#ffMX-fO!qL@ZY{MT>(kY#ib__l{{T{G;8QJh2?CZlsHGYO-(fM`kR{usZ5S z3xQ8@$vd)Nk6W(G92}w&(SQD*&If+ztJ3IUMx0jo?-b;UOm`5Ktq@d=o!!3x3rslr zjK5lGKKiGNrRazSVd^Y-jc(`tsdaZXs+a;@qso-DQ*3s2-&sD9-28v2_qFz~u$p8I zkINMF!v^WLg&o}5uHY4a5?&x=+f?s8xcd*7q4&kaCaJ!;c8oP+5 zq~)N*_p~9bH!aJ5?v9yCtN>1?vaMW^GZ`IKIc8+=`msXZd}k;DUE-w z!-6NNve9juB^s+2KHE2L7=(;7HJ^^^qhgG8^ z`%eRZNCcv6Y=~Ov=Nh}g4>{3WQ!bb@+_evuFY+>d58Y9M3y}@UKa+#Xv4g>yZ}Nr? zjIxLsG&}S!;qnh$=sRRJv#dG~7b$}8Q3890s?|~G=*CtIy3=>Po!5SOAH%1B!rD>AfBTNXG(E0ZEWvlp?*C(20jA zhGOU~lpGO|8bE3wRa+&g#XGVdQ`ci-J-pZBSs=h@w{SUP?oWb`(6 z*@!rLNt*wg81XO;;?t^3ooQw@f8}B}=926$-CT z+P5;A3v?vy5efRE1hZWoM(gNZ9>MFuS1TWOG(AT^c8^$mZeGa1R@c2u1^4&OhiNBDIdFG|Zk2F^IGb^c+24AVN zLHfJw%u@z6D}EGSZ$=kE^ifNjrmoE{Y(VM?Du|!fU1unzoF*BmUL+3d=%KIBN;^&g zAw>Z<*l}ODyl<|8UzC+&+Y&F}2o0yM(sc-H!=<++!$=AkEr!V98uM|RmS0hI@*BeUVhd$0 z?Qu*nQNRkYwCY7HYy~R634Bh?|3WT4mBBk^R~wKD)D|w&zAyD9NN7MZ5%M_mEf}_y z89^6m7h_oJL}zkQsEEWUp3|IA+Ke2j0nBhrsH973l>5M5(JKc7+5)6{BUO5Ut;2s= zx{7s!0q2*gpZI>yZnLFLdzqb&nl#>)-1K+!J7`loa>X2}_41e)GV@b)Ph%j71LEN4 zwW5;FIa-j}`Gqk@s5ifhZveVYvp|Jwc~fp$E!m}+!%#?GIf!6H#AB>@cWS%_!X&}> zscj5_JPID{_Jx7jq>R|HySBXhOmIUp=h~4z7WShg!UWw&Q5s)sy1ZO+Y9P8Qp)PvEI*}X` zwG{J#wZCbw`D;D&Kz$`+`!x??Me{AOOvGy$HgYa9GZGI%OG~mHQeU%XXp4^Cf29tf zfX@|>N7k@uIpFmGO;xfNX&Q+-aBC^ulg zsfE$YGx05#{}2c%(mh7o>xJ94XU+wx8cK@>({7CPkjWkf#P^sBD0sWDqoqfwtg-Ql zv3gV=i|9{~B^F>Es1m|A|M^ph(apJ`^d7nKS2x4U=;wAW$B1@ccp$4NMuzT|?7{MRuuY+Tr=t@Tz-14FS+=^ip{$eU~ z{}`rpNwLS{+P~T?t;NwTfOf$qYoRF(VpK_+GTmk;_T0zZUZaqW5pb4tL`g(D=sp{B z_i{|0hx8x<=_6~CFTQL1%4eYD52^~TZA5^*m7=>x0G7OxYn^+*eyu}ScWwG>HCX*o>WOf&r1Qp< zEV^Q@L{`zP_(|Iid5oB06r4u+yy~2;NWD%y$h-^@2-Pn;S5dygB-)kl3JHb`r z3?rnfcsOiZ2&VJP@?INcmvjB2{r*DQ3dz(KvWAX~r!fID|J=us8*$Z7*az>&JZUlM zQ<9W`#M~N^Bq7EU|N2@Ku7^B7ME5tJ98UX0w=Eq65TI=A^FxGfW2+z7YGP; zMl*AE=C5C|E0?jr=Vx)rM32eQ4`o^^@q(^D>mL+TQxMr-tOol&N#azauX*@f_Lk}e zwvikW-JJIGIGfyyAWgh=aT;W(hIfa{dutPoi0ABo6i zY9TFR8#fP>YY9=;t{d{tDWYNmI$ptlBj?=glX@A~AX=Zl7x+b?eXJcCQvRx5Obz|j zp7n?-x9C(UFI(%P>nrhx7AT%AHxj7%qz6eD{@x$!X@h$@*MwEKRAoGe#EODjifi9T z@ZXY54d$q1TNKtl(XqVG6HKOeGit&<;18ap7cvE(@yQC2$#kpCqT@mB2XP3F40BEN zYA1OmneD9FTfdX|OlYXMLqKf#^?wfirJnw1Mxdr5AmNBlNw~2YwjM^Opgev*^pWo@ z$wR+7q&Fkz9jk|kog1+P z+qluI;SvL99^FQ!T((aF5MT5BkE>hu`$;%_GdTC@a=wTXaF45QeMhNS?|YGY3d!8 zloL@j{`@&_VTI|uP55Ah1YNk>;JiICn5BDuAOyRxV!sd7h#fshO`%^)Bzn|W+)+yV z%eHRe%9vMk9(g`bSilw2{VU_=cNEbwZm)GjWavmV!FlFF;I+mXu0Vc60-CXOaJUAU zw*(|sU7SqQuxCXklypL8se~P?LcL2HjHOLtA1E#w0>Dq7Di7`>jF)?6s+NL>u*25m^3*hNthp6mP(#bBQ59S+U8}+6k-=Zi)Jv70BWy`mPBgPP%?{x=rYUAFU3aAf)XbJo^A!=v zpU#fJJWQ+2)_FTH)utJqeleS)UYl$l&nY=kUaL{U&XTz^>}8G&JK86Lc1FdD)c6A- z;QP%8(i7ppW!#hwN{x>uYfvCblE_Xr-!((N0&sSg*55AKm1Wdis<^k7$jNQ8^ou;ZU(jr@+(ja(-@VX@`DI zfY&4BQS?q3drQ#Huz@_-hmuPSYlan%q9(UzdR;xp9!bPZE#2>MAs0kE1<};Bd=Y1j zR9LF`?F!>DaT?JXcy!#pL=sgJ2@GyEet#;Z{hWp(b&M)nZx1s{U9jK!#~HR5*k*Yq z;uUxuqX95(yq?&0dXYCMIH7hCZ5D;LqBabB%;rr!)({Mml%zdSuz5U+*F_eeL<+ol z$-b5bL({#}o&vlK>w%klpP;Kt=uV`Z!TC+tB_R9+3{84is?~g?G;u^aXAH3TMw|(HCMbRHo@pW^?D32XBN4I~_<4uuY?B-L^!; zU|iP$K(?e^Eih70U;zMD|j3pCSOiSRL$wyh2_?`%4Z%(DH8cS8KZ zgnwFWfXd*47K)`35_gQ=3>2F3HAE=1w_Xi&O#OU5^%={AsE8t7D62zQkzkFgok4rC z0hKc!AOI;=YIfxiqg~VG^Frp{)X*yi8VmWp%W zHO)DlSZ4)y#?mwutB*amp+#YJ4p}pcud#n*XkspqFDF1?dMU)!3TpuCyfS1Bua1m9 zxAYKjj7B6r8aPuqeHKfGj{idUwZC^XuD%-AsID0_e%-M$|1(S=Q(f6BYm%C}l=$Ht zB=!urg|c1tGwgy*uiWZ9xTef%>|?v0bUgo(su+;Pz!;vrEBq2H>+}6c$7aq*NVL-m zvyX-R6;Fp3(ULbArr;=IHqTi-(7J2XzIJa2%oV_F!!7A2kt#>N>F_s5!T>9!RiLr` z?e{qz;1(e)-&--_7=Ntu_Zmd^PKmt-@sA%h-Hn(T1fDN=Zfxf^F&gXC!-NRZE?+cA zp+ix6wtujCEHh8f>|VbNLq5vkMS!2C1Li$TvCkmPY~T|Xgi#}R>p8=XAcLdz9e zzb+OL^eC84-}Rw;8 zw&5}@>49hWl|E~;QwKLx#x$v)v72?z;)iR6%`{9X__oL-vE6vEe#jzCPi|Jc2N*`mQJX_Nj4&3faa$`x!rFnSv~ z#0vx>&+IVC&S8i_FjoHH;YqC#qQ`+h2HnH)HVWVm$_ZgwK>=|)>2&JCYWN|va&mvh z%-kyWce8xsOq*tN2Xfn*`%ep`%!A`hXZ2nSj7sl*zbCKx^7^#>z9sg2%|pbA>CzK6 zr@g?ofSGx^$Nq6f#J0Jtd-W?KNNd_GP@`iO^rNn5bd+-Y4SYs_gnAJ11NpCG;L2fr zSd-RB%B7$&xu@yUr!@{#3t6SVK_2keI|ukzA8FFP z)UMsP!eS zrs62$s-Eqvl?=D|8&U(y4eUqoj8p^zsP01Os93dLxu#HBs5i z>8-T>g-25M8F+)7L3^kY)M9Wi{T^y==GVt?7*d$)5sk=2uYvy*-EmFE4`NDyoDk>( zlNqL*lT@nxS}pV^(_#hv9lp;-7 z0-a!zL+a@n7Jr5hB7ReL1Dw$ehSi?%&EGwcI2P`SUY(?h{=9fc=IMRd!7x`69+p%w zE>N!JrConuP2|AM>TpdQDw-Yr5I;zQFo0VaI7yQlsP${>D#Qb*ltPylV!S&8Vr9OR_#D+H3so&by|* zGbxoGb9V%NCKZYZayUvx24!g2Z9NW*XR&>>(era-6Y~kCEMkg+y#ERtA(Ng0wP|KT zvBp0Xrmpka!1V_H+>?@gyvT%dtW3obcp$I1m64vo{^c)rYUe4*>NkmT^1IZeie9nrz5-RJNcNc85@bqEJ2(!$$SUmUXx$23%7t zR}zpAIav2qhCCez3q!S~4HG@)9Iz12sb~Jx)NEmOe%&YXjarbm20~i*bdb;NSf*(e zq5{^x#&8*Nvuy{CGCYR1m09U#KqhGp=^FSN5S$dCBns3Eha+-h(#oT0)M?>N;=cxu z;GlXPzHBq^8NBvdwsZAbD8>PMhEV#1y>kuoK6Q@3_B&bk6LyMIQi(jM>YjeHAGFSE zOHZ1@C~B0(ItT*`btauDgtH+TF++wo-4uY@5!}}Wc3%n|YewGu*N6)Ch3dD6t{US}RwC0@FF9RWj0QUYvi-Zt4Z+nAJI|i&QSa411I7NDyNNs+pfttv zK_mR;qa$vfTcb|qk-lKas9#Qe-ppY2isPtv-sCkO>*U?E5D!O#962x5w%mzYulK~M z*Ly2kfO2C$YcvAEqPH5KFVO&bTzp~A}9M)lrAHJoHSowdJ z!C+dRGZ|Br6vaHvqmoltd1(4Cpb7`PIqgQ_OngFE`QGh2q55?57r|dRo{BA2j3#`6 zRP}rel~Rlc+I@zDP%HP5LjYdN(t1w2pb)U76 zE8Y6KBeAOpMYScMK;=GTf#5}qE{_U#3czv!I$uqjVS%m&sP&Vl=l7lt%wz)1iKj*? zFT|0}WPLb-fM}|nGJUVD?^tn0C4E}wvaT$Ftzul$fk_Z1bbN*hnE_Pc)Y+xq0UHx9PK8O^NxJf z{10kgy((55ft4S^l&{i_*!%idE;(NA1N;h7##n{1C5;nzAV@UPz`YEIkF5m)51xZD zY?$N&&e_5zX_F>Fte1cTnSpA(`B7;UIph7J-&7R2XI2AhHDZkI_4<4)Ux$yOt_veE zG>{UwGxgEHPF-l6TViWWAn*|;_#a4_zj;2JgYK{I;DxaAZL^qqOfSRM{$$T=^SNIV z73$!PD;vGrqL@w0%-LT$fKsN3@`2#Ou1ji6d&28dY1YH?`p@PjNlffh&S|Jg<>Rh{ z>noRjn8z?h?4wrPpz8&B?QcZJO;Yv$$m;m#m<2#dxbH4e=|=`x%H}21V?=LclqsVy z_y#Ck*s8N4k>?F0R_Z=r*F7|zAc+D*7R+1mgA~RU`pJ~V<$Z>)3eG1EB@Y(_^*-lg z6-wjt(qe=g>2JUySDGNndibuE=j-H7uP_W{6NLsPIsd9?r;7$rHHUtxX6{|4@Z>PA zmSHS46r;arNCmJ~Dpg*tHPC56wPzRh$+M3Zq}Slh&sSZ6wLC zrKc&g1C2d-HS+7uK))(7?`b92TLP7yxB@4BdCuB$;iRDg!eIxt^^D{4hWgYI&0*^I zRvue9zpqo4yykR$y%=eikXM9ZYbj1##4?Y#V8B0hmekH?oL~9&Yv}t45D(#4*vC+? ziaU!~rx>nvg4FZkLMQO=f}x1`W6tOSP{KJI#H-I{=QA=Vzs4w;{f?B4Nz<2(D2VKg z@%o1(qW}HaL>IkRr>OviX%0=lJaA7kZw8$CyqGBtvC30M@%sbRwPs-JT`0~?v z-cSU>WuR|;N16B@`@(H7;zp!$*ZD$Qz%0?>h35@}xDz1BkRo=ixoW`40}{|B&d4fQ z&NIob&@|~SI(No~-*$7kb^XBun9-LMVp-C-1}wS?=mk3#;=kHp5Yc3I=IIWgOvrA< z8ln_*C`U|Vw@ZK&0cl=|-4&t_QJ?tCrV)6L>G6aYVe~xjRE|^z0BL#@WAoNV=pMQqKXaLwY9+`?XEI*)0{&nH50(7K1*1O zmU_o$1LUJ55_|ZY86)@~#`6%j;SCepOI}mzU1v3bxdVL%D!2Ie&UhsFTs_c~%5!45kupt5 zwA8buXIj!y2($T^UcHI$pAIxuLu|C-t5kJ&5fjld{S8RS^`|E}1X7DIh*86ynO==N z7jeT>&QQ6z^N7Cym_P@!0GNu@U1zPBinu}}Pcw7`2g?t@42j+X-brl%fJ|d0ulSP`;9P{f~7c zBCAcj)boF7ePjv5OC(zx58{15qnv09K;6k#|0OSPN%FIK-2KQ=+5?aQ9rf07 z0)Bc{pks5|Hwb%t2pNA&zy8tv@PtWR~mQ~ zt|;)EPWG)m#}uS(ZJe_SC&smD9Y2qCJjm2CkOl2f+N3AwF|L-P@dmz4c!*(qezwH` z@Cn`j`UHSfqtN7U;MV+=+r{oJDJ7rE3Bbb znL#S;$^Tj7SXKZ@LH$o4)GwuD*LXaHzR-J7#ky2Hli!9a0WUHHP^u^MKC>F`r@N7# zfF~j-H8HhWYf!}rTCv4GPsjO@IKcc|%>Npe0WJ`$09?QB(%$ILqaoOiELh=>pu=I<&VMdXuPdP(ah*tO z!$Qo0?bMw0Hr?EN`(JhgqWTsG4WL=0Z+moG{oi}idLhj9pVb7YJP!YXVWfE)SOGus zUZ48MKRGL{FiEg-$D51(kDORfLK&oI#!owK z1;5B4$69(}C?a3DQ?Mw&4kKg3?4zPn{K*Bo(bBMT8=}|s*N@4G-)==sOADh^5Fg-) z=V~0sY2MNT08VYY@a{QeIs|vaHP2A8W(5S%OQWLl`zzt&G=(>GBHg-KbGp6)%KC6X z3A5?IWawiKnh|E7CrJQSyfs+4lF6Ih+Ywi#y)=c6+{c7rLXWACPp9qtXTR=||Mu@? z128q)m}QqP;61O#d&MXdhlYGW?J$Qwk7$Ta4vc~>Mpgj)#}V&P)Rm>X7OrW*E?V@A zPj^kVJ*l`XEG+cOA_sQh+wV>A@tOeR|0dV}H|3-#ZOx@2`H>!9_keQ)lPSFl5FH?& z%~S1NWCF!>kfILUHh0GFXs0EPWArgwKrAD39ZxSOp?n60ng_TSnq_?)3;(}5Uf(KP z0p-2EN|(fxM0c644r!N4_m)oQ!P|SqIXQ82E?6Ihn~Md>3Mz5=)0g(ugU*}Mq)gda z^K~2TzurqHR*A7BlYLZg1Z6BVY$+r`WMvrv$ecbfO2Mpj<_N^|;E--{SizgmJKQ%| zKYGV65>Io%=|=SrhqI|c*Fp&Xq+3U{s{jHYjyoKRDwtjXW)KZu|w(9ZxIpkhy(iHo{wX%z2vI&iw=!T2rEfl z$nL6V*_aytsET=#x)XGi`hfBXTcz?H%htThE_AV;afC*Wc1J`_V}uZruc^Y2reOSB(_BiR z?#y|f^D5b#b4~1(7sp=BcP4jML5lJ{w5fYx<$BGQ(yMW+Il#LLSa9%82eR{fVrEvU z_1!}{cMj67@5(`5&rw$Y$5m!n^Gd$BTfmrOwk~1H4=c3&(6Dn;9M{x=n5{}}#CW8J zjkueVe8jdteWT(ABbv425su0Czk|d@RIL`|OLt9^$Uyt}?wTvh@@w+3sBK#}+cmEB z=%&Z_lOHrVs>BJyJVIY=#d{SbGzLIc%NKK~vnY>pL2>ToM53jt88!OyvdM#y8Km7z zMb`?+-(w<{<^p6jPOud__kooXE-@HB8*S^-_gW?CcT08veudP_vV0=wK|G`FrA2K1 z`%lay2Frc02>^GjfuhuqYCevfa|8tp17lriw?Vz9D7?6ekNCo->oiFu5x?Edm_ zW^!$_y3>pVZmX3hVQ4jxSVpyL%KbuqSxfCqs(auVE`oMRrg$HO5TkLk-2``OEwaJk zJWrK2Wdv{6m`a8@#_l<)ch8zG=_Pb-1W1L-axbF%T?W=@pjO3;03Sw=@<_XSX{8cN zC+lXN88;_6Q1YZAzd51V|AZ7)K}zmaV5A2JZgtu4$>^15PSEnX2()9ERn-@{W%~&pl=S7IY_h)?8mTII=#JVx zktmh8WmI}bx?TJDtkcsDB|zxaKe5%V5rlPKAD%4I{VY30WszQPXq7~~9n45)8F@sb zR;AbM?opxYw-u~4uwyjfb*)C|8Bi=`I zlrK2^c+Pr-YgKQ$l!q1aKg4WC>8c;dnE`_1Ur{(42zLz48ZWP*W(T;ME&#mgbkm+e zE7vnAOyt~v&=#Sa+(n!Rc- zf((58M(%_&3UQ-7TRykrLd&yV+N}Y0bsJTEjaZJ^U0JPdw`l%GT|M5i$=AIA@!(pX z6~BLow~9VQSf6ldFoOTxkw9B^!=dfqt2vSW#-q_<%tP2gEBA;$iukgD{?H%$D_1Cz z*K{YZ9;KKX8rF^@o7j)2OV=ENan-_lJBs>b9>Op`lCkWYU1R24WGAvse6eo?kRpAy z&W+2d@G`A2dk3BJTCR=dDlv|Q{5;aOyuY*g)(M{!g5u|%=}ioxvgHNz$c|p}Ag_;p zu~sLv*?i_Xv;P#@+>LnysB}J zmC!r~m~-VMC#emcp;4zWtGl{s^)ZOfZAD$rTUu6tSj$9xjfo;{Gjmm=zhDj)56g%G zc|zxaRt4+FQM)lcVWT*)Y%Ma&tPcx8S40(Ygn#Al)xCvw;s5a-ni~T!W#xbx1Jj(~ zjknViMybXHe6O8>b{;u8Oi&H*h6}S*rA3|(2Xo#*qO4S=Pzw*gB zG;3Y`J15HH^QzhT+STIXqVxdr?Z0sJiJZ$`%Z4yP!Q_0(-`l!ZZ#~5H2)r~Z5 z1!+910HQh~-AyYRRX9Up5Xsj>`wI>4u!XF1vHktJ?aU8`gei4_z{qQb^dUwYI3`1S z!JNuwirS|r&dG%VHWV1~v&nViU zt)j!HqO@yfy5Pr+cMfnfRXPe!eGaC~bE8EN7BeMrw4N z>Mrr;w={A17%f@d@~zj!>q}F?tlaV+ow`$|if#212FVi9qb76eHBa6LCpf@|M+e)S zDwh8Y%k((lv`@9HdyrI7+y%e7(8gD@n@%YiOXZ={y{*dEm#m!Fo-ayWbF`!gZ%!v_ zx%KB}UEeBq4Nbn<7EQMIUs*=Ae0bL8{&jF%0oLx372YzjHlfM=`BiMfoaS_5z2EMI z>vsO0Z+N5~?B@4^hDn~wl@;kFoBS)LGXlVc9|go5w%prKzIE9X1Y+!fY210_U%zSx zkl0^r)+SR@hb!u$78)>^Kmfk1C)HA4H0%Ct6yLx5#nDn#&0wap$%{!ZE{^T+W1=Lp z6FxcCS$#bU3NzUo|c>?N{(B>iDLK9Z6t=^RSo*?w;O034X2FWR1ng*BY-YyiK!DZAQ(5u-fV1jQX?W$6tb(?i zbFUyIkEHhOfr!sFpE=Fi#+H$XYIBdvW`u*By4;%xe_d2`Z2J0r;{qx~bdC}R>%ygJ zewR_t*5BM^?c`hfqq@gaF>~O0B4jszl5Nl-J+*3Lr;1l2Y5Znrbw=V1AN;4cmcbV3 zAr5ti1;#hVI_~`BBx0KdR?W}`e_f-#E)L1|@vm28^fLOM!Ux^ALuSi$TPrxGx7M26 znaZj^B3YZ?eCluKwEr~`@q`t12qkd)1@I|476T*^N@m*KaAD=;U7^7*$*jWND@cQa z&~`X4qr+hK-~rMB4$Br3xi6xw>Zdy%|Hz@)qE($ykx}6vahS3|M+YpcId3HlnVnBq z<$B}Z{Cro}Z>7Mkk#mqn@zu%8SCAnJ4tHxPi8w?-u{>r(Jsu3k#*~Liub#vPBkmT4yrKWcdpFAZTLb}bOan&W>SH_1HwgBBK;uh+L zT`hhJcQ~r<9Dh2zsu@QE{V{yqj&vxGcelxUaP`eXFJ1hG`!6EpiE*^K$=KR=*JgCt zN2^;&0%mI0d0TvYh5-K0q)7ejYSGWBxsHzVdM+mIPtrcH;`Mb{g{l=?5aC%$7fAb#X4~E@VIQ$ zPtD#oKK)G++tL~LxO(1CcIx?hVPQxrWdA-=1pPz^^#A|Changelog

-
  • add SDM.RStests implementation of Rao’s score tests for spatial Durbin models (Koley and Bera, 2024)

  • +
    • change lm.LMtests to lm.RStests and re-name Lagrange multiplier to Rao’s score; add GNM_ prefix to test names if the input object inherits from SlX created by spatialreg::lmSLX (Koley, forthcoming)

    • +
    • add SD.RStests implementation of Rao’s score tests for spatial Durbin models (Koley and Bera, 2024) and for SDEM models (Koley, forthcoming)

    • +
    • #143 row.names pass-through in poly2nb corrected, harmonised row.names pass-through also in nbdists and dnearneigh

    • +
    • #139 add na.action argument to geary.test, geary.mc and globalG.test

    • add style to sn2listw use in tri2nb

diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 16762241..ed010dfe 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -6,5 +6,5 @@ articles: nb: nb.html nb_sf: nb_sf.html sids: sids.html -last_built: 2024-01-04T12:20Z +last_built: 2024-02-06T12:30Z diff --git a/docs/reference/LOSH.mc-1.png b/docs/reference/LOSH.mc-1.png index acde535afefd2c43ac0b4e86ffde5dc2792f6d53..b23ba590a1d7e84ef9afdecf31cdb27939c1c20f 100644 GIT binary patch literal 37118 zcmeFXXHb({^fyWo5fM;1f`WjGiiIN5yA_WhA_xgBRHauj^aPNDh#0UT(p5wtfrMVt zRf>v$2%!_2fP@kdlVD=V`y`(8&i~Hb4|nFy{cvYqM@_Py{j9b2+N=E5+B^N))k{*_ z6}Afr2}xc4`+~iYkXVe6kf`^zt-#3WvzM#D$5wCaOBaAo;Loq~xJ2MXBK&XXNFgDm zH2y!~tl71jLP7_GE?+q75L2);9$WC*4?^emT#(w!Mww7tZWVP1)hp}Xm;C0dA{e7y=K1A^fENPoh4$115hWU zdC0g9kwv~Bo;Av#abs|t%5Gt;j31fpKjQhLnOB+uw&3^QA!KOse+ng~s7{LUzc|^8 zxC;i39Ql7fa7hcxe@AHY;Zntl!#D;T0Uf4AQsPmA4m@J@r=h4nG@aa=DvCVD;TBnD z&Fn5(8>Pq5W8^J%=-|JPugW0ZL6BF*C2;|aBFl&I2pSG04$2CsTqS@Rxv37@mlS%? zAf%cmb|=6r=}1%>Z4ps0D@G|D+!y_XrrOsm1IihBMAM(YiNGp1en0mt*Jgk(muJg< zNA6i@Fe9Flb0Sgd z^I@wIMIbpAp>cry#uWMB!vyn1hl>p&bEJbBi^W>e$ivuVg<=8sgr*%J7^Yz9Geb z!Sk|&K$k+#p8nC(|E~x59?D-;()p-$T0Bw_+yVA;prhP93R}q7A>aQT!T`BhOrvsQ zmue{BvW`RodqjGmP5M8B#QHJjDK}ACU<{gi9ae$01U65Z@&tu50BykG2eU5ueH;@S)NRzk7d4c+VP*^x?X7tn|N1{O;h50_LKk5jasH}b6PaI zIls-1j}qvmy(Ot8-Sb zZ`lWB9d@f52I$rgM5q2w&IVwWax{nw_kpfhqCtdkEU%KLI0{xUvHAD)o279M&``#E zN-+rR;yP~TO29;@ap^oI5#tVlC6s~BU%+@Ue5V1z6{|TJ6Bfm$g`a-BCdj+JR=b^@4Zj--Obu2Y}aj`?ZCeE0UDG-QLNfW zyhga45(y9PYOyUikKjwdS6(Q_8r{MhmTKot=W%QU>iwO1QYpv#xSdKjAc8rX2PVhe zPX?`o{Ui`6c^vv^Yiw42sMgS}i-O1KgTP~tDx&^4iE8YVSy5Cs*F%a+id2R`VzIo` z6!Z@MG^aQb>T<)^?=`Lr$;Ah;me4lK#Z)cugzLChN+dNDYldNCjQY3nrvf`mXL80D zm>kqZ`PK4FB-({br_I0VQ1LMH#qydc3|1uC+EFWag?CXtL|CwCsW}#p`7Oz# z@^#^4I;qEJ9%SK2@Hfd2poV8DNzwCePJ~Ef=^N0x23Z9!dITkaqJ~^=LY?9B_iWh~ zBNOK5NO!-zi~pNE6+r*j%O)rPBtU-LkN)LWiw$h>`;%mZGD^kiw^}Yizux9ur`Vt{ zbn?1;DK>ij*O^JVzU7)oLqR?ze>JRdagH2|O)FyAvSO*R`{^SuNBEjDG$m9%k~ItN zO;y)98I#j_Nf8wTE^IvC!zrMhq}W9o4sublNUfeJH@-~a7i3p8bJX-)blh-p5XMKP zI4bK(hiO9fuGJ!gvUNVe;51nUNy>^ngwT6*y^oTw0CrCFi6|9T?-p0IrhDN2gaPJE zIZYm=)c{}onB~ZVI3(ll$w@_eiU|_>jvVCXtD4~i$|#By>~;|r%&4NsI2x3@dziJv z4Rq&7R2zZ>p&+fqjB-+;rEMM+kJedvZdn~arOQlSHDIzUj^ ztI$+hGwnA`lCprX={N8FPJe~rhcGg;C5$18K+MrWup5OD6XiwDuo^a(7E4h?)4DlT z&6qPQ(*=om_(}E<6t~4VE7&f+;`vW_n7zbahrXw^(oQ2RsW}yBCkO_6o>5M-;e58J zs41B_{U-vZ<AYSYbRqlT~yC+`Z<&ss&?7KMSarM4fYiO1)*q>e% z3MSm{dOjaolX>&VwEA8Zto+t7)-{`iwB7xq_VHKBMTz{}L&< zRyeWEyXkRLCHglP2UVWv^XF9CoB2JNPqqeRWh*p6eA-qtVRS?RvKUXiJ@2L`2~sLR|1Nis1SdQP!V^dggZyn1e=lA*_JEotCliU zZVU4^XG&w>$D;+Ni)%s0E`N8F)i5cW=14h@ns-d>b9$Uuomu5>I-VH4$om1%6Y^Yy zqp`uNW84&)yh6xP3p>awtRn-4=%RF^lp%zOl=Z5ut*(Ua@lgCyrl|3AmB)jQ(RtAa z6%A`TkT2k5A*M<3yhm0Y|H$q(!|+0JtQnezNje$5;fZH{-0K44_77 ziw_H|zvkpj-x7om!4eV~Px_4XXWsTLyBZi3sSdqVUpH@IZ{W8NckDsYhu%bLy`wv- zRJo7Ggv6ubZ8|^&AhYr~x*JNAuOyEN|1FhiyKCXqyS7f?Yo=Mb`OnwKDdP(HwFKtQ zBE(l-{m(#v_EOU|>vi;6^|PqdMNis08CRNiPH< zza=O-e-J~Y#w)gj`0(Cj)8?C6(C^=NDqt918JgezR-G)&GDCoN3H47MM%~ zL@vw2A!79JKdu!}G@!m1cNRJhQ?{t7$?BusArCg1$g!2~B}GdwwKf@^q!{(B<%&Mw zXAI9+t`)JUzX{E%=ytu5t6q}g{FXze4bhg225ScvD2`aC z=Hw8KjTqSB2UL8-S~AwjTU>S(9O_pIP14jWWl6KQyFN@6Z4JKk8uU zDGdd8XGocGi1B7!@71YwiZjKc%ukTLFFgx#oN$Mf8ke!17)7+-7vlLf+ zH+QOXz(54)p8OSewWRR77y|D#F+-pfHZ8OyM#g2Xqdd@>gktSzr1@!tNdtC7pHd4{ zaT`=qAVUh}s|nKo+>|-Ov5q4dHK;5PvJD_+$kDY6If@j5^eN_P%7o1f&o@(VX{!iT z%qWo0RsiA2FWH%v%~*x$B4@5U<2h}LqJw;b^Z&x>i%i&LU7i13YLiI{WRwPUM|T6^ zRc#XTuu0Dqw8^5Nkn;|H58Bsx=8q}fFAjKio;!WCeWJxVi`vvZ z^-D#+a8awtke=Cxm+2O~W+Hw`rM2L?B5r4qOQCzAwo);s8){pq5sn6JIP?V4ij@Xfoa`kh=6%ZW(f$k0gYuFXx0k^W#$F=3p<`KW_8%)12OS zl#PytL{MoPSz(6T8^3#kRznAhXpbpth*EkyYF$C9yr-gjqJ5s<74~E~ ztXaS55(H7b@r<&JN*rn}Fr$=|al#B+=hH$WuP~G-eJEDbnq}}w#3mup&Fr{`_vqA2nnGUW$~28Uj*rUI30hwihNyc-M?g!1uX55JWPN@4UWw7TwJ(lJqW z`xoH(dlL&SabL1&s*#m5zLb4^u{}t5Rd4Oo2?_(Hf~3~G8Q|%4%u_YC;3aFD;=JW$ zd~K0L64qs=FTJZdSoJgPEQ0~-X8o|FyGO|j3aRj8Xa`u;@S*oW`6~zQq}BVz_LTH+lZ+UfP{!{}>xmW%<=X z8gF!)T^M8>A9seKMoA57$KTEm9Paxr{`+0~_9-2dEjV$sIgfj5^d}ydoD_YQIbzV5_f%L<66+T?p@ks!GLqLfpLlA0Zw$|Uh#P}`HG9NlwNzLFC7hD4he2Gpe=?+m9@`cP9#vVQ$J}JtNFu{*85I?oCLvzb@iHT|uuFDs|0J@uGk`m{D|8Gmh3C>v?N{U}Eitk*FfKq2#*y}d88uy5lMEReB4 zlcmVdIq(C6&?vo?7N(Hf6OU2}tb7Vtlu?jmZ@%trUk^i$g37{tAUT0;hvo#a5)O`njznYe8CB%TZ)0h z*UhTqf*1(RILZd;Y7-B>bKVSA99gM6;s0};OVl6i%RxB5jo;hi!gx&+rbI}hQ{U(R zS^A)!0?Mlg6I%VzXb?#p_#ishvNn>A@Ql_=03hg%lIWEdi0*Tso7x>e0h=q*DO|sf z7$mY8q$;#w+F-9aDwDEnKs;L{%Q z2Gl3bzI;u{3>MgnlRIf5#)J2dMt6L_E1?v{X7{2x22lo%yb|``;_^{Cs*`39#$F7|u=V8KB-0E8?yrsk>rn@JlXCO030*p7 z{@Q!9ysGN)E7AO}BMMw1Y>{%0%pU^xvxTcRehlqKkURpa56 zYs5{cYXR$1096(cH;^}46+9H>CJ)KRQERa0ST_;o#Kjg6qgQYJ>crQRp4ofwX)oh- zqtt&}L3;vwygR2(9p)pHq*-W#B{T9Y^odP(%T=Ezb&@7OFDB;%4@gF%TKZhyv}j>A zi8XAN4h4q->q-Xkh{nFM^SG;Za#APr3*KJ@T1J!KjfxhZ(^M1_4`M2*ZZK@`{5KCp zlby;RPR={Y@Qr_+F-((DI2r5VK3-w$m$KHO_pZ-J!HZhfh$Gv?1gJK-EN)U{uCNjt zyJnq=(M8wIZo*67PP<`6wIU`yzg_VY6#ME;vI_Z`Rl3yqiI~EOK@8OdVNzPfT88wz zt@j_gUZ~%NTYxJkuKpY{7#S&YWaZBll2VO6JH0g#UmpyR33Txa}co-+dR z(cF0)*_*-CL73P3*))|osDUSdR+KHH#mJ23`ermO)T_G?8I~8w8RVM6skh^ALpd4+ zETAn{;zA|aJ{!Zk=q5B^rwY3HAiR1s;SyuR@=I*XLXbR&9#C%_6H)gtVqZdKoC9MX zL1rr~J}|-cc29ZCZH#G!{)4j^^=}IQB;2mz${omS;o$BkEDyrVutDOXec{VA3Guz6 z)rwTx#L}G(8DmA-(Vz@@JfR#tNl*i>35>rQVdtV7Z zd&u|NB-OSE3Qm!p(o<374hid;$*F=@_n!7FWn0x*Z_4-?powGUzuFLkEfyUh5}^L3 zU9Y-3B@m9SCxPCp?G+DKs2fmW3dJxui8!h5Xor&2*1!V%+q9 z55`SB_eH@HeY8UKKK*wWKylI7!62l6qtud&-Is$Rp6bFa7cBCF@2;Qll8nZ88}mRJ zY#sW;O-&ahia~#X+1KqMqdE)}^6_T1YwIocgiv#>*?Wg4A=N18n#zxcjv&;GJV+_+ zq#zP;B0siI*TBwW8#?w;vNVxo4M66(iSc&@qc)MmYf1#Ai(PMf3<48A0r$wc%u?)e$+v=|~vOa>ha8Gp%Mqrtj<+?@y@=CH%ko+vg@fde-X=aVv;5W{<6 zH{k=|{!4FSG0)>KuCqcY6Y@O?D;QczV}~G=wK*f#3I1Kpic3z={VM_(T**j5u+ob$#8}xG6=Q@&8J4C$06oUk zjiaOMe{Et=?q*$_KBsg}A*D(IbsM}~1uxA&gMfp@dCFxo^#Qzx3N4x+FI@9+}7L8MW&#sAM8x?Q(Nt{(0-O zmewirAPi~~8wY2+kcNvbWFseNuLw86@yetiW0uZf!g3QfCUMwDkr1sFJkYpqpC7Xl zR@`1Z+I)IHNFql5M#JEz3b#_0@9SkOgvS%ICRKq(_lKy_7G7VELNx||Z%;p?^R z>teeU@Usk3SVz6fYG+N^S&{{1H%cRo7-sSVP6eBibiK;j!XT zCk^gnS~_KUbWCgIec>O?M~4EMPt)ke(RAsgIrrX#!Y}?l)nB(6s|;UsRbL9&f<|R5 zfWTkOiCjOScm=REW+nD#zIe=L5ZEJN;Dk59k!0YpK6a9FQaYTfK!^vwAI+vcrIjKm zghU5eT$fK62Hl(wN%;P+bpCj`z)J<{KiNd!`wgIw)M2ZLWzWzi=WWXB0I= zH2s4J&WZJF)E}>xj|Fz4-3WEV@f-|@=Rhc{afzB>ZBCHVBdHC;_eV#APpxFV(N3hc z54UF7&TQU7hLvKMkJ6kV$pmA+iJ6}?HHDLKuS7s6hbG7KwDjD0(V?e&!x(P>Og^Zb zHQXN8B!G`e4V&0C^R;Mwqs`~E5+!qbme$}l+p zKeZM>3*|+QTyMs2%ME;i4 z-$WKA-qQm*f#g?aRl8{BEj9OlmMMD8s40M(smL0&t{TMT+CjugPx&bq1eK(ARnHX3 z&VjWrg}9}2;wdQ#bcV{vrhHT3sqrF8doFo1;pL;_1=YnJAf5ECf7%mGC{Zk0ei=ro z{FxcT{e#{nS}3ZNfbb|kiGa6q*1P&<<{MhNhBW(@u9Jg4zicn`6(GCC7C%PMG7mW+ ziLzKEb8j?_2JVfsuVda{{PoN?e*O0<_sDn+F40>>$-l&!QyJ-EkmZY29?PgB!yVyJ=XH(FGYz;O`(7;p!` zfMp5ny$l%ae8cXEi9WTjX#9IAZXc>@xA`zz5@$Y~Y~VjJ2+eD-AM((ewg%vSdqU^Y zp6IB$&r`#S4`BXvupId9l!)*HBJR)L1(y7a!!#;oap1wPWsQDGjw*1b;#M-OMf7m@`%G(xa)Ry?G2(iX z|1^yxaKi;D$O#Uvf|J;RoUqc>yX}@Ya9!~Vn6*%#Xm}hz<+;tTp+NIje3S|4>*JU; z81V&mc9tJn2t2FYmi2w|8-bsi$LJ!`kAX52W%USFZPr3YV)$@Yfw6HkT-pwt#u- zoI#o}u~$^1e|7l^uUj!pLf~S{%SfJ+4(s>A zZx6TihHP3E(t5>jQ`DFk`Jf9-9+2S%gM$-AGiYBUnW|zDulu;{wx4pxZnk z#51M_dLY2rBoy!1;b<`&tg}IxS)$pZ!YuAZzI(YFNEo9EC;#R()Hv{tARrpR`SqXn%UEn!}kbJBQxw8eC1pF-KqQ<1?ul!eM)^F2tzb$iD+2y zP2lLxcP^8b-)$~c5lecJQ!C3qII;s(HcO&@cC;^6>iPz$nn@(55Lh!|$M;f17Hg)H%L-210YYpGj+=(iU8#&qz zr0EZG?e8C1k~`72+@QZ``A8HPOq(XeM2iaS>c{YPSi>4T6a`)>GVQ`K@EI--c_7G_ z7@Hn{E^B2la6o#>L(xks+>YN-zm}ymbWgCpUv5O_{N$>*bzK&2-lf;u4D0-Xvqrm2 zfhZhga#0gua`$-gK1X!IBSff1hR=x_YI4t=%{B)^5+y{Z>9JDBBL=3WzYXvs-Wm z?A{$zd4Uk+lTG6o7}1+)&-%Ew-2`M?ToAO52B)wb30XLNOjE7v(RFB+WyS-AoI7LnY__y1{XMc6!|a}N8w4(7)J+`&)+TMx zgHm=idlh$4oEXQVb-Bp@rZ1nA6nfTi8R3XSbreQ_kM(HoS?`{S>5-;L1AKp*qSlI5 zmS{x)0zNyleIna(XYl(d&&1$beetxfDLI9#Uf`6;(F7XX>4Wk!DCRx%a2$W#>kY`9 zH2dRedv>l2k~-#Zv-*{G9$`)}c&;4p08OWPAjO*+Y=(tA2eCI8PY~4%bcV+43t08q z$In6X5dK+__{}h&Q3@X2_|#=lk?C;_LB0i?;Y(LeLNq<9it4@}0_GULf;gE~vES1Y z9au;-L}|47>(6Dxm$_p3>&oOu7ytB|AM_#pu80c(Acx-!8DHK_IgjKRFfX*YF@DiR zDX9FA?^5L5fIqbt(LPZS$RNkT3iLH4aG?k6r7>YG;JX^q7ChnfcPYS7y)NEStDG2H zjPW3_2ikr8>1btlSc0FmXwq!tFW?e`&S>*4F0n(5l7VzxO86M*_e2k1TDbPSo%0cB z$WvyJuKMq&VVEKpSZLhu3`n=6yse4pq&`=pxB?T9;lq{;#AqTh?Cb$qVb1T#}fY%E4yldy6%Yq}Q`L5^}vvL#<&^&aFc~>P! z{ejDzTw2C$3N0FW9s8ZdI7ulk^UwiGv2n4Y>p&H{(Jozt>$2;DOHkvl&f_=pBHiIv z=f^JpOE(js8xPRM*sjB2RI#q%B3fBKV=wUqJI!)+V~!@-MK$2TR4Z?+E01iu1tz8W z>FF$|u8NHZjl<*?r_{UJ^ABio#m}P}X1p&^#7t9;gh=Duy}J6U)=WE4>t!f#hM^P`t%FS-Ed1o&!b@k_X&juqs+E zW$=wQCMcG*ZF&{BI3>oEiUDU~45EIyG3BH?4B~ADfr}4Wu94k~pBD;D{$)k|0&Kw~ z&}M~YZAt=FC7ejWh8x3If!fNRJJB8#_e+1UL2>L&Z(3|=&AGS|^Y*5&MtgQnBS|+( zTbQmH?gm^KiAVW4^7=2PP^~r5^({kvOOGGLa$iszhgtJqfz@68V{aIbKs-I}BXFs< z%G|sQw;uJEo*Lc1f1?sOjts4%yqUn-=q<~I1vH+B(^)YBYU^EZ-oFLz&)Ii?4A9EM zE8k~-d;<1d9wjTi=GFmH$?IlCr^TQz3NB~{V-)p3%|+mG&nJ<}12Gt8u4P8b`(C~L zke|@sa&u;3d8~Y(w$+SSZfAY(r0i)t6$WkCm}z=>G;;?ZfFbg#nz@+vBd1-Z&{@b8 z5G=5(CDf=x;m-vTPY%~^hA^0Byy{)z3Ur3rEq)v*T0Bj$d9&`ec3>`SKt_L23b!Y^ zc#aUZvS(R2D>xy`ozNC*G4_^QNIoG<-@hMS{Au|p55&DNvpa1D1=cgaY*rB$4Yh(= z&RnluSM*vbRm?GPE5Sk-W{}%6EgkxsPk?JCl2`jB`Z(xZuZ^bCUFORXSde9!@Hgy zIri$t;f^EAwViK>i3w%E8TQql+YEUwdz5QlB<86*E#`SWbUlFb5kvHE9UU!$A|Sg@^-i_ z&UuiJlMRw|k~&Uw7oJ^SoUGj82I-AHsNJ%l|0?0!FAndh+{%ehy8^~kzAZIH(4xV~ zHMjG%cJ=g17;&-(C9o~4_xev3yd6CR-f8<=QE_8$&_nLoy?x}4fW{iKGTE7I8fZ;3 zw@vubqBH(zN&oFhfc51r9f=LyRo(NXdAz9MKTe17a((Ih>W@s?O@@00w*6YWKzvc) z1mE@CXe9AMZM4FAj}eEU$KXudnf`7$yIYF)q;A5b=0b{P$Cj{+=aU+iDt7n1Y+mhn zui3i&DQ;)t?}39Jy&G4(?tlSakMqLzue!W)cwd&p+8sSNkT-Osf$%iOHd7fTtrkx@D8d|>mC+YOr%pF2$#udD{@URkvQ zXxjV5i2_hY-`Q+z>VY`AjOfZk{W_~a&+2bPe-XZsQG{{0wqu-jdb))TM=W<@(u~Lt zEX7LEes`LLN}O+m=uCq$Er*)V&hUvne$B>fE!!UQoz1)tp$ z=bmbtBAgC~x@R|Xb{>%tCZ4IxD505OR{y~AnuJg0JMdyd#0zpWNn1^OzfT_CgECEN za?aO@!DZ;g904?4q0@Dg+EbNZVym+HHx1l>0}Ylf-C{+Ck<*eI?m>f|iMfjx*gOMo z9RFoy_p|o>hoYv8B&EI0%3rV-?(jH@*z6C(WE{$sbI zKEBmdNIf{j@bO)H+w`q`G40p%g_u^HkFAv*i}%>2>#loq9HO?{Nl)#aB&Gi|5q@-M z(~lfZUPAV3{iZ|Jzqf_3(=E2niy8<`91NT*k9K->79gVFuQ~}_osMBgOumm1e>3u4 ztab567@79IK7UI=;fT4A`ryWw!_WiPy7jqF(p5fykp*<|Zm;i>&r0%ly%@P8;SPv$ zyiR`AGy-8NZYa88xGFpuM4tFaH7GoPxa&2@MYuU7#>QM?zgVS11blb6(5g)BAOmER zX=guw>g}i{JE^5r<{QCr1fP|Bc|1QU=LC^jx#oqGdOn#AY{fhM3k#{c!{uro_IkoD z)GiJ8uk3KUU{%$$JKSiP^Q)~@eH{1Ey|46V1D$b13h+He=jQCaMGX^ zy7tJ3{Xo>W46dku=oky*#3|cY4f{d~{)B<6yVe(N6|K>K@lj`Nq=U z{VC%rq^P9l+$8e0=|=b8z);D3t5x${W`6bU^t&@(H)AKW9N9V6I?YZ=e1~?wMvPyp zDc~yGaUl=c}ZAfOlo{_ybj7>p^9xa=Z-+uoRpUuedQoV<^ zA8F6m&0G0!?avh;R zEwQy&bC>iklm$l4g`8`28kt-+d;gOY9=J}o6fbX_JQM_Q*uCGUlP0o!*w9;x^g`X(w&lySiW2H;N>IczTwuc@Q&*xqqTXQ;O zHG>GTx(%eAA_?~j(OiMSolXiTMBbR9oM`I+feXBB)7extO63UtX9<5U?w(30H7sz*5 z+7Ym*s|ZdgUQ|)&N%Ey+i(OAtl|!5X0V>q49Om5q^{@aYW5e~Gv8pDJ_u={aKYUrl zZ&mIU=|#jql_Bw{-$YO!T;Wv1^Kij4;6=`!>`6%J^hQkqtQcun1UjSs=e5WEvVb*Y zRv5Y$)Y0GFpNSA_J;Wym{55+CY~j-Vnb})R2yr?lRJcYEet>{td+fy9c-ywMC?n2_ zeZ=pW|LYUZ{_sd+b1|pJc6eVBy>v!0`Jz~x>c2!GnDQ-JWVNqwjY)IQ4zG32R;cC&{G0_GbLM zwBu#wlR9UPcQA+hZ3$CHr|04BC{ezB0fJf=T7FBH4uKvhto*QBYNy3RjBt>M$5!R4 zuPfS4eGdEbC(Qx0di)*kG<{9D z@?DVkfPty|n!VSantMulQb6MWDQy`Ek;Tgorn@9kjEU2%CQuFmleMXA)ANFHqdf z@{R(LF|p5LzM=+z!UjSiPLB@<7&1OThN)J&^d=v+2>8;>fARIpsvW;~5BYpy03hez(QeLH_to` z+7JtmE)jit_;Qs_b}(oKq>)+r1eOycjq!&b5WB_4n6y2eqMV(V>t#gZg*zK{4;}9l zAG3DLr{|YUXxSI@f-hWq{JLmn2UXwqPSak2q{cm4$(ZC+b;#qTBZtm5f;wM4dDq?= z^dsVh#U+x`by6ZfX505@zjaNDv(i0Qob!Z!r{Zf|fQ4vG+s=8O-8^5Pfe%EJuP0w7 zdrvA%db9?A1PhJsI?}@wmloCxz5LWZVW)7oPW9nSB#wuk^d0gP#%gFy&RU&U_>QEmqA`i0KEQT-{k~uFim;|A@x!W0yOyxI zbg<;-E#}(`oUZM670KCogg7Te+M=np`{T*ogQaw_M)A!Z`yY;=SYum0i#G}lY~6(T zkPJ$>4Tx=klQzist@^T)eLfUr<$nxZ%xt|l0H|feLuFMc0#OIcgvXbeH_83gaf19l z;B#kkHmcrLdc!f$KzykFMF)7^s4zz9cWpcK`UiI(aouA;R1b^T8m6f87FUl*=6o#5 z$vS;Y3UGE{*OtR6(uW0+MUSn62UX|gM_hI*>>$Ox_|0SH>|@B4Rb=L8^X1;I}@xYZ&oam(g#18 z*<{%R39?Wp=2D}2xb*P)?W5J7U+8!9b7i26iBRG}T$CbSO`|x7rep~6OREiJLx*D+6#hPB>mTF~rLa*b9a4=gF*lL1Sv^hleJTF1CJdH;}!# zi+vAQA9Z*)QPoI&S?l2A_a$~$@n%3JRu@3}eN4rpkRCOu(HazB;;A=zZBj9ETMq2@wn#(SPoY?`$6l;_M#H!Deu;(L-aTWTuLYS?YLPV*A`_CnQEQJ>W zR@r~8FRA$Tj8AeHD4^-Nlb_eg>AaN`vLhLTsxOu(khvlPKRdRj?_%(VyYkKY$4U{C zdiE#~srP)l+4@Q>TPMGek2CrcJPx2;fdJ>R_v2racC~qUi>>bBmC}{MOTqfxAEKFjkrQLi{HbY43pw$&1uj>JY7p0;7k;YR&gbnfmmO5kNdMs+J66E%RyQtJusI;N47>Z% z`od??t0He2kC_9J?zG=(g zZK(Z{(@1%K1b45zZj`o#cEM9?GLqbsJd-SXuWgbaVUi`NBK_B2d1-jRP4`QNq`zJc ze|F??oEB=s-J)6}+&El4B7bPi*n2?_x2tJHcuX?*+}Qm=|0n6AzkeKNpw^^P0o(g) zewU7y#a1_GpW>|DvU@c}i-N8=>E+9~J>_TU1s?3_5)(ap$$!*V{it26^$>*YAr7PO zHjcIo)Pb~<=R?YlnuY%AdwQseqZsYu zLhCuzi%vpW2YG`<{eS(ntrhjezyOa##bM5N3x2jg(zqX z@%&TI^8QQep;0I7@|M)dj$$2r;IzkA_>nWOf7>!U`O*iuThH|Yue#CDrKx_ZJycJ^ zaJyk{Lc`=px*lKu?(sWSf@Pwkzr1gKoou<`-8M7!h)7i#5;s(6Mo<6d?UbwsCYYs8eJZ1Q!=tcS6JiE~5Q$DZ z@Tjv9c!}mTn#A1jg(~Wy0riJ`FmN=+)zi5)V`%x3fBf;`ROUCYk&tWJbN9ts%bC7> zj7AAG@jMu@ym|zwX3I&Iwa1CIdJ_?+l!p{IG{ennVuo##o2Jgy0@`K(wSh?I!y`Uv zu7=*(_oFQKdVQWfIf4eCc@P*TFfk3_G-{C>g@6&CjCf>4-v!nK6_Le@eZYMfF`c}4 zsF$-Hsihnd+_v_&1hu!duY#Slk8DYHA!9EfrqeG}+%HRKx5HTBbo$7huM~O5T&~PdxoI z6ZQUxtJWLwU?pu65`iZts+sKuetZh?ACXO(u8w%&=U6*a@+*CyJ15kqAUDbH$3e%oOImu)uX~(WzNA@ z7cS_Th}znZ#_d@S+)-`(sM(#^2Gm2ZyKmlUN(F88y$*Y}z##vl(1F!tw6tuT8hr=4 z(bI__Z-r*+C>i3sE8k0|qkr-1($_9etu+!(_>p?9c?6{Oj%b*zNRm5){7F)FNWeFd z$q{=(6ekDC>pSq9q?BVQuUf#o_zi-#H$rNstBaPp$fNtP`t)mWKtIiDg|!<~Zgov3 zYO}v?hmnl}@Ru$bflz{$L4)DFX5S5+2q}jQ^U1sY^rWqAj$LgF5f+6dJ(nwb_DQ9e zJIy4koIX{-F$|YK)ifP%D;nQ;%o2zdvHX5UO@C2;mF}J)^N`NJ6zt;no{y@*T{`O% zdQIC`t^46Ae!>Z?**~o06INN%V_v}xezoLSr!I=W&_7;SR5HQ7fbaQAoo#C0&A8Jk z*;=@*(lr9Uf7N*MQ@^joFY6#cdDI(sz#*7hcYi2|A&iLLpW`~s>K_aC9p&@EH#OAw z+^EgR-S3M1!`)Is9xJoDjoHuWcU?=r+`A7I*){WIhlgvk%7#@S=a5}7primpAQds+ z0IoH7-2Zd>9v?JN-bVpE`0lyGxdkPEuPs&_vwlk0@KB+aFsY1a(rM}A8@J>P{Yl7T zZcf6Xp31vsy7lVms_`Yv(e_jzm0S>g9JKUJ@BMc*{35Yt8%D)S_MKzNyI) zG33#2)b8HZa5#^X9AsbIV{i)Hi_N$fF;l?()YGB;zj??liW4sqTURERqc7MDhq88U z-Nea@=IoSTr;9L!qJ$d7+@?K!9s||wehcx@o`pdeWb{+nRl%}vuzJNq5+(E0l z*N-Y=y?&g+SRAcR)y?+{wTovhT2DI-LXhfPpAMJQ-xVq9pDtaBFQ2%ZJ7G*81-u{6 zGiNZu&t#y{k)wYW8WlgB7Kw7x{?t=hT-xk7UjCi6pWV)%Qzq7+vU*tXj`R_j+5ZE7 z*K2zqfbitA$ye_;erWpMni}kZ@LRE{ZkE-9oA=W>ni~V@O5Axuf$B4D0%*Sw0v$Z^ ze0JV1oQL(KAiwyKAgs2lhgOY`HGA|`!mm32k#4HND>iq$FOVaE+)*dh7;fWlyHtyyTkkv1! zM{|mg^*oWv6;kp9!IRewZ{8f`QCX`^Qv7`28kW!^Z(MPo7k=blFvVfFk z{O*L}DHc>a`%P~Zd@7aI^7?&+V2q`~x)_riYHOZPE+ zLiMGeH)hx!D2JeO*~LL=t;ZM@aJ_%B6Wl-Zx%k#G_(+scfUs%nOo(T&LdXQeoHx_; zPaL=Ng~wF($GU-keLSpvZr>aEo==6RGV~)XXRQ_qil9Y@uRZ}@4Y{w3G)Z)@mIKS9D!sg? z>+ILxC6xM$0jQxmxb5GG$Vk&w31xe7ZFA9%XtQT#KGHtT{_hmQsjpr8DtGow-M^F4 zf9p%`SL2u}Xn7wwMme5g9@~{cd&=vD1GoR1nryq*|ACjNjGMb*VZ&n-6?qtLPi27!QR45@cGd|xu)Y( zF~RFbm)>M#%|R9EgsvPg`7l?X*byb1EjzrRidDuA7Sib`SQ!&emJOLsOR?>ox?XSH zLmsgH*Nxxj_x}NSVy+jTPbU7^4a2nsn8ogu5l1?c_z`(}$Db8{`w@G=lk7W>o2aqg zVH{J^sCqpv3bdVi0-0h>AOW72&tSBdhbaxz_Lmx+UZ5w#4!KmD57~$m*=H&zW=_*p z35LB`t!RCbFCx9u^eR`mVmLg9&Xh6@YKA9+2EZ}{o%^HU`#%z8*EXTFP>>BeU8UrV zCsg;F0UxG*CgAt>fxjf$oYg1%lS^vxm<@DUL`KiE>PIfA>6IJSMQ7CbjRQNGqZZ(l z*=X<~FPrDOH*m?k{xp%nH69KbU?ulseXZoQ0aa&CX}8*wkbLbCE_z4RfH&2wuBV|6 z*~pro?+04i%bOfXC6C2dZq0ePej)2plwSg{YrXe{9%zHwn**QM!;?#L!{kUndcmkXC^!W@N82z4_9KGtJHF4QL? zweQVGGSi$O#Tikcx@8kkd8I3gHcfMe3znZO!(4qc@bGu*>s%=iILryZW@%iv9sGGf z%nhtLn0>;XX#9g#r>-rm_ms9|9ZPZSyvLTY=%#scRtfLr|7d1MF`U>doT{E)j{JcbzmYIfa{AllqHp*$C^RsT4) z;?TPb$&^82C}<+5pmQ0|ZQiqfS#ij(+{k>WJz`EfCjWO#K{=cUK6lDHizF4kFKw&; zJ2Gni&FCz}66YsPx*fxt`1~};fW)7SKzt%Ty6@nw1>Efyc`Is*fdoL@#EQ`WFNJhV z=p*QlvkJO>MpAP^=FVt*CMg0->|3Rlly8l&YeeD+{W?pkM5piGZU1!MCXqKxZsFNj zLZJAf^y68hu(nLnI+iPcL$tByd{NhDSnhgEuuJx&3smq_pI2gqIinA~R_ja~=I86(^_(oi?U_W%_%_q% zutLARgIG&!V!fvK>fZGpL`z0C(hh%f>~&RC#po^3>g9bRHRO`yEjEvwIoPHUo1ue5 z{28V9b-|ZHQo~-VwYv=R>(A;ZQh9CZZcBU>+{}^;OPc3>@~h$ycA!_F5u+#b{=q+S zhn)MNBg=C;$hq~+C(3$k=b83ned@>5OrAd~R~qIHYGdrvAWtTV?AWP)$0so1@e*o{ zOxaSt`jvXNz}wj@Iv3)Rb5QkJrQf)iI`$`EY zn_2!CCxs$~nxn2OAO@A8B>@oeQpSsQTm~El&wZd~ltoU2N#MP9#9||xKO0DdaA4`N zmsA$Vd4=Dp9W{~ac|)~)mLSpm4Hher&&smtD;U9JY_d4h{6r1~)AeJQsruK<^hdtc zSaGJ==P<}>-J%Z}%5;)n$qb$R*Ysu-4VV)Q@>%j9#z)sxLHSwerx|AW?SgzjEed%c zFjqr@?lj9$Z&382lrER^tLkW6$F7r{9}smzaM&?Q%j2g&#!9!J0WW}UnDxt_Sw^XES-Jj6C7731Gdk15*rhn4YHlCl-NVx;M zo^J=dW%9ET+FEq@wa%)_;By=X`ra@XP2w&vul?-H6i788Dp|Jbv(>594uok?<5Gm( z#NO8-yMchvv>w_qWf-DM)jYoNLqns*8{~YZ2QR^xF|yRyktX1#Q|e!kUn6I8w7O-2 z7Y-A-Sh(&mN-^%3-L0#V625uVi{Fr4GjT;3q`$r`S>Zk)!lr~7QVEx6FH&~q|1G!g z<915beG{||$A)2Vt6cg=9*@{c@#H>(vCo>tt~Wa@=}1-_`q<0G<9C#fsnP=$Z22=$T2@B;p~dp)y^v+`l?js?Q^o?FNdsUoM@Y1*eswQGyjdUh(Wa#D zrHo<8jv@Hc;nDrH0WaplIsyDbP!|rXs6nbZb+>7Sr@R2Wb0CYUI^L(gp6`BRVs5u` zf85z)zh_hI>u9SURV2-l)nAoArYhnds`-?TpPg_A<53Xe=_;fqtr>MdT1e)#E=Vhb z1UW%0CCFS{Im2<_ZC|4Jyv<3G?@!bs81mYVE;jyfmK2`j&qBTK-!vOFL{NX{>`u}6I7E@RPvYD zC=PEIB(!oTR>}i_m9I04&1v^P;1RD7cl{I>vj=;s0=&O^P`4cS(0}?aua7>jUQUq2 z_0o@Gbzfm+Dm|58x;aX0Zz3g2caq>{xr$LNaJ+7?r^kjd)PUaS!;ZyqzBAVeWRS;C z?A&xc^`ZY!P61K2xK%M8B9}FpC=;!pH^fc&{cQi&MUrC7R(!9&_r;?PlyOQ2h`ve7 z>V9bJ0!=J@99Y~s)}NdPsI8!ne(GlMfk2+cC~jo@y)wqqTQDq~G3BH1`h=GsOScyW$;9q{0FI*5s<<8(hMyPE`Rl5+uzj?Xq zE|#;YVmu<@wi3mT*s2^Tl>h?Je`YU)HcWRp(#}n2@sGi8Utbn>GLMVX^|bwJY;EKuxyjU5GbJqp>k`86uJ+ zbLelxRemI2^@JP0>vw=luJV}vH*FcaL2*lIMRY8V<^KIa*;YLjg`Tf;6&hBdRdOJ| z1@jkHgrum(NbYdBdbiX#gm4tntsibe(`o)(eE9`TB!RhX2?QtQI_9wN zve>0t<_=AE7x<%jKj`IngbN$o#Epijt#~z*s^H$UtekZ{fr$5?h2kGbl>?)wcE+;6 zhQ^g@MUD_xK}yT%sZ*t&JQBoQHedlHCWGx%%Cb{}F>E_G-Q+fm9e&mhP!Ti;j9)I= zN?1?;EXAnpL#%~C&%yXCiM=IDM4F@ z*uF{sG?oQ<&O}43c|Km)DgV7fll#TY|{(g%q2`E3M*gk@EmWZxyL|6;vwGW zZp3A5Rl1KTy)U154jhT&4j^$)|H?G z1sapM$YpA&E38HK74;!J0)L<(jJ-&03d`KxB{iax$ChAKqsLFZe;cvYg&P=_U>5r` z+DHQ*+k~IgeS(+f8;J5Ckse`*QZ zI`>W@Av@I9vw};Jw>p0ZRs@&!2Y6G=KwT)2CoqgYawSS7yd^9v3@hFQ6GA*zI%F1` z{$C)qnE}UYVR6{5LdHyIY3B6Kl%cs>kE$4hZNt(hFTP68Rghksff`qF8yw3#I_22( z7E043P^f)6XxY=ajQA}=)pf;Y)0ts`E=2?8+2Mo~uYG?U@2~+?NH*1lVyAqRTzNmd z7v?uhr#iUsldsJnnPOf0u#E#r<5IJ=#7(IDa%g+J$wi(3zxWoPPx5jswvj!-CoriX z;Epem<9g|<)r0pVhbak+`}aQITmJ#7)h6C>U}#x98#L7xU8wiy_oV-o4%<-uOZiL& z96!T+D1tb5SW6+p-XW7=!*Tu;7g)+g>t52~|BTT1g!ptVQ{gFu(z`a9dCvil z`m~erTB}LJN3mp(uKls<_1pJAQfqIL7R#MC=@jDPZUME4>=lV`A*9>k>XOAfB&s1B@^^oL?T%iX6Dc2h!%$S`ypN z78I*jzCOnWLF@Wu?s2(_8lpA@85*ySv@-||tmK~OnvB4jpO{`){;w85a8K767=FT& z$fJq0dkWMxvlKVNN8x_I(hvXqJ$CL={lt<{43?eDzGrlBx_01|iZ!n*;Duq!Saa`g zD57_@1$fu(D$C$-fM#w7Uc!fpMiJWu2PlzpnR@Gs#Juv6QqA}y{xv^xm6?X`FYB4A z@}RT_MT@tEd@6-k>ct$I`imFp&W#Sk%x^ealX6|Yo zL{n^Sq4O8|b?{=+C7-WqE2kFqo7dM|EXp5`6rSqjPPR5KR9vppPVVa+5`<3BaN5oe z4HWbv89u0q1f38wfzuv|L`Dype2KV(LVwoM6*uy}w@b9anB5nTUge}p59&hA`W{&&8dBO#i zvMp|cWiz+^^FqcH&HnXNTFfPbNB8BA27%j)+s?uZH(?*tOv7?wi6#-Gy*Jc77CY2E zit4c7C@Kw_NFG%EHj6bUn%ibO5}HPR>avaDvBib=Y76z0ROG*znM#%2b4=coS96kB z-KKWd45V>E1owr#BptJz)WX6@?MhSJ@0U#>N0AOap!IQku|>k__pNfMgnGdmp-3jj z51bCVpD#AmV>7X5YQFrd`1(CkK=F-R^EVq_?yts$St2TSuUsd0Kn6dm-PnTd!6sZ=G@~1f9Wi^!g*i6ucme~EyGn;pZ$rYxGOML> z>`QDewgtO>Zbk#j7jYf`=*b@!x*b=>sK)av59|*Q_J17@}^Df?kOD$IFA8 z&V(}ZV%B(U?vLBDzyE5A#RTh5{XMqM{lMi^y_7S~g6aF-F1ny+nJ%5ZrAgTV%(04n zxlxx-7lL%^`>^KGI_CC)Dt@eMRRW^kg3ChobIiAC$t~Ha2ak%WFb%57xps$+T|VuL z*{4STU4m~^#T!W#ho+H=nQyn`^gy2@#c2|0YvB|8ubhtDB@~SL9RgnOI8f0jZQDrf zMVlj zXx&t#+2Od}_)08F)oq{72WI>4j-0z4_w-?L9sgogSI-P1*0v8Ihx}OoU{VNAFg;FD z-jG%%_CwH+7iB|2WK=ive>Jg^Kh#wiM*#%=pzI8DHxE`^vSNb4M{HAoqPVcvS&$I& z){70|z}Vw_afO*%%Y?Eang^7K0O88e@H+p2Nw#7jT-KGieosvZAdyxxx+TEDz6EhJas3; zi#Pd~F(qCdmVe(}7Wl)l*eh5Si@?tpo4;Tsu@Ne3Ahml$_lS`ks9_m>m(wEGFErY| zI4Rpka-Q>k_V~l`VtNAii1p)0;a_dh+7my64K^0s32vXCHCbYL?U-B*yWG-MiRVtf z(K_yKFDUNmdm2CHo!cWcb*u(2uMWR&0~sK{v&XRv432Q4DZWwRK0Xc&HVuvqHtwr2 zbr0{0Z~gSS@t7W%XNFhN*HPL9I7n-K!`6aoBIDlGGgx=Y$eR0e>u0Yw5Xf0J@bJw< zNwQaFCZI+Is%3tSQyAQW`E}D4@vvZ$v(bGa=@M(p-FaAn*`4O2bQ!sS&jK&-){-X7 z9f36=uv-k@cFLkm=Rs9W8`jU9k@S7NW=}ZiUouLmC!@u1)QtoQpUhMJk#u;?(_%kp z(CnWUy|D6Suw@g1K6sa=iXxq=C`TqpVfd)h9<*o&Xwl7wVEMC8hmEt8xI_fv(?+^& zEmHCAP9iJkK5slf<}wZxzd|gHF9r8M@rU*WD?uAUW|9L4gd! zkhq!zf^M<#`>jcjt>pJxqUZjr|BiV_XSP}E--ql-A)y}-iSOvaD+^?{+uO(^@!B2g zl^NFX7_!P-zGQCVqjLPCb_8(hhD@pV0miYT1}beB)M%X{Hj-Dt`vFI-?d7B?cnKIi zTJ6Wu7Ie%*TDQz&y#lc_+I26nTk2tCtQUl-a-hE4kX&DmvLA}1GYgJlc8d*Gq9ju4 zyvbO)0o0A>>^=*jWbnnY$?2Co(pR8p6haFv$FbD&T73OjoDSKt(+xfz*0lMkTvO1x zi*k_1e)Rxkqr#zoD1vArsRwD16M2whp~+A^nsu8r>V`D5q6PPdzrvN`$1n%X?kX@W zbE?e?rpK)03WLmk99p1+tAwM3a^;3Ay{pJdF>C9;8VoKx(DkkWcmv(oy8|>XwiNm3 zYqySCW{CXecA$3sASuvE1u71xS(!b(1%E(Up|qJ^$&!-C_77%v0wjJ7=&KEk(e2j)%ncC2@UTw(w^sC^EmnOWqrSmx34!WZG9%vHX3j*Hk!YBf2h~Ynz7( zvSdnt?6i6mg&qz5qT zG*o|hE420Hze#DvZWhLfP09~vseIHyS(B05zRGROt+Ih@kz6nodV1nr4G`mZv-3y` z=9LF~wNY1xkK<@qB`67My+&c1J-JK)>U1!x*zVrd^fy!)_p;>?-lt0VTm@Z4wDz8e z9}eMDU&DfBDD2q6S<9VTf@s zO}8#kcUMz&T`iewh<@E8Qx@b&d<`#Bb@xGK^U3n#E}$@qxMbA6G0HY0{A0rn+~~*_ zE$Aq?RDyQ-Z=f`;BYNKu<)0b;cRY#Z*8Y?B&vrwZYBMFWya{yz){lz=Q5O?gT*uIQ ze-JwNlFHmib*thtF3wl+`I@O-K4?Z`j8OrXdH)jo=NdLGpYnj7AwuwAZ+Q)McP*3z zY9UG7eXrVnzHI=m@xUGb(738rxHFp=9Fxmo_I@e?o)$M{tDQAaErydurNoN2OWQ?^ zk$(L&B454-QR|n2M{2tJq2zS_{9QzkCrvfMBfA{ca#uHFW;R#h(iv-GFwRZVtQGgNVsWzwXp z?auCeNxoSGYY|R(DbU{xSssb`fLRxKH%_{TVs!GA%A^Wq%NmqXus(ZqLhp0tKg(d{8qZmONIua&Ww^opO6hecw&Lid+hO#>KvDURfoC zsL%E?JTlo}p8S-}JIL~B11qQ6i^)?d*8=TO%BV5PSAIi!o`oED3>S5{Zr}n?<#|ra zF}ptA>VVg8upx~iJ91NOg&hC8`!R~nYMTv8h^VKgxUEdF%1hvvU>osJ?-SvKR1vn! z@ZYAc;LvadX%Li2~Bq(j(ok~)kCBd(;;6+28orB1d-gJha8zC2S?^WL zYFtzZxoO)qmT{rv#+kme)|+=&2`3R9V0*`@TA)Fq*TO+ZBsN7eQTs7Fr-7hH_LbP0B#g}T&-x(1 zn=XM?fV7B=cB1LT%z!s=8xx-?Tb$d`P!00`2grcLQldcMVkcahN-u<7dvEj?n5gIF z-$$N0nInQ69$1@cA(o{w#L4RxEC9pG8EwAQcvbn)lq8w_=kC$XaKYzT2$u>+dyPU? za<0Vg5{<uEf%j1wri!1->UqbFJqZX$e+WP=axa4k%F#62n~*6goO0HsJ{+=F9e< zIj?M3Jg=-6u2!+bAi3<$Rtx-8{*s(8d&JQx%2`7te_m#mFZ22OqLdKs#WBqF#?dL! z;wQJ?!u~(4hvS5A!QHJ;*;(Ou)0JKrTV(bwnTT6DbU>7H;UcQ;_fV!f_cXZlok-O; zf#`Hyus_3ZfX6yMy3A)}6Yi|)KCg1D{BEQ{mZv(isoa+zxKF4LV0^38E%I zaeOhL056uT^B~tVsgCb!%Zh=36SROh#juc%q=7&Zv?(zKQqmRUlwUlQQU0hg@!40{ z@O5xl7x=Rf?wkY`v31w+`KsYxTcxC@f{?uuDV!KwO1<_<$;pN2sW)(GO1%(Cc%(*I z(~D7x{I9?w$j;uwUb`MYeb`@BMms|oo{Hd3!KGls zDOSjPbD@0a^|=g^t#mx=d{sPeMekxlRuff%k`ZNMI4@nl4)(bh@C)19=m_{=)F%;x zA1UROf?gJ=Ms?XMX~jsW5n#s=KYRsk!Fb+ZYO}5~GW$ z?q=T3s!A8L;OXU*62CKq4*1LZxA=7o*lzUX5V3o(?2U(Q0jTXZHVYg5Gm0)|19}sW zd5W0$tW!u%$$16No4Wy)tP%Nu#3>1deoq~g@~ekjH-?j7F72SIi&2N`U5T0jX9K5Ia-KsU_@Tot2lZcjaIfbj4i|)A`wLt7;S8U?jLq3pYbeU4eV4msz6fQSvvfH?DM|+%_vE4ad5>9;}tb z98@Z|&x|HJL`}q6Rh{dnRYwQ5zZu{1sC`WBlkD1cvNO06UWC}Sb#rJBbF1@&cNMQW z!pl0&_EW3hC{lEFtUS!uz9%beO@!%Zd6t!ILpE>eNd8*4F-093#~u!zSP`#l9iLGA zpcmxl5#DRP$!=@z|ICQA;M6hY|3r9#ixJG;@D;f8gZbCt6F65WMqS31+NSx=<)?}` zk2qXaknqHX?2jT(0ZSofiaY6#@@HzGgHZK;z;2cPG*V)^BLpH^Zl6M0oUymY*kHvi zj3Ua5>p$t;tNKtg^k`Rvvqa=+9visZs|fBs5wl+XnC6(VH+{W(_e&cPcv0P5=PrwQ zOhh>tCTlZ9!G6)V?af>;JmHzS|D(bKXxUCjFc`zegybYrsI@xr?n7OH;^e-g@y-W# z#nfUN;}X}|J#}b5RDJ7f%=XrdP7zWKmHq=T6RilC`MxM{2vh7+#>Z!FcH0)e8lqP3 zuTU&;D2&v(_lQ>Q8;m%TRq>}9Y3(`jq4Fk`Pom`HoXe(cq2_{zc>*;U$KTEAa5`%> z36UuAOc9q&lS7;2Xo}LeU1fT^$+h~Lncy_Ct$cGOUtGQF%JjRZ+DOK^KcPl@1RC;4 z&59*1!lX*(0g6ef*@i8BV7=G4;CR#VA*YQqYWYA?(u*^xQ3g(}q+vZKDbk?$E>aO! zpSR&p3&vSUi;>N#ip<#uGT%!}VU|>+czZ?26MBA;FwN-TAwJ9_s%teq3kkt%TL z@OWmVgx(KCl>^@N%K4B=8Bj2mbCl8E2LYd)s%_G<;Y*tQ)P*y9>@u zHbu>33tjZHL3L+tlrzD0r(-%=L-3M|#48=H+PC`_A0j3Ol@H_`W>e3bu-(w=+r#?n zgks>bhOZ69!pO>D5{_2qXxU(b#zFhYVlfIE)t!B(bFbYzrfhF#5T>NYA)6i(+p39J z>lRZuS#HUa?qsaJH-gaK8}5Q1+{9Hy?`x~xnsXCa-*o0IIc4x8X^ZsU`ov1_v(0F{ znPSX5IJ;{|Y-nmel+Rw9%jdSy?eQVLnrGjqn_%jni&Imk#02usA68Lx1l!#xIzWGl zJ9r5L;R2`p4c;C9^qAc9Tk30?x($}mnDVHbKGGN{e4{3nN zY*y{D4ZqG3vhi_jzls+gAg#lT)aW3hLVD|E26idK*TdGor=kMHaQAgswTW%8*V*BJ zNm>JuRau=w{)Avpto>lj^6QOT zE^yeIkMiNN^EXC&lP;Xqdj|%uG1?o1@n^1czcP;Azqh!|zoo@=W1za5r%KcPaeK|= zB>@i$C1DVrU_?RqfRwbhkEz!|I?7rF`&mdjeA`y`gJBVU1Nx6K-b}mm>ll-9LhZ*e zzH!<}wY6p4z5N(b406|+6=)HX8w!dtK}~H2F431;n2;8ijP{!BepHR(f(Cn|7QS#k z&2vk?kCd@)kA}%|TfWOU8}he=oRaYXn)(HPBz73frKjp=5J?oSX11FFXp$%?2V96 zDWj8KZo0r?x(qD^J?7fHtrIa{zSwU+VeFq{8(* z8yPm%tU0o9)qA5&4n(DL1m1RNP0=ry{OG{Yse;9c4yF&Z{cB1t!Fv`-4071f3J*Pt zw}o(b-*%<99p%qX1NY>9@7`t6&GdR<>%atO%9`Lx07|r36mw)0 z=3fF+;RwtT#{N*Q*9ej~9x1SXzDvI<>xZRYcz$uAdd;%{MI0ks%G0hd+hKEYplLnW zZqOyT$~fo@55=pw?-d7z0r`9W%Bm0lQot3B{P)98S*MtENThf1Q#R$$XAS2NN0D~a z-ZRk{0qc#sqNB>M*Ux@pZrvRoi~wUh135(s#Ak_6`KHHCnF*M`uhLwLi3#q%!y&l) zm?r5dn9w2nD07rJOT&RB&II*bo0Z=5yR9FM-g6`rQ@*%l`vjPH>Gp%Ie$Mu#ih8#P-AqYOQqr9|fP_f0>j(M!7=59SA2mbw@>4MaN#3eM z#Q2*UePNs*6%bIWz!uC)V@Dm1SuBa^sEOaZ9Ap@mzCkRl+>f_iooi_-qPO{)vzH9? zh*VcMT7$~RP#DZFFjq5n5q}C@Z24uM@oG|LVXOB>uD}nZaHfcUAff!x`wJ)2Xw{Md z?Ib`uisr%w0-`q33iHn}c?CS?!#TG`QuLU#HL{`(9A(q_)@@7L;Kzm}dpgi1lDZ0V zuo?+mC46bNs`PpbkcU6of2#1AdGm334TXVdHoY%MVlw+tO!L2a$vQ74Z$coao#86C zAN_AX{J;FinNqJ_5E@(L{oox|#AU%oVKugItX&?Ina1M9o82iO7B-#gwIHAjAA5}& z6Xo6U8#~=TDuDCIU(`a#A7sLUVy6yaHHA^`LwvsOsCbwxAFg%8avQe$1Qo?AD~Ov$ zEGYe5ACtq`>F%Y%6?@tm%KtuwALzesI}pGLC>Oc>@x}zEB0U$7Oyuulr5j$fx^h(2Cduw&af{eOmW?e@vuc@ zZw&a6m-77bDEv?KSp7HmLD=qiUV#}}7_On=^8BQi=GqU%cEu-Q;xvJ2wEgW0HQj-> zJ*Be&V@fiidtJG)=0U|{+T+^;r-;HBe7z%=ru#B;MWAVW6yv(U?U7o4-kN;Bg-X-* zSuko`SNHnX?KCRL^>K9KGZ6YFoSa9cq>9(Ne%*y1h~vCbV@cw=O`qUMUfiTM<+q@? zshpUehSYo4mmbEJI&5xx=aU*@SuT$jUfX^V)00`nyW8rT#%hWY!%IdVciJCVWesL-L><-R7*m zwgy{9tPRF6FQ!JCE42{@VU7Qw4}mXp6gx^hW#{oZ1Ws{iJilxP;sDxrepn`b%CuvO z)MV74qeI!0x{#20f0^&z$|*!3)$&)%oaLze+J;`QL;if?A*KmgkHK&M_}x=F(Y}(E zJDRVzS~pvqfWtqQC4^3PaGz@apgVsz1oA#6c)}xZgGuM!S+joY^yN&d zkm8&J}CYEx;RttafWuUEqoOvBPero}-G|-j6dDD+R9-+hLlj?rxjgpWvLe zp=)yoALEcNujP%k@9py8EOqv}wD0*cK!Q1J-_k&W@dfa*PpT7IbwMIHsI~}oBR_A+ z@GQ#;F+=Ek1+cd{2yM!^`jLi_pzS;b>1?VOMICFmdtwt14ivc=R2|NXZWD4Sd5J=; zFs=t{@6qxOeMuKK1qIq%&`*y>WG<-!X%+nezbbtcR%BvQ(?kT!WiImI2 z1bL~`$(!lNdd@(s8T-CbK3)9!gG;YUkkQ#$Bk|iW%YligAHVJRX=X>|GK6yCVzxKk zc>oYFxQ{7DtnKrzh3~PG1-HPDnC&UMg&qieZM}Mf3ZR|uE9InkgRA;KKd{ZFLdJWz zqJox64g*vl&Y22OU^5E<6!P4DGXNP(iWdLv^(mY*!kL_}fbQKjO_sTF)s`vLJ1|RHe_279g4@Y{>T@S>9FM# zadX{I>3ZSJMjE;ekj>w}RNQEj8gQ-fC2f`I@73E;Unv1hg1u%#p8SKw_fvmiY*|7j zkGAX4jhgU8=tjuE1n}J5QR$C@lz4GWsEhbdMd=8`V8_R95P=u6A3Lm63gl0Z+ALaj7-P5dn-SOvY!Kh?tpQwin@**>->*SS6y1t*BfAsb)i<3+Y0f3cjr@QA%}N zJG#5GSfk=3#nA1nxh?7Pol1Pd)M8}-fc9Vi5Lm9n4f6SYn?{OH}K&aZC6(V@2jrVa?y8tc&I`uhZg@D)qi1F>B_Do=+)Ki zZ`?Q;wfx>&omG>o#5qjfe}MB)tCse}eCs8`rANif^EI$^#Jud{#FkHEAQ5YX*WdU# zSQEqL_DAO)Efeq)0CBh27H@y#_r@Kz8{uiaaQ=^Dmy2RP#L{zW3r_w#NZvmzgkg7^?#|!KPZ3X80PHGQSb!VvQ^mOz;0d(<>UWH=3ZD%bOLfHn_kadU}mz-(SYo`xd zM<(xY5BwfJx#FBWCEDw!Xe;_5d!ivQfJP2IGq`nO>ya*?98l9DbE{qie50RJ46}n6>I;ozLdS?(W3En*m-1z#_Za|0DY8g7O1z&8$Wyz z4Qn$u7zf~$%XqTXz+hIVaex8pHJ|J? zTyaJ?Wuri0gHIr8#!DbSzQHtod*`j9k?H4$D&_^&*r_9?R1)_guwr?og7xe9O!``Rq`vU@;%4EDlTyPd-*B;N zkR}@DqZ`uCnGz22Z2Y}Fj8lAsZ?FD2< zsT&gV^cQ)EcyP-+$wHN|Lp|W-hLX+{3iZ;zH}kfFRblkKc+}IzIgf3#L9wAHYydtr zPoCNZTFpsqtpqmlfDYpAhX=VWaG-!Nn-FJK{@(XdO+tw&i8LgfBcH#d;hP?C4R^oH z=h=q4-|jD~c%wc3z>3){BR@+nA_YXqAxYE?3Q34@_82a5ArjLR(U~c6?i>gCeJA%X zrHGHLw8BKY{&vmJQG7$PDHyw^8|~!>E)geVWFKv7I2eVJqA>wjw3@b($7QCQm+oob zTM=Q`U-3hsGpN+q(3=BWZ(uGO%U{Pcs)lkDA7rHup!! zf{lwu8@;ZsN5*Is)Ma!ch%Ivm>TrDg6qk6CN8P&ptTL_8mxc-7OCG|@jb%QcYS_Hm zzklAIh&|e?mJpn1;CZ}?m^cyh;SCmEk5hxEG zR+QgUqj&NO!Z?ptCi`wIs)Hyer76%}QA z&sjDGI?OtIP(UFYop3Rb02zHtm#8W!6t>j)c{ai{ zi+ba2rr$LU%!rxdZqSr36jl5oDsT^uv!nM++P9Z18)*l7tGqj@A^-3Lggm%Mrm_|U zq|MBO9tc$NquJXt-%Yy)VWPPt(rQc#-mg@|nz@=!Z3e!mn$z_cNp~zb}sO7#qs!w8apDwoAJ0w+@W< zHehv;Icb~VZ5^lOPVi>pD#>UsfpdE}#;W^TV3%t$6jIitj~GSmYlDD1>uEI% zx6Hdc8Y932#G%bgeeF$*uYF^}6qCKR{8gMGTqC!==4RoCAcyFM^fK&-*FYfGTyK`= ztdm=rKPp9!=Myf?-f zGt~j_(v+1lhr6pAt+Ox3u{=5;#rS$hPbozQWW1g!O)^cL0>qz*ks%@6Z^LRIP~nLZ^c5HcCG@P6h`%!ldcepbSyZNaOy zBmL>~<+W3$$%Ef_>9zkHW6rtzcoaSth^hbK3%?GpOD&snMn2<#=6h*j^T1|Qh00=BLwZaLBNseYe4cj3%oxb<3KefxS-_|kojAW}eg4Ik6WIF(*k5)jdqw@3G zG`OCm)@2@2vrq(cpvT^}g0t~QOvMPu4q+i_K}A&A8-i)H^LMK86!G@mXgEG?DjYWS zD5_q>x@$7O&j{SvXz@2|w^s~=kUM|0?}>_9E8+&l(AGvmorQIh)9eGw7h1%Ookb>u lm5YwpCsX+U%EzYn5X!BYQ2K!vca$iH-_=klx?>UgzX0EF?I!>L literal 37519 zcmeFZdoD{)@I&IZrMU_C34X0zYDR(|+k-DV zh6xENCJO!ur+!C9ZftC9DlgSR^#Dj;L zV%bwbhpD{4yGU;l=$KeG*;Kx!JjFF!_#jNl#n5-aR3I&QG|GleFqN+^7bDC!q^CD) zl)KfF^aZyZ%DJ{Wy(fq=N%0w`(RQ9|hJvf+r8!z6ZqjX3Q+dI!LZp>#QNn^BUi=%s zb;ZMC`~UKVq3YyQf_H^um^d&u$;)u$qoeu;cB$g%53pR&!fGc1a^r1Fk<5yk-W$)XU|*w)(h(TgX= zQ}(A;uGq;qhaVOUXF2bT4uk0RJVz&&pIN|@4N5|Su-235fHuPsgP$BR35)ZM3zmCZ59Wp%^1KV#tXnx6k}{C^zz`2XilZ5aX${A6XCBlyXzC zeYENiqp<&~%|&zV3NQ<9#76v&3th~z1zX}P{2lgZ;C-{LO7oqfaAkpX-3>w|-jclm zAnjRLUUdwD{SbIUj*9y8A2<@F4iN&q&K>h1uzWG z%g0m=V zMmgnM&{O-*FH4Zp_AYLvlm9n>wQl^gWEqEq+1VfPQX}`5JVd8-vWTu=0m0ze7+&*F?$0L{JEoSu%m^ulys$ z_P>K@U|O6gCHT(c3>WnJvsoUEWpe$XayPt%=RXDh-PNV+ylDyx1;I{>C_kIB z|M&ZPsaWcD*X9^kSi4qNo;~pmKCFnd@F4QF{tN1VLs^Q4J9@!s(-THCbEnEfOQ8jC ztOM$TS6hI;fk83_Epw{SAs%(UWgKegKk!gs(fPt;d!%jN#5*(Th>ZZ)H`9HMLZH=I zzpO64<>d1O4O^Kqo(-Eq?u96z5fw4sY#B0K-d@qt@|Q818M5T(@~&d$(*N&XQS*NM z%iJoUO~#gTS#R9j5TVaZw>&9PMwqqG6vaMAHbnQ>2BGt9iN)iQq)|U8|Ay<2LyR>h zkb#kkCu^ITlt?AhBI3*jV_ zdn56|f&t=-C=YV51mZHfl9k0n@P3YB(TO&ke!udshM%ZFLFpNd$)>c(fA?(#Wbi{R z38xu%O}Vy<9+|0RT;%BYNZFkcJCfCvOAD?19Q2{L`)x|OmAqLKm#zOu=?(%wC1!5x7*(`|=r1Zb@d zZ6K;n8B&bl6X{!PU}-~Yu3gcJnYZ7ZhIq!+;!TR!Z{;z~P+Co&UXT$b-x(1nt+f^B zEU%E7mw8cmB9v`F?!X`9xK5M*HTuh*ZP*?*l z=B~<9*SV;;dT)KICW5&EoFS{D=j@CpN8be8?PEtSTYMa#E3l1!Ps1z80I44UhdSKT$5P9JEtTb17ZKPJ_UpdbF&mVwT(!&S5p2TH!Ul4r@1 z()+n%03M~h*sQoX3PmT{+l;-xEtqfow?k7DLwVcEtQ1tae?!EQ*(m%X%!|zf2ze*B z(Bp7QgxWsgjUG|QZ!N{tVqN6GmcfOp41alM{IO$Gu14||r<|Ffnu2MPZi7g3S#ZcR zqVPRnL?G9-ap5kSDU@rkh@-ro)GbnYLwcvDk{BD()m?$X>|+-GdOC_vJWxWQ;lMfc2GM< zZ@S{~5k<5fJIqatEP5GTi%Hedz79vSUjcJqh5)tkh^AD<*uvsq9J5NwgE8o)Y0<;> zWQ;qOR}$0Tm$6Ol`ArDY)`&8`=_VbK>u&fOKd_K-KJvE)cke#@t{iZy?|F$HKWLp( zP5y?lEHP#g9NT(sG`Xw1p}_@I(_B8*qjgoNxIVzg7zE zo(IllDsRz(Dus&A?+*1%P7~(pk#FD^ieT;D6UGH=Ic6#CE8uWDbOKhA`7at)QU-i8 zdC;X~FS#Ti`8~oug##Uq0Tq!8@5za!dJJn^hNI_vJzD0f zXMXgXhf1Adgo7(7J}W8xk-f9IBMz{>n=|2kl%v1jrUK7V2d5w9?B{>?nQzXik8se~ z-(t;9_nB9hF8f@R5g#eNata@>G6@)|u`&nsjPU^P7$e+T0AiJ1aWc(@gS_>i8jg{? z%7Geb5r6y#s3(-J7tQi&8a|6@2M>5*0xHjzhUHfQxzM~py~yWVQIr(euJ1~7qMJKxpIsfUyd0)pi0}z%A;lbu^xx+ZX-7j$^D>8Yb|ogGolV zhOvTNdY$}G`s{+!AhT?c+27FgX~h*4|Dz5VWoB$Y*q2XPHRb!mmM)ziSt3uAEN}K4 z&iA`s{%hic`Cgkaj-9urlj`|5>t#SHrWR_*d!wGq%>)QO)TL$BwKuoKS@#Jqt6dPd z6we5T4>QwGhby|Y25>R-hNu)z^aNDd1y-TZU)}ZFoN`~9A@HM2XNGQAGJ`Oq$tqt< zkG9>j*w+^EBBfx`ze!(#TM3jZuq0gTVyue-+Gojgkere{@;yed8|ZJBVOhWqaxbR2 zf#3X>@tDJVf%lVU2zBeFzzeb>TGh&(f0_LOP)7Gab;@{%=Zp>B?8>)gRoRA_YcUT9 zr7<+Z4n5K_bP(lLn8w=z&6t{v0D2P>+Y+YVF#QqWqILS}1?5+KQM))(*F`qks1*PGaQEV=z8158xZeOzsS3ec@#_pT_#=ib4(m3tEza1%^$kA4v&{{) zkHE=PN__a6_I*@E``M@7EAJ!TE<&_FLHf<(em(^@Tq~uetMcMG`Q#-sW5%V&S2?Io z{m<4v1yh=@=(kVxt-IIg3tIzn%`7EUBlODsPfTsjPhwWhrvO|=trvjGCTj?jh=yM1er>%Y7 zp!(Sb;;Z%1BgyyMdm}`sJ+?R(#?l0|a@>B47$0PwaxyGjp9TJXaGs|@uC%SB_7+YB z*XPCK09CSiDV;vJL_@iX(ToZ{3zX9R;8MDt2tWo~X?Db>^-$P1AcBllNR~p@u9JcL ziscL^asXx!9j1_j-3)`RNV~~KOy--)lWxHMJS9IcG`6_aR8{ChKo&JQ6+p&HpPeZN zM$pTpA*qyUt(3AB>^ch2K$lu^g3cK>Oh=FvO8pK-fpHqMM>p(VK6y2t>J3uRoL`Yn zx~^28`0M}yjejRWXN{|U-E6ROqX&|au*FXi?w<9Fu4wbh^>J@ZYoOTsRs-@X+b$K+ zeY~=_ZF`jb*GyC*DSL}ZlM(_))HI1h#~B;znv8mdrxSzs7*%`6dk~h%>Z{omO znbvrPGhz_+DK;H=IM`Ter$f6#j8zc^y}57+Wn2W7k-2~j#@ya`cm}y$PybhT5H&1& zCV$>bD$E+)qS@R0R-Yah2nlmzF9MAZp6a!%KkyP}6$Aw{iR7Cl)ykPOwJ;H?xa0Py z5&b}1)dvTOEv_*27wg_vaU7TqbvOBpy3<0uxC{BN7QKgr6~Bkk~zP}ab1#*Q_VputWIQ*@#533x- zuhoNSOKqd*mVpy}8s{ka*Eh{QYjHi;^>rsB@;%{@P}mo%A*nFjb759K(9yMb4P!U* zroz^>oLT=!Fxb?)pVPA|ya0l4L?;$KXJ3G!2LIEoafT9CQ+*}eP*pWpLm##IRhZ$> zvmIqM(c*>(cu*ZYYEZF03{;bIoRKOG>30`wD&t<_S4DukXX@?=MwJft^(4=?04+KD zknEe+gCi$X)T7G|&#&)$&YkS7Oo}NM!o_=+`2N zbSrY+XYJ|BzmYj}0+Q9HM^3FpwIguR%@ttDPL>Z~S5 z+6TGAc&T-3Rhb}T7KBypP+!l4FSF!Cg#$xKZMp5#z+}dHy_wunJrJizV7{dS3CvcZ zB|;bPI_)OqC4NkkuZ8K_u&BXYIy~k24^-3X^u`^PfAer);|Q{=ieuM3PttNY_=_~< ztY|xFmj7K7R2lagZw~7RkUH8H&WhtaA5SvNN%e7mpxE2DluIh$K<*W%8l*<_8e+ml zs4A#m#{8SBy%Oi7TDN%*#WdMyQ!ac=?|oO@BVep2 zUMXr~2R8b{?3?)u`FCQcx z73A)m&D&Do%Ui)jH^!wd##=>d^%|_yw_n&Z1*2q(@PTkfBoDMdvjDL%^2TUbE#9y- z<~G|ZK;tQ8a5Q}}1KnSt&uSu5X0B-@%5Rzbpke;!cfwRh*U$&mI%O@VQT!#visbeO z@sSBBem_meB1s``>_VUvJz)>6I7M~%2LA$l1^aAP7`~lh+4{!|eaq9p-e&flQM+Gy z)wtBh++)j=jWx$L&J*yLJa0`!lVRG?70Q8MC6xW(aPw*xF+yU3s;$kOg6KF?DG1vF zgBA!kTWxg{%pY0myq%PCGG;|D$n`bhVrZJIhGn%E?P&tGsWiQD4y}x_E{m&*>DBIA zqLGUrSmi(`B5${!V8uMVT`Ob4V6?6s6o#!#c?%AYWJ6I?IAB5nYp6rN4=9&%<%HiJ z|L9l7WnfyfQlzwA%(xfnWAQg&KsZ(d>aBhMi;NwsvM>MUE^s`dd4i>#hR+?NpmH#Y zObL7DgZ)-~h>CoS1-qBrtrNmay^71oGq3h*yr+U2A9;svX?!rEZ`-ZuYgoS?&Q9|B zqDQJ2EEJTRFD7m(R5EEpqhUVkm6=^c1Rk++ydR|28=f++x*q5?RO44sOxnfi`&}nK zAPMal77M0;K*>zD0_8wI8l#4;()(Qa<#cEh@Ch(>-F@7+qzh6J>dI;?iourwy9h{n=mwi*xF%|ua{qt2VYbS~k> z2olOFHzM=;zZ@p#cmAs<4_3YJnAw}bdHB&Ax*xYvphvXfnlK{#bz2`WVD|fiv-`lmf~e>JEz_&xrI!%O5*@R1wYH`sbND* zzb4OgkU6NcpKmkR=zY*Bi{DDmu79jc9Dqlvm)chPH>7bgLDKLqFp^_9l1{fI)9i5L z7m1v_nK&$dP{NZ%@lR*v;et`^N%5T1p}k(l1gJ}}`a$YeB&Z_f4@S8nSym~no?ILx zY5+pFM)M*d%Vjee8ip^&K2X?iDf>!omGfsdz8~*GdVA7q$*&fWTH1lmiYrD~)I_#h z6q&#cm>$=1Dp|l#$upv}Tas#U>kf3|uMBw?sYIRM^GaV4mZ7}OE%2{%866otJ)b~k zV|t)87en-V$In#;#<{7 zj%8^s1fa?T&ZSfu>Gw{2xbmg_Avn8btKRhoE&*-z!K+(sY0{4v4?1j9szH}UX0{fx zJ-S=%NAjFs!>YZQ($knSwj-<>0JY^IE8A#`boaUd-TZT8-&X(`$EC8tqhz0}6 z?!fbR22(IR?2_`2dEhRJBFQg_iKOSHqRzup*aGJ~?OyOEf860cH-j7iQFR;%y$Cw{ zY3LG3;z0x5WSe_#Bg-n zXsz}5J_x@e>|NMaXCO6mQH^*5a7bXOZ`L}xs6nHVA z18t>!hjFU`BH0pMP+>jxHrnVWrD^>y*mEF{ETy1OxmgK#qZwL81Bf28MtCXkeBw>C zjmou_i=LONv8%E4Cbu`(dc#I@`b}0PYYOwcQj^jWmdqw_7)HxP^ernOZfVq`vV)uq zi`IXlmt8+?^H;Waje5>-oVDR5bbXjagFa(dSwHH_ImWL3LP|5eoe*P{E&**5JO_+7i=0BW&%_bhE z56k+AmvAz>2(hvw?o)f+)BbxFfO%?=fOPc!h{&l=Z(NpOG)JnK&~QoBiK@aHYKOO6 zX+A|3jSM14BQ5F%Y#G+2II_)% zV^%BY;rPlY$P*>b~vKjI#SzWcyS8NhG_O?kHR7V_a zo3$>7Of79_j}Wqpk_E&o{t_$+7{j*uj7p*n)X}7Nl9d82F}0z7Up{T33voO0ZKc)7 zCI)P0*{kGkI>DZ)yRp8S%{`dA%E8ekv&B10p}0V?e$`XXn^)MKJ|8g?R0WxC&2hiU zHv@Zbv)0=)o`96(6xpGom8$$1LGG6QQDeLXg2d^Qs8n*LzX`h-2qf!h*~b|XVj^qP zvt%4ErzdkBpjd5T;7-kt-tnXJB_lXu?^~*Fud{6?pF(D2-@R3U<<&YG)6(gc5W~O6 z3P2&eiZPk*a0O*VqdlzGtac9R$X*STvsFnvu_bQ;_6%U6M$-Ai&M?kL9c` zQ2q=|NU01Qdv|Anx~*CHQ`CaZ#B`H&{tV)7zIfo;AH}6-|o3{@uVTvmWbM zbq5<^<@&ckwEf#-XH#xO(}_c`*Y=K!_;<2PqLs7VvvNX*!zn#rAbnmEEt3y7b;gx0 zA%9qrwe-&-XJ)KGc1RnXPwh+}J`ni|=oxG@XI*qv`;~PkLR{EcU49=X0z&(!fN_bQ zal^U0>L2qaj7JfX^!k-#bZYtfx;TnjmBW7Qr7oW0qc+|QE8@>tgrPS*sApX{6QHrv z2MNvn#3KOVro<=YY7*fxlGr%k>^v`vY*)mbFHbu%ySA;g|0ep@w>pl5IiJk_=h{D6% z@5j204__MXU8T%Ikobps8JHHgypiG7#Dhv;E%rkP6|_+hbbFpyTFschXR0RqYZKIXLGLDQHXl)TTvz8Saf+N~OIo zbbxFH&jz}D&ckfykZ(TJtgy;^VM;@4`!^lf2B=^)3qab$GeaXWm%H z>6-snez`t>c|@0w!i>}-zi&WM>1`O%ua?^PziU`|S_g%_`suZ~7Ea~hRwQDqw6H&+ zJSSM5-Y{ul@8YRwxyL@L$?PM^41FO2-HL`*Z zf0d%~IJg`m&bb^c7II!c@xjiV`cTcY zo9K*kG;I{8}X^kwL|D5v%cQnmDsnc#_XYZzyWQzkR8FtIUmO;=OD4 zmFmzu=9f@HVeahghK6aFlAD$*SF+(W<6^Je6W6svsr=O0Y9z(X(A|&u@Q$h~oPR5s z;qv~RTOBG!du|9QLG518Ry@E|&DsNk1>Dh-?S3}%)vKR*d+sTmraAK(OFM*M8>DLF z-bDQ>&qxu>GG5`B`A=lwgPG`leJyFLs;r0N@{=Vw=@L3LUcaylu+)!AzrIw39HTK41i#Mjlc zlOrot6cb9EoO|P1nI`a#Jp>j0`|(cLayy zbG{+L6F=Q0-NxFK7GiJxMTaa7CuhHuq^G!szQ$%LAo;S>)MJow>=hnsUncG zg~H4XB3T`xkiBVN#3T_R>eBMepI$lH0mDfs?d@~o?cLfv5UPu7T;4L4AVGr~hUJAo z?+q8;I`)+~avX5oUWD|O_59)?*eT*uRxfONNU|!MYxYd61uRgilN*{)6JSagoEJ)w zkntTZi1^0lfxQsT@v9sDDkiRqpNwL&mmlrwLpZTt`OJGOjJ3lcUsw+z#E^o|JOz9~ zW1F5k!58eeH7Pvh=le`D6mr_zBesE?TdJ)4Ouvmb!_0KlTt#!zGQz#~uPEZKvHuY# zAJ_m{kwMdf{8J*TUhLJVj4K`kDD~s#$|K6UBz!Ra;KoBAqRY0&Ebtm4fJ{g&Kew_% zmM;l0#wCTdJApGo(R@}Uf80WNR#N7yQuCkb4g7AExZs%i zehghYvlUl8$M|4?a9@~e_BkcGm2=FK!HD&y{&U~de^4vCjO{ng*nKN9QOKp;6_Nh6 z4?Q{AeH?;%KD|Y9D9qY(-=e%dxJPc*Pw%bE{+qomO8(C4Jd#s4Q_g=r(CA(OR^GLz30usZ`?3~ORSi?DB5_K`lrDxB?ux$=Eq*5TO! z9TENNAERMh&ah!M{tC=@{LE=2m<5)4V!y9wYTI(NfOK*bRuPE94+L@K6c5ngzwGs( zHGsfFe3zSX!4J?@=E$8h*V-RsKm3?MdAnN62uF-Qj?Yl}u$}xLaEBLcMz5fVQK@3T z(X1Rq;1Rpz7{s{j$Zox%U>7!iHkReX9Nqy}xbXACqu{sN5y@cWNuhM*dO}(kKaPx) z(8H2X2@Wd=P6hT{KA#dyVq1|i|zHZ`z&Xigff(%7JFQL~uXTm>+b6@L` zL+xRhF0Ta+CN4@}I^4{2AB)yIizl5LvnDl9*UjpFVk$IW61;m5OLeByRhRblXzO_g z!Io!vT(BoDkCC)Z#VpuS@OT$C84v{vP_WE&+^Lqu6eD+`OcVs3uE2fyhzXMxCCR*t`x(}!LAl56n=yK7(DVwQ9uNZge3t>gPYyn z*X2ojW`A}mucp%*z;g>Hl!GbJ2ZKgmkArV`T#tLT1X=At_4W;e8%XMdqd0r{@wLxW zRg2|a{hM3I9t{3fBFwi$YS}MU=!RufaG#?hWm2=+oAPhE;s$ODOpwT^Hz5mgcZYqHh5IA)_K%zc$srhk)#@+`5eVIm&984fJDJ=nAR> zX&FJ5$|kQ(*1oYrjACFfDl)$H^-^^~hSF*N&len54}rf{JzW@!QV)wL z>ZO{sU|)Iyf#YhK2um0$AfIuA9A=+4mk?I=E5*g%{kh)dmsK$S zHrF_3W@9YHwk|dW8%W*O!@7A`xw zG_n3|J`g>)_5x;Zzomr#sj*QtrXSg~;WXl9#G z3KQ6rcWu+Zc4QpG`4MdeW2L0bKm2xV%1~tE7P}8PO!kqgxO?ItSSHQ=-_J(8=*4Mr zZD;J~%lfir@^x8-FFKgx$f6~Vwss->0-I;&&SwG6@;9eH<1cWLGOeE-Tvl4Tj>oII zBVA!l;^b`#dlr?1^FQ%er-`re&ajOm$zU0+1rLORrzle0VSUU7xWmz3vuP<>(w|A6 z$b_$Gaz2M)@99mV9Z8!{x}MCCS2Ufp31E|wY&IdG9YF`AP^<|9g#Zm}2li?wnhW)| z_B3*F^@_Co+e#o$dS?_gB@FHEw`Obxp1tUwJsGCY*pBII%Ie}JD*TcbI2xt6oS@!k z;FBHc*3*1_B_eO~o_b?t%#Ar?z9**C#?$zQYg9MJIZ)tdt8tsIbI4Y(sF>4Su|r)` zls*A&#E`a=>(R~7R@Y59SCZJnGe_7Iv3k!VueCOfalBQD1=8|@5bZH`5Q?Z+a+(=; z&g5(k=8k|TA`_e3ea>@q>YGqQDV03W?By^6hmmJf&rqyEWE~$(sds5u|EkGY08!G|o z$AvTZAGnWnXvr|1RQgarm(G0A(CSk79=*PBtyn{gR^`m*@?={C%j z(fIP|74d1=NkY=x8PX}zCX6v&NZRlGUaaz{MOyL6?Cl>_sQt0GGpmUt&fsWb8IN2R zjlH@t;a*$~P_mQmq%PHvu5`d@s5dkF%6qHimR8SOwlpZ8`%KUqExEw#6stT*msJ~! zxxFV?FIZ$z*h8amZKI(B{i<2kW}f~yPQP*`2WjHhuJP}7H*g*ncCbIkxHT*h)t#rk z6sL~Vu=(q;V>C&PqjF6K@e9`17T&#^h#MMzy7MO?{lo41 zxTEH>1tx*i4sK@t0-bA%d{v+A8t=V7>UxtI&OCwXq!`t9b@2))2wjsZBK4S~6_#L` zz(2mXW#k#Q{m1#WQ?FP@751dIQS=xA=0`*QSPAYT3zr#Xe4ZWYiK)2rnd4DppR0>6 zzWPolfL%dOwf>m$g0+)RxY~6rTxsdz%V)(4$sN9h27?FQ2g(vaL22j(c86V-C^6Cb zFG8YoZQb_|Iu9?uJ9TtNBcxhojEqT6%Dseuw|{$#@$^f6xOomyIq|g4v>iQKc!Bv| zEXd;OqFhnp_rrA(ixP!zBU9^WkG``s>&vII-~C!7>ocOd+g8;UeWnyibvIOemFp+l zPAKee7IB7%d7T%ysGPSMlqCo%Ex$4I`L-V8!Q-ti{T!~dGW&`PpI&z<1upXm(I7O{p71gIoCV3O*ocMr3=8g zP$d$4V(h+;yRf!sm#A#~h_LZtI3KBs!ZnWm?SJM+V4a@hzGYVuJpL{a=$_)Rdof9K zM%d$qbiE zOL&P)h#-9y53;Pds>xEAA8uE3icfjohi<8*<*ZS)t4g)%`1NYe>EM0Aa*IJEzHo$u z+|IBHSVGa~rPQ3=n4>W4zWCYpr?cYHVyDCcg<5v`4}5JLa`PWJBoIZpt1%@l;qJkV zm>LV;xaskBH^WJ)Q59v_8hzN(caO7XUDnOV%I}~OO+@)sEm8g%*Yv z1VJ!!JdzovL`$bLiRs8;%Rs`h8mkB8$9 zDMRjjyrq^kL_82xzcAOEqg*l`|0^;8(&l?vd^ur$A1S@*dA!D+?Npsbl9=DThM4TV^-rVr^E>mX7WD5UtvnTuiG-B-BKXzZ0 zCP}MK*GFBZdhW0k{U$IbR1f9CcUNzCpKhBlYd8|OfBC?w472$i@6Xm2TEN^0MY|;F z4BGJbJo`A8rinEE*UYfE>}BRpwylS#$MH*?Z|SzK$D=0RE!;tbO8iI-=PFA!2JCda zANjh(q%`98uVvDo*gxe1zFnd>Lrj?e;EoA@z2E`56Hz?RJ7m0Hd8%PoJZf+$Np!O1 z@jaT*Y2wSMEzI4}vzN3N%RjQC1p<>@yhw?)xFP!F%A!%;ibCzrQvU)=u6%-@M3%c> z@6?I#Ej-vcGl9tyNgoJi>JnbBJwbOLdRe%az$x84OB#pK+@*9i75S3au@f|1k5K)% zvi}j}Rl2!DkHHq|DWx->NSUYUJ73>U%}AiVrmMy)Cgdf|edfpsm&%-tB;)DwJD!+t zNlT~inLbG+JJxLT*HzeK@x}Yy$>?Ji?SGzZlM22wUTJq-6KqO1P4D<^UQToJmpSrm0*cE!-La}vNW7%HI96g_8WDVM zX}RU){9juZv8ok+R_wZs@H$}$K7yjX1Ot<=24i=0;iV7KCYBHx{~i9~R}Xm2>w5Im zS^0*#_{tpr<$MOYR|)(a(SsjJQW%bqve?Y)YIlFT;I#4k+uh3U|H>3MBKM2tnnpZi z(H>(WIl?RAyj_j27gks|{Z%b2nEhfwIav-7LTItyLDVoNK6Q6;342$K;RV|zY1=QV zWwlvT>VG{ecWvsH6HhnQW1M49glx0XOV`#2rf7mNWt~!MP}gXrT>>Z^6}1}mkyBrm0+k##-31g7g1CD zQ|Y%fAjP`-FgGvY3cC0yQ`M49dH z^)CMK#D73&NpuZTB@w)LvEvXuU##UyUD&E`_KDw`eR%awZWmigyd|?CiBv<1D!kin zNg^Dl{7PJDM`0+hV^MRx?SEJNmbcbbzngUjKzX@QJd*UkC#qxM7;Lm72f@il3bQpCR_$ z{Tk?J9BrGe`0a{iUW{SQl!Hq zEOwU_Xs%{VLd)?0AXZ1#cuorRIPhWLG~@|*YMA1pl82VZ*(#$&i>ZWg?!hVbZ-4*C z;>K*>VV?2%;`zVusO@g3UuJ^UMDDJPlou`#ijg>=vq#qemAC7oziDvV(fR|j1o8bA z$&X}2dUl@k(waht$BHeL)&H1~8hx}H&M!UIEkL->J=yr6QhL8IP2u+Z`KfCj(S^IH zBaa)TL3ILdK^*NCUL5Pbakq4D>KF1|$s1ew_XaLgny_ni|KfFzAdf3$d&BlTBSv)DW9n$Q<_s;(lJsk$&r-(+O*Vb z+<@7C#7R?g`tUT+tu(#E2z=PZ>~rCTHUExxva@r=n;%HWMJIWwd-4Tox_2qCuo5_W zq>UpvRbcWXP}aks@Y@)Vbb)mDwMm(mqXskRgC6Vn5j{d+^_R#h9$a$Q$(K`~=W^z&|BS&LfrI3@*t!mE;w|YjdUkGJ zh}9T#lCrt&PPP8wJk5yl=!-5bjV|!}b^P=g%2?PG z<mZBSq=QEKVkaT*vEvqzCib8}9 zZksXsXQl#r&*bFbohkci#`^wejm(18f}ICtKHAXZNS`{DX-6^d0&KC<9Q?sB5S&^d z-}xxU`a~5wZyu3Ej(hO*oM8S#Jnh47v<=Jx-1D*Jx7M8-`*lTEk5nmI9_Qv;hb3Zu z+SZqw9JTjjCFP67iROyCT=?0Er9_-;uSA7LLbxRd&!|}vMjSdmnI20!nhsVX3g_Ak z2>&5fzE>&@OSrp^+A2MVcqO}&UDU;1oG>Er<;Ug-ya`$YB|d9*PCn`HD*YaZsclnn z5^+i!&!UueddEUqA8#bz;iqp9UmdgXJq9}VJFbZE)ZVGy_NQgYgmv#}@gNm^8E3SI z#OpZbY%D5$#BGYXYXjQ>x?$SC{XL}m4!@@51Y9x8*d+EP-)8y;*Xl8^EJv6x`ZLLfjF5(wcul-?w#5) zjXQO--^{p}*sfoB;CS^93xCmhYx={zm_6z3VF?B~vf1DqC4M+f8NC4iFl5e&fl;P(#3xX($$Sp$BZb%@?{D~TcSmJa@%?F^TLxtxnkuRT|f6q zd9#Ik>Q6e@4J+MIKA5|`T$hxYWYUa#=rh@hQ`5IdGwTwow7u|aoUs=m$m!c=hGRG_ z4WAwll}R6o0ak=HL|esLgkq(2AC!N<4P0@zNc-S*A6FRrY=9!jk;T@vMoa563AxKL z@$#Q16VPW~C-|GG4e2;Y{nIMDnSaazEh0z~25+OCg>bTld5|;0x+1!NM7d^jbf#>l z&QIS^(em0`J^kZmhekYT8Qx5ms?YoRK;<2p2IwFdrF1W@3>yQAa1lX_5@;6e5ysR^G`4V3x{lXQVyOxO^->^ zkwtV|sqEQx+G}Sp6cT2Ua3%t6(Qy}9DrAtM@ZoXOI}qu;XCzi3*Z1fT*=a(B&s}*^ zJ%|$SI|?rkI8SW=FEnR0Qa?r&- z9-Lr6hgi_|l7EP&DRG(A(BhEf$EJ9RS~rRw^v^?P^*RE!wvTmZnm^*5)Bt_pxV_N` zMO4fj-S~tbzEk+mm+*s@ESJ@Z8iMz>a&$sL^Qax*-U8Cn*N}}ar z%JFC zc;{$EiDPQmx-KEkoF)cJ?=xP%ZG4tqfja=jVBkm$n&P*%Ss@2u-RXhvAs z&miNN@-kYGGj4>$#IJSmvCl*Mh-$qPxbH9ZKklDqLz(rXoumYknF;(UF+o`t>dY3_ z*{cj#g48bRc$DQ?iN*)>rVAIRLrGkRvwOzwiLjo-!n*!Y^v}^vI;Nb{x+lYAVOzP4 zTGZKxZ&oues%hg+RVfDR21mE9L2ppHxA=4C0rQPkeC9^wuDHCJmS%xyXj1pAxJSX^ zu7E2mF{@{ftW|6r-^=V7KE_X!1J^bN?DpN;=b`-on#B{({4~|X`*&vYMr>xlEz6qj zZ)P6EJ^9|prZQj*{lb5~JM{}vd1uU%XX^HF)iq~>@SI)m@Wc z2vR(92i+A;Y~J6fr2FrJBjyrF??5ozxtZ|Xv8G^Noy6VWsKffJgxqUbv;9oN1E>CJ z`~K517Xudd9i5Q@{(ZE;c-?*32Km>g*ad3dn0b)VaS#{xy7Gcpn?+bL`{= zZh6$O!F!{PfS>hkHiNlg+52o0qaH`)HhehaefG3YuXEFZ3$TCe-Vd{)avLuOG~p*o zMU;h#CeTBAzfLpn99~w~Eaxt2HzfZ4aA=fT8!4J%6#kbkJ$%P2gzMcG6Yo&vu z(6Sl7B>OCr^VZAn-QO*aXhtR$J^&68Ny^}=^qUyev|Uvhe)(NxSfuR7{dN!u7GMK* zr6lc`r?*^qUlNSr()=>4Ax%(dJ;7-^PLw+*=+yo^;*Jpon}do=336RfQ`NnxgJCL} z+-A+l)Qc*B8tX7-Qt@Py^SOPECwkW$wtNwL_dZSpk6=$J6{b2ovl+s^r)FB6`kspg zr;%1XGb+}YF%NsYX~N=#B`7==$M~iFe5UkB0}B zkBfvo?vDIF%6s#0DBJLVc*YQ=NE;bTMLeZQc4MiBNQIIudkNWQ)MVdAJtf(a$C9;B zma%UmGZ-bxni%^m5|d#JX$;2j-b2s#_x_IK{pRn%6|&+9y%@&BT$eAAtP_+66yCfoq7xn(HFG4PZ4 zb;I0hl4^NcgM*(;9%3kkGeg`P=j*%rcI1iAQgRYJk!QS4d-2h>{cKgOI~q+FRbD)S z=>n7GLVE&&y7JKPb{oO~*7iGV*-1`n%IJtYASt=PO-zEzmx8H!Eo#NpmDy0~#rVJT zy`5cSyok%F_o}Ib;Ub#Qkyn#wqY^y#U`jG{QPh~>bAnOcQH=dIHI9367J=i1ox7_Z zlpl{gzma|StO}sU1Gu66%Tsp+i*!GHX1|Y@v2VyrT)@Va@uy!qW5)Uq!f$wZmhrsD z%7v@sS@mbMMK1`7ts1Ot@ztL`+ei!6Uuw|3W_dx_<0z$9m0Bd%&OP2Pz!@MUA9@@+ z`B$G>{Fz%}oqzSc^*YB@@=AQfZL@epBlbMI!gT;K zRn)1g_x(GR4j=kB(df$d!R|t z5?GG&S1q7(S*t!IR}Zpy{Hy+6`prPx?TgB#R)O<>djn5!KZCDvT-^BS!;Pp%cQlXD zb6vmiR`2{I>nRX?5C_t~%9a%4T&ceq<@#+YIA162&#(R|NwPtG#jxhRwgLaJbdNOb z7fWv5>=o$SK`sGw%~N(aiHbTnuw;kN#=q0*tJ<|F>O%d^d^M}{XY>L&D8%8??;mBp zHara8AxP@1M#PD82ZI#+B3go3;DdG|wPPQ8+WI(;sv$dYo<(u*@n43~|4LrQh5sM{e&iA*w_`jn;y3^^ym1FF!t+kE`Y*P}N&jHiJo6&cqeP8G9{;z1 zvMRo;sRu5mE;0bvA?gBk`P8Uv&Z8l67@G#hfMWMFAhx>$v`D*4vO&kM6f>@kN4{kM zo{XV{i+@&N$;FK!%2iyaBllyfnjwX|6fAuX=KH5b!7jC$N0=K2QPZ75fB*Te0IuCU#4WBcU;xMb9qOZ@*~pPe4S z>2#n%V*z+d^|Wi0Z`3{jWIRKu!0Wp0;!=*u%M5Rz2}@M!iL7UV92ij4!PerG6??z} zjE!nO(*AbRRNhXiZ1-jiA2xanvA zz|U4;VK?~f5IlaW=QQGBNR+Zy83v-1d=eQcoV6=VxFO@rEKF3hvOtVG?P4oH#XJm1 zsnbSu{Z{*!yNv7g5GRwVW!Zhhkmg+zygCpa;R$e<=!mul?z!y7iSJZDy&F+Pve#Yx z@lW`Ov$1B}wQtLgTTwsdHUD)w@!s#aA7s(jC04HE?F!(m5N|SlM$Wg1>Eb|_Zd7}b zCrg4lz~sA>BRtIU_ic~h;v`kTk#V2B%V2A72ukT~l@drn9j3`$;prFv?m+GV;MmS% z7#2^9J4LotxlG`?Z!2$wYKXJk9D2N{3ZL&uvNni=3OgjVpXG`8+cKy8@30pb-Nm!j z&nb~EJk=u3vQiauFkm%+^BJo;89nh zfrv==g2)BE?Z-Y})$I&j+dS$?N-~JkIvXGS{PK*DyW@%Xfg+}(S-Newbf$9-RF{CUIh4g zNkd7~k^@Lb8Bb?}yM`q7(-NrQ=)$QclrrBZ8Ix=uvoZ58S{3S>(-+|tRx1(04OLOg zy1T;kBqOyw&Jcg7d2VSgZQad3a!~sDP_6;D61R zOEXc{(=V`)qpn3Iw3A_YUtK(Db~R3ds*|=_xv&r4sWmlwr0$;((m!FGtk##mw);{9 zTnK^x4=$+tN6`SxnpVKMtr{`?@hRR6|M#7x^3Bwf2WpWq!gJ!xJ^itwE_8|I#xKc+ zk5<(18Co-C*L2=3f8lz7fUfPh?u5dD2-j36ff=Od)`_b9eHXlT?-5N(DwyQ#3KAIM z)vS+NnnFqMk6iBK&5?HLKJV#le@-RQW-TBU#bCG^w%BOh6HP>a)soeFM z;a%s9fg&l&q$(mGm~f9!o9pjAi;cV55r*}evvAY6ZC=v(daDphXW z9x|5QCntQqLT|SZ(}oJj&cjr(>XzI{h@N5Xopi9zzA$il3Ou)GQ8#q!MY~j%%+s^q zvI_6N>7L9o(Xlq?85dTDE99LtkoI#D{Jy=})#(&p6=?EF@pVMBkTPS+v)iCYX#0X# zmU5yxj&3jz(pC6rZ>Z*Q$G25j)b4$8fCekH2`AyPUk$5;4MZXOkd>3`^S!*JJsbc0 zG$r#p^iiY}wlRBoz>E2G<=7nAcHB(tPMEM?q&REae+Dq&)1Ha^BM zW#OaY)u;Mk`F`8FI_??z1MrOnAHdef$eEu*SSw)6fx}H6;7D2T1 zRE&?9T`l`ze~mucIOWM@2;2z(KUM(lyLC_f#IP^Kv8;?!pZ@vpm+Xq7Bm24vIgnL{sJ!b;oWv>7ska~5&;sniqG0p^tHu`o z%{@5YQoeb{LP7ad2X&?d>w^Q(`q-X z(pqGAqVqCia#?(C{CV{?LQ9j^rTe==r@-xTCto&J6x`Q$|I(tdz4Bu1-s2>)G~j02 z6Z+z$cg3-nYUlhO1xonsKZk+$#-(1e%NgFkwSWN0Lm1$p&%p`8NxJSd@DsGGNb zksVqb`MZ4<0o9if1DG?SeV_qo)^f2bHK6o6Hy{NFx&jR8H&T>?dviX|0}-txrz-_z zOo(`>PQsm4!<5}l{&~^|`eK!)(^YaV3$VaYwd319w{3M=@T>je+B%8>R^Z9yTR3`m zq6zSHGzbbNydnAshRI6mgXfLU9IHFOxQi0o#)AZH?c3NZHt=2SZMARmN*Xm?CAZ=4 z*AdM-gtJFo$`)+9&vtkEb-3nP7V^XrN1}56n5*1y{G7~~?cSlsgL{D4$Umcgq5*PX z?1O}T5Z6lwtYNei@J;t0#z9^Q>j>)X(%FX_d&KsU2i)>i_^XfOUO^=GO5`+?4mUhq zxcU?w+LXRB@Sry{V@2sd+O}{51Wz_t!no93zv?wI;E~DQ-9>Xyu`O3h*=!L1oh7wo z9BtRuHMZn~UUdAHO;i@tq9suGX_v4E<^65GC^JG_LS62UZ6&mZ{<@M) zq2j0Tb1{74(JGRfx{{HCwqLm}JnoodcEFJQa|t$Qer9F6h>X6Sf(fblfg-{6GB0rm z*&|L+jURi9C7SS1R3fP3pj89n&X+walQ^C*9m(9RUX_uJS8dT!a}dly!Lps%cpeIg zGJa;o5HD_?lj}H;*foG35$PspTt37Sp^G=CC$OLIsr&?&yVC-MDyVw7K6?U|J`rj* zgfIsiCs(X*4EQfIKzasYc;G&$=XnJ>HFES^=scT}JBK4d-OpGOJ_XzVWLQN1#U;G< z$&PPk*2k~fN@{&T`s_Y)cb3=g@GA;^@6D*IpL1e`As!I&u_J;w%tHNKR0=XHRGI?b zWhOpckBmCJXEktp;|qQP^2Puw67xANN*9&$;G-wB@Wsh@snU~LP95J&NT-3IuyEIy z)Z^iJ75v3B#D%x~BWb18TXHV1Bv{JFvsn_9T@-0N0dMoni)*m~9_?_sAi;AlQ^Ajq z8q3}nI$knYeyn7%7qXC7b?HU#*>gDo4h@f#@>PY zMD#y4iD%VViEo`gmv3@^yL|zT>yWv0Qc?}~i7%TPaYD=Mk)_+n!E~XG!wtArEe){f z!Pv5N8R^*@oW_HI)bpDusqPpK1&Y>yDx~aZev$fe zu-V##9gXY_Eg*;O%=+BRWOXWTY!w?VvBNfH{VNq>Quw^b&CWKG zb62qB6ZKHLL)hm`yYEzu=ptD}TQ$B^6%j4>X{UV&RpNxR-{sLL%U6eSga`6BKG`qZ z#xAgA0KarPPp`lDjZbVtFx6s?2yqa=Nv`Vof%+eZp3}ugf)&7#X7(CTL7ZriXr|OU+J;lYP(GpqRRj+ui&`Up+5 zeLY+ps9fEQ&E(PNk*a_VpUC_4@rI>$QnP=vU8 zw=KJZ7ajAiG{_V6p4ev152?;rxc_#gge1tLba< zAt`zvzoyl($VWud&Bt= zk`|TPfeYvWC~$iETs0{pf3)}Q*x@F*AT7T6S z0Mq62v)bFyelN$K?I!W4eiOFH4?IxSU_oDMPO|;WOCAVkb91@n@?fk&pw#%c80Vbd zCE|M_9>tT2Q>ogY_)#&2xnl}Yv6l2zNxQu`;q)=wSEIM}ViOZt%U)CH+Vrd)LNXqE zS-QSrbmBhjfC9Ls6gDjK#BeyodeQ6H@czD74zibRkb!ZY6giwfd`k>?&; zL9Yi8{RnvAo3}2rBSj9sXC*A^m_zsv98Lf^i#yuV_NzR*G9(C~p=8w7)i5A4bB1}QB~`3xQ7*qOED*a0O$O4j?8E{r2mSLb*c}Leco%FeDtY~4NQ|)mIx10J zlj?6c7qeE2_-?m7;}f>6=z5L#Go$q(7pW4?fxSufp?@XsCiQ0uIGC;IGzbLg1F@Ns z{g}0}#__&)95i$5T3e%WZ*X15B=L!{WfmkxjLHKOQVH;v!I$b2jKZ4Ilq*f)Tk2x@yM z_ifz*k=oP8K>Ls1Zs%v z9tI*hDd#DV@eOhl9%Uz6smSg%@EY2+>pJ>DQ{tooDe;=C=vUi3tmFKZjRm1Wl{G1f zfuY(C4n_n}+S9io)x5oeh816NF)ctq``sojc9FFO+DTqEC=`{LT&FMQ!xpWyiekZ@ zG_*yE^yj?3ky#j&Q_v*pVE^=T>hOVSX^&a!T~J7iY-pVRL?=kF_H?CE(pO?`kqexf z8^67h9>BgyS=ya?ZR6~T)5_)`JQ=w6@1FOhA4O@2D#OMdTQ1jY=pE6^|EWbR*s~a-L zOz-vl9k4S)HDHF{LQr4u;&|w@J!IW)5zsqH#l>!X!-iI7ixJPBagrC9UiO-p z!nfla@xEF!gwuh!fBls(5L2+Aftq@jDw4*t#nTSTJP^Bf)<8C2SpG=pj!pTp;70KS zVbZ~8BU|zvSuywlPf|Ny$Fdy7e0Bojn+DDl4a?nOLYJ!exx6h!oFxdz50|`6{H*Aj98V^=3)07f0ShNkbUGl;rX7L%bwd$6GdwC$7zjU)G@!<E;M z+(6bI;X%1Fp84z_AM?jl7?6{LR{|0T7+~&rUC(*O(qqw`Sx5pWbGpd!Anqp08Ngn1 z`4z#vyA&Z#rC7Rz%eQmXOe4$96|gjdvT4I7Wj>{!rN5&T7IXqWZma7sxu6ann*;ZC zjb&{+m{1k)>Y>H+w>Fv#vX;fFpHCPmLK! zx)rh=c`<`kp0&KQqa}bx4g9pR&4IQH0ZBb+cglf4$r5~K$b61p08G5pl|E`*p?bvF zi~ODTvcO~zSJ<%+x@XbQmZ@W|?r%9>T2sYV8@=KW{?Lx$8O4+SHAg)oBYT5|3pnj~ zQ4|2E8{S!|z)Rw3cqzQ@z8vKFTOZcmWi9O(e8qx*1jA%zt^j_2dl;RZQ6CZw793de zh?0gZi)&JEoJ!E=Nun+DxYi52o0DbmBA_OG%%nOI@Y4~UUWAZEf z=-w@C{lUez55w*x*#4P$u^U`2WW?!uz_Bl8hB}FmF4c1pNJ@%op>WXhv8j4qsd6aG z-lYfJ9uLvGDEpj^LQtP^1GNB4xD)WS90xot&kEY>>>pv$eg=;7Zw#Mv4SlxRSXV%2 z46t_999X3k6ENz><- zRm;y#6DQ}5QYRc8G+H9C(4gVZA9r-g5?O$eRoY#DG#8b~qkp2rn5R7_eNiIT=CqR|7%A{HF=qOhp$4l(vD0F1YuWhl6^d>zKdC*Z?*bBQ-TTH@K^4R&$rrx z00whTL^Jm1N4AlRUeeE|{i_F)D8v)-j=MFJCnF=>K^_HD$phQYJ?=BrV}Om9cKOE& z7>VlRxw#(yYFAj)Fx`=oHcQd99E?w#T7)eTN?{od4 z*Tfu`pePv5@o#en*|R;sm1<9wL|Imcqoz^%5K#?HDiu#f^`K;)@eQlXzWh{!fpuX+hn+Z(}KyCMU4f84i5k5ZEh6w3%E#%=E6ei`5sc69uptm3({P@)}%Kw=Y zE)p^Wo})z%=H^~V*6@gDcNr@9PP{!T5CntN#B`FR^72^Nv$6jX9}rz6p=*; zNFIJ-coo$V1-L|G0>FY-VrrM^sVlKjvv?+;G4QkFVf$>QSG6jw#L1a6ng6|;(1?FX z3CcVD@bwYUW8YYmG&mEZ_v1sIee6^I&r;Mm)b5XQ&bu0_;JuQje|D)DIhuDd<$>5O z#!$Zxm1oLMA~Xr$k!($ozQ6M_8bzQlnX^rW|AWYAa~a|#1Me)}ur~{H(5PG<49FbZ z2S$ETWanP6WS8^$?7<0+sPyOx*outAUKaCy81gMbeQ^D)^xNAe$PdVOB8sODL( zCh0z|$R?@(#(md8!M%zjr}un+{^-Q`F*Kxl;7mNxN4+VFZG4xwo}IUHGv$>Pb4|xw z@93+eEzdre#&vdU$dDTlXf(pvn&_5BpQsL5DJVmblKXqe)nyb8Ieuy4>+1MK?Rq(o zr5f#y;oNlnScgCq+-s;Mw0u;c>fHg}|3`gn-Qy(mPZ!jDa5!+i_;7+%i}3xO@+74Lf{AmsGJ7^r7LI!v4(?_e|fJI^?2rt z2tsEeBTZ>G&NVZQp;n2$ykX>Ffkhzi(y2KKrArX*BZ4w`Y>Sy$XDHLw+{SVIF8wzL z&K&$QozgNY<6c;tV!HUwUy0oEhMUs>KT~jT#97*lmk%vfYwR0AE7&0EdM*EjB^GR~ z7<~9yCT(ouTa- z?VD93^-Vz0NgKNm6RND)7!!SCV3%uUHO=qXleWZx{<)K z8T$wrYkfx`Cq^FYsS#-DQ@rUw`Mm;UL%B$|E~ct#n2u&^@FaMcjcug1U%6>Uj`yG< zymW^2?ZO>p_HU)D`Bzj#yb<}$c{%Fu(Q`YFJHJXrFlj9)1gH(9Mc|8184%9Q4)~r; z$VaEm&;CrPPYG)bgcrE4J_Qmlq*>(-T}CfO0ZB`i#nEBj{?iLss`_?i8kaY4OI=)u zHM7bnfmCK@W7A^cI5c^=cz zClAdehKKsEWN1^>d0G{U)p7{7Pq;~M@e2Zfnu&vn&ImQul5vTs8qfR4v0|;{$T!;F z$Md&yr0DPlX}#=)|CrY;LK~;4;q9lCIn}hcWi69LXKP{mk)Pc82#JD8x-Q9ekEh=d z1l^}KfFvsAuMAq`-NPlxkL!ot>DkK3qp3Y+qH4dEoW6eUVVBT!W1&D!3*at&ZF+sv z=3l)aGtOq%T*W=z>;dN<&w1`oXXF)vSg6A|{w{AQI>-ixG~+ZEt^aPnLK*<-oXiju zSg+4=+o2#+^E4BJxn>= z^2y+4xCY^Q1hy-mfF!P4sGe!B0*X!%#WNGa9{@E;rf7{ox)mV7a}mdYnMxab62~oB z0s<0d;FkTDf&4&$)}r&2255#V9z0zZUn}I==$?{+4k1v6;dkL zjkAPEeLBE6r(o$*+_Ii74B~a&%Js}k!arUgpb#Sg-sAvOC#W?;)YQ5H^}r%;GyxS; zJQLx{Kn+od0B_u@i} zbXGPQ7jl)EPK%SQzn@oSuri0f>M^W)UuhRVx0QrLXo_fRJg})lv_f>Iy7h0;^`_TV zdsx1N!|@M=hSeUur&?pm;m*XC^_T55;$gBylb7Dd?PpU{K#VY*rVwACjKQP!&e`Z5 zGuTout)Fmp<>5na=lCeuOCL8jO#CxxBJozZEnLr(o+Zai=F&&W0~6bX>Rw98u9z#K z_L+46#R{Pn|2qpREqD5SnR|gyZ{_h=O?hb4M4~14*tngeAeWzWX$1J^%65hv5CwH$ zr`Uz&Yu=sej6#2bx0&Am)?~UUn4E!h*#b)X)i-+eL!u0Ny`kNG>=I~+f+&|<0V3Wg z?XF=dJv;=0`Q?RN_Fvd0aDdY*hV1v_m8eie!>cLx@i+Xiw9Qy4UI}nV3BQeoJ@@z< z{F$gr!rZ(;|A+rpKEzxS1_jL80_lP00WR|6_^e=RKW+veLz@^~^Jfq8pHZpMIHw<* zjsW()1lrd*-1o-Zwl+8t4lC6577A~@F{7*CH>Ow|QMUAS^~aCj`~;4WpL1p0j50s` zR(K$@Q7zoT3dk#l*QN2Nj^;Td5^R)8%CoW;w4(KH0}qoGOEw*uFa6gy{9HF%Z>v_k z4=7##093u~82ZipMH?3v6rdC}lrA+dT#65FNISyGIjkuwMK0bl9D;GuAS0q@@;NyW z4=Zz`k+eKIw~yaNsKPC%X)QsG7(=3_HLoLMGMM8><^T zq<-^v%?B|d+3OQ645|8-y^LE?1{5UB-;Jzcnd?Ao4zVpP-wfRV(||pR=!=^29t(;D zvSL9>VAg?Xsqr9{W(%rEKsdrB`0U5Io|ECDQ$6h%|I$Pe?r|vw) z9;G-wWtHNOFLhgQ-N>rDL~O|*uwAh1FXKAwM{cz~NXk(1(ngye6C7Ll^Zg3mWGj$9 zC=B7jNvJPpAUff zk6Tg4V}Ejo`Zd|EA0rCSUpQ#Tp(4jmGJqYd?uinV3)k__T}NHA{ow$^5G01pGaLiA zOr-w|HIOxwI67J7C)T}ON6(b&K%}`4l-khP$RXBt7E-AoQhM&2QJ-C@iuBit0;SAO@p%(+s z-wc(XhWXffF9D}$*RHi#X#(WwEEZ13TvIH*icv?*nc#OK+_yKw*j>Z)^0et-KyxyXryB zTNm9W~c-w}>_vG*I!e6OR!O2}FNRunZiSKa@KMC*HY*Ekme#8h)1021iS z$1@k-J#q_7Hd!+mFWRayS(~{!0o-%9Oo;xtz^|d88lmV_1pfS;v$3WXV^>QgeP^ByWCe0 z;j#!f>j*Q~DUjy18Qoz;xSIK-OiAK=-agHu88z}d>AMW#NcZ9!KyD8AmFwSXY7zlC zjh4>r9`(%ncw2-ag8*vQh6K3E)RD^;25kG;o1>Z$wMiAMmyRo794HUeybX=!gYjlU!gbMK+tG#cH3S(1CI zVM*3|zwre2lRuS!BOB+~G?gromSo~3Mx3pis@LBG#Wh>J3XI+tExC2+0vAWZt!r`Z zh3^51+o);aZ5%`ZtrGC-BZq0@#_Pq#WIajKK>3JvN5T&D#k8; zxKsmf!RjH{Sf^>I-)2wH5(7r0C9Lkq@;?J9buE017k*2%5gsw(m}md15&FjYAwXA0 z)cApusS3rdXSPEbk$UkfE~7o(<)(ppn{lI_FeyElm17D>iGLh7Gwx3a71tLe_x9ln zPf7mxG;=PU%KnTs@9Y~l;^@EnS2_!%(|2o(OD~R#54bjziwTaCa7K<*jhkR zl0-GT9PL30IgEMv*_f#&WVnSky^0VU>5X>NybO@;f`-=S4f{b(rwOrd>=Ji!YQu`J zBwDhSPB65KxBRg`g@s-=2`ws)19A`qb84zvO8j0{Ce5pD%?UwoU0mijknmnFc za}jEuHK;Y(j^JI%Q_}pr655<3{S+{lM7B%}FIp0-2$Y2{G=6ckQa!SfMVh!|yJtDf zclDVhjOFC&1ntl$`Ov&emtzF;E;lZYR((Ff%;ri6^G@pEW zyqWoEKAXSmPELhyrU+&Fuk_(CtTP%dr~%WRe8|{;rZ~8#F0#c8Yg5}e<`)v;H5CgO zGy&oi;zHO#8Su*B+xT2$1?%t4f7H#_IaKu~mer`Fxp&38dH3Rn;+eIvdJ(Ww z!t>xB%rbgwh~`C_o&812DMZRsKalwvn3UbEq5Se> z{kSl=@*YtB4!*IM8cxvnU2cd)n|u8*#=7USAAP)&v%D|iJaXTRhto2BwKO-=5=d@- z(-Aw+`T?xYRSc8J>qlyu%QKjPAB8#ujr+~0nPR*D53A7sA0A%t{+)gRXQ5nxS!dg1 z+Y^CegTmu_*v6&OFpg9`kTW{Ey$VqOL8x$`z;L#B>u@yvVyH$%b3i}{MH{na#q1(% z*@xfbr{@#_XvPeXgiX(aPo|TE^MIH<;bG*5uLT(blTy{z98A)-DVu zf;p(WfS6`jGoKLrR=Zj1lM{^IBlKQNsA|RLHjaU3#0e+`#%wsx;x3XO~KZi z&F!4vt4veEzRcRHh7&L$T_gD3ZiQFn-PLs>G&EM}I5at`xeElXm$)T`9 zayh(C*i}D&$?fA8qZa|RcLcSX@f_SG7%X_NqR$k2ZIU>#8$@xz_U8dcEI!K5$UoTC zfAV>nb&F+Fd1E6W*>ecPmcnq}e4^0I4Gs_5lR{CSM{muPT7+`m3w5!7sTQc!lTq_cPyjD~p zC^Da5^$1b6P<4rO)y{D=sCvEFl(zY`fHVM&nv9<)W!f-O5931J8XvJ1kUtsG9^o8% z##|&KfD<`RX`pX3=@;L$>1ck}boFN7xCxfrbTRuN;c$(1WV4AqHhizOj)p=InDTjS zzDETF8WdO!CzNh1v_Jna48PwEg0vnUdi?MRH9e%d=L4nJYJ)OMKnSjJImG${k3D&5ibT0QrD_6aeM( zMslVIqcy*b<%Xrv3lpoSR_o&NGe-L07DrcucS!Nf3r)o$l@sO5?j7U@>N&#dJb&BN z24DaEP{P|EQY_wDjm8Ae8vZRvl2JxoYfP;(JTT^Sui!zHrpGwOT>3L;MwbkIUG0F_qgIWlkz?CO` znAGq{(=WU^U^ed#Cl^$`v5TiN-4#4?iCz&TMsagQwlZYH}N1+NahJglE4OhW`Q6L_uKelbe&cx4#qRH%$`5Rny#S z`Z}(C*Ik9o%1dd3tq<;8Bib>qv3oWt5C>VyFXBNrVB|lcFVSkC3JYfHJU$xs1Jt9*nN3>V&wQ2Is-8W znjFMIaM(H`m03kIw`(#Nt#}_^h-AMsAtJ_SY!lU*+q6b)C2_+$Xj*-xy1?&C_JfhY z>K*Hg*d@1`yu}q1Y$m+FwHpNL{n#SU@&*;Mg7c3ttrIFdJ#;xQ6Ew%~YNHci!D3+UvDotd!-D_lyFFmL!Niv)_blez;;^h4ebaM;qq7qc zLD*0qXH_kD#m(v6i#&J{IesOe^kGwemFG8iDScREq)ZykJx2qkU(?w0V_n0vvt{CQ zm$tb#Spj}1i`Y3ffuG}hUQsMX5J+zdc)+1*{2FS`Pcow%Yl-A=te52~JTj)3uk34? zG?TRre|Y5l{Kh&>sa|RSmqJ1e18l#6(vQp zY@k{?&X}6xj7}%tv3m8_*il!O2SFE_NInS7yd{Y!wFtLn1`-TPgnhrY?;~&m&o#4a z8+Q*ygnT-JaaK8nV6w7@9NDWmw}|(xBW}rj4o#Ot%+>O@j0%J}*IjBVn+eF)&aEKj zEezVrO=qfETm*r#)BzwAl|6oXRlO&0T`PWHdA&Eivsv1cH!QbbKqB(v{O@%@wat9( zIItOPkIu}=CVrM_yg4w@gcz+HDh4VVFY3KtUvHPYOSQ~(YN{3ik$y%vJ2!>#PmQ0k z#ify|9yh{vOO&gHZ~7j#)GO5^1?6m9WX@$bYKN$duYLb9&CCY#j^7e6*J`_4lFu5qfx zC%OYLaSfPx)&mC|9Kz=mJE||kzC_{1ABw42FP5jSHUS)4&zf<@gE(8Is#AzG>fkF}DvLSXdlzQSoF8u3^u{hcm(f|1>`}-)9YOQa> zv1Tum7EUJr(hVGK|J{%VKrzUz!D48SZb1I?tX~`0(GNz-`WmX%sTElPK&nTxu!k0; zFG?p0(E+T`I1pas1YQtS$$F<>(K0NB2@hxHwHsNm;Qq;lO6X>=GqPfR4jqjT3$kctd@#Bn)P%HXUK2{dek{OQDY}4AzRT~#0EdXuJJCi7CwuS^)HXYyU}HFNp+*4qK5=(Pw& zX1K=6m}=UuvH-scN4aTXgsmXRC7OG+S2_kfs2%8zc~^ZKt4NpvL*0169bVKN{9p|O z&1~}RI2sS+LDDH75bVsc3Lh%ncs}4WR~gzqzY)Z&yd?Bv|9XeX8XTqxpMKBYRPV*? z168{6;6Nbu6kyEPti@(Gh9G3TA%z~69rc|xndR2YV$LH1r?)zcNW_vY zE6%$5LdT7jUao)HlUI~{J=~rtPvD0}W(uPF%A3(dDy`|>5Iml`njE1212XkEzJrxV z>yLkrC3yYvR9xs{c{*^l44?1cjrLRTGMO;V1qHbdU;mKK3|A$`!d@Vk`n$T}NQRv2 zDqAw{_S-~e)~M~##^m}4T#xACiO6Vr(`#)+EPHKfADsNzQJ$`UKe_|%Cf}Di>w16m zh`+R6acJK@nuK?lR%JF|f4)hcV>Ex#Y`$y3g4GvchXdFwCvOcTAn9D|liy9wCa;Sw z+=;UfhG+IUf++i8d-UJ%fNTpqG#*TC+A{n1(Qt)Te>16o6mM^*bz;oQVVIjY#W!xa zGN&Vnv90jQDQ?xYZ=2U-zT$F(RU@h+hiNeMoVw?-8Uds6fCm5Z)aZG1Uq$n|i=}jJ zz{w!vw}FKYuDQ6nt--@*3O4l3^Rpkjhd8&~iEWg(bJW^;ZX~qr;t_i78vpO!z+y$u zjW+g#uT*G&%=Iu68NU#;5#?TgZ}Gy2*s!EWTHu_af2>JpAY8}Ee)_n3D10!e*U=*U z!Bp%crqp_BMk83ntFQF+r zb>Vx=P5lSSAxgP~;6OI(Z5#+FP5=UxPR%>!2>mLV@*=}WeslucAdWnHF@{bil?n!`a0Dpy=q+WGYX3jzbYH1CZGRB` zsX{|t1n1rlx%FCD-CAqQi8)08ium=w**QkNQ-Sr3Kv4&L4(zkOB%oKVkgD2g)6A?= zc>0vB(DRguMh#V|{8@iCpsl5LvDS4Lw&%y4Examples

summary(resLOSH_mc) #> Hi x_bar_i ei Pr() #> Min. :0.03438 Min. :13.85 Min. : 0.0298 Min. :0.009901 -#> 1st Qu.:0.23838 1st Qu.:24.71 1st Qu.: 7.0114 1st Qu.:0.099010 -#> Median :0.66689 Median :35.90 Median : 52.1094 Median :0.722772 -#> Mean :1.06592 Mean :34.88 Mean : 151.9232 Mean :0.555466 +#> 1st Qu.:0.23838 1st Qu.:24.71 1st Qu.: 7.0114 1st Qu.:0.079208 +#> Median :0.66689 Median :35.90 Median : 52.1094 Median :0.653465 +#> Mean :1.06592 Mean :34.88 Mean : 151.9232 Mean :0.552233 #> 3rd Qu.:1.59680 3rd Qu.:45.39 3rd Qu.: 105.0551 3rd Qu.:0.900990 #> Max. :4.68765 Max. :54.91 Max. :2455.2201 Max. :0.990099 resLOSH_cs <- LOSH.cs(columbus$CRIME, nb2listw(col.gal.nb)) diff --git a/docs/reference/SD.RStests.html b/docs/reference/SD.RStests.html new file mode 100644 index 00000000..efb6fbce --- /dev/null +++ b/docs/reference/SD.RStests.html @@ -0,0 +1,304 @@ + +Rao's score and adjusted Rao's score tests of linear hypotheses for spatial Durbin and spatial Durbin error models — SD.RStests • spdep + + +
+
+ + + +
+
+ + +
+

Rao's score and adjusted Rao's score tests of linear hypotheses applied to a fitted linear model to examine whether either the spatially lagged dependent variable lag or the spatially lagged independent variable(s) WX should be included in the model, or both (SDM). Adjusted tests are provided for lag and WX adapting to the presence of the other, and a joint test for both. The joint test is equal to the unadjusted of one plus the adjusted of the other. In addition, draft tests are added from Koley (2024, section 6) for spatial Durbin error models to examine whether either the spatially lagged error err or the spatially lagged independent variable(s) WX should be included in the model, or both (SDEM); because of orthogonality, no adjusted tests are required.

+
+ +
+
SD.RStests(model, listw, zero.policy = attr(listw, "zero.policy"), test = "SDM",
+ Durbin = TRUE)
+
+ +
+

Arguments

+
model
+

an object of class lm returned by lm

+ +
listw
+

a listw object created for example by nb2listw, +expected to be row-standardised (W-style)

+ +
zero.policy
+

default attr(listw, "zero.policy") as set when listw was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without +neighbours, if FALSE assign NA

+ +
test
+

test=“SDM” computes the SDM tests, a character vector of tests requested chosen from SDM_RSlag, SDM_adjRSlag, SDM_RSWX, SDM_adjRSWX, SDM_Joint, test=“SDEM” computes the SDEM tests, a character vector of tests requested chosen from SDEM_RSerr, SDEM_RSWX, SDEM_Joint; test=“all” computes all the tests

+ +
Durbin
+

default TRUE for Durbin models including WX; if TRUE, full spatial Durbin model; if a formula object, the subset of explanatory variables to lag

+ +
+
+

Value

+ + +

A list of class LMtestlist of htest objects, each with:

+
statistic
+

the value of the Lagrange Multiplier test.

+ +
parameter
+

number of degrees of freedom

+ +
p.value
+

the p-value of the test.

+ +
method
+

a character string giving the method used.

+ +
data.name
+

a character string giving the name(s) of the data.

+ +
+
+

References

+

Malabika Koley and Anil K. Bera (2024) To use, or not to use the spatial Durbin model? – that is the question, Spatial Economic Analysis, 19:1, 30-56, doi:10.1080/17421772.2023.2256810 +; Malabika Koley (2024) Specification Testing under General Nesting Spatial Model (Appendix C), https://sites.google.com/view/malabikakoley/research.

+
+
+

Author

+

Roger Bivand Roger.Bivand@nhh.no, Malabika Koley and Anil K. Bera

+
+
+

Note

+

The results in the example below agree with those in Table 3, p. 22 in Koley and Bera (2024).

+
+
+

See also

+ +
+ +
+

Examples

+
columbus <- sf::st_read(system.file("shapes/columbus.shp", package="spData")[1])
+#> Reading layer `columbus' from data source 
+#>   `/home/rsb/lib/r_libs/spData/shapes/columbus.shp' using driver `ESRI Shapefile'
+#> Simple feature collection with 49 features and 20 fields
+#> Geometry type: POLYGON
+#> Dimension:     XY
+#> Bounding box:  xmin: 5.874907 ymin: 10.78863 xmax: 11.28742 ymax: 14.74245
+#> CRS:           NA
+col.gal.nb <- read.gal(system.file("weights/columbus.gal", package="spData")[1])
+col.listw <- nb2listw(col.gal.nb, style="W")
+lm_obj <- lm(CRIME ~ INC + HOVAL, data=columbus)
+summary(lm.RStests(lm_obj, col.listw, test="all"))
+#> 	Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
+#> 	dependence
+#> data:  
+#> model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
+#> test weights: col.listw
+#>  
+#>          statistic parameter  p.value   
+#> RSerr     4.611126         1 0.031765 * 
+#> RSlag     7.855675         1 0.005066 **
+#> adjRSerr  0.033514         1 0.854744   
+#> adjRSlag  3.278064         1 0.070212 . 
+#> SARMA     7.889190         2 0.019359 * 
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+res <- SD.RStests(lm_obj, col.listw, test="SDM")
+summary(res)
+#> 	Rao's score test spatial Durbin diagnostics
+#> data:  
+#> model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
+#> weights: col.listw
+#>  
+#>              statistic parameter  p.value   
+#> SDM_RSlag       7.8557         1 0.005066 **
+#> SDM_adjRSlag    4.6111         1 0.031765 * 
+#> SDM_RSWX        6.1376         2 0.046477 * 
+#> SDM_adjRSWX     2.8931         2 0.235386   
+#> SDM_Joint      10.7487         3 0.013165 * 
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+all.equal(unname(res$SDM_Joint$statistic),
+ unname(res$SDM_RSlag$statistic + res$SDM_adjRSWX$statistic))
+#> [1] TRUE
+all.equal(unname(res$SDM_Joint$statistic),
+ unname(res$SDM_adjRSlag$statistic + res$SDM_RSWX$statistic))
+#> [1] TRUE
+res <- SD.RStests(lm_obj, col.listw, test="SDEM")
+summary(res)
+#> 	Rao's score test spatial Durbin diagnostics
+#> data:  
+#> model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
+#> weights: col.listw
+#>  
+#>            statistic parameter p.value  
+#> SDEM_RSerr    4.6111         1 0.03177 *
+#> SDEM_RSWX     6.1376         2 0.04648 *
+#> SDEM_Joint   10.7487         3 0.01317 *
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+all.equal(unname(res$SDEM_Joint$statistic),
+ unname(res$SDEM_RSerr$statistic + res$SDEM_RSWX$statistic))
+#> [1] TRUE
+summary(SD.RStests(lm_obj, nb2listw(col.gal.nb, style="C"), test="all"))
+#> Warning: Spatial weights matrix not row standardized
+#> 	Rao's score test spatial Durbin diagnostics
+#> data:  
+#> model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
+#> weights: nb2listw(col.gal.nb, style = "C")
+#>  
+#>              statistic parameter  p.value   
+#> SDM_RSlag      10.6095         1 0.001125 **
+#> SDM_adjRSlag    4.8428         1 0.027762 * 
+#> SDM_RSWX        9.2305         3 0.026378 * 
+#> SDM_adjRSWX     3.4637         3 0.325498   
+#> SDM_Joint      14.0733         4 0.007065 **
+#> SDEM_RSerr      4.8428         1 0.027762 * 
+#> SDEM_RSWX       9.2305         3 0.026378 * 
+#> SDEM_Joint     14.0733         4 0.007065 **
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+summary(SD.RStests(lm_obj, col.listw, test="all", Durbin= ~ INC))
+#> 	Rao's score test spatial Durbin diagnostics
+#> data:  
+#> model: lm(formula = CRIME ~ INC + HOVAL, data = columbus)
+#> weights: col.listw
+#> Durbin: ~ INC
+#>  
+#>              statistic parameter  p.value   
+#> SDM_RSlag      7.85568         1 0.005066 **
+#> SDM_adjRSlag   3.16076         1 0.075428 . 
+#> SDM_RSWX       4.92399         1 0.026486 * 
+#> SDM_adjRSWX    0.22908         1 0.632210   
+#> SDM_Joint      8.08475         2 0.017556 * 
+#> SDEM_RSerr     4.61113         1 0.031765 * 
+#> SDEM_RSWX      4.92399         1 0.026486 * 
+#> SDEM_Joint     9.53512         2 0.008501 **
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+lm_obj0 <- lm(I(scale(CRIME)) ~ 0 + I(scale(INC)) + I(scale(HOVAL)),
+ data=columbus)
+summary(SD.RStests(lm_obj0, col.listw, test="all"))
+#> 	Rao's score test spatial Durbin diagnostics
+#> data:  
+#> model: lm(formula = I(scale(CRIME)) ~ 0 + I(scale(INC)) +
+#> I(scale(HOVAL)), data = columbus)
+#> weights: col.listw
+#>  
+#>              statistic parameter  p.value   
+#> SDM_RSlag       7.8250         1 0.005153 **
+#> SDM_adjRSlag    4.6111         1 0.031765 * 
+#> SDM_RSWX        6.0609         2 0.048295 * 
+#> SDM_adjRSWX     2.8470         2 0.240873   
+#> SDM_Joint      10.6720         3 0.013638 * 
+#> SDEM_RSerr      4.6111         1 0.031765 * 
+#> SDEM_RSWX       6.0609         2 0.048295 * 
+#> SDEM_Joint     10.6720         3 0.013638 * 
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+columbusNA <- columbus
+columbusNA$HOVAL[15] <- NA
+lm_objNA <- lm(CRIME ~ INC + HOVAL, data=columbusNA)
+summary(SD.RStests(lm_objNA, col.listw, test="all"))
+#> 	Rao's score test spatial Durbin diagnostics
+#> data:  
+#> model: lm(formula = CRIME ~ INC + HOVAL, data = columbusNA)
+#> weights: col.listw
+#>  
+#>              statistic parameter  p.value   
+#> SDM_RSlag       7.6010         1 0.005834 **
+#> SDM_adjRSlag    4.4716         1 0.034463 * 
+#> SDM_RSWX        6.0812         2 0.047807 * 
+#> SDM_adjRSWX     2.9518         2 0.228576   
+#> SDM_Joint      10.5527         3 0.014407 * 
+#> SDEM_RSerr      4.4716         1 0.034463 * 
+#> SDEM_RSWX       6.0812         2 0.047807 * 
+#> SDEM_Joint     10.5527         3 0.014407 * 
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+
+
+
+ +
+ + +
+ +
+

Site built with pkgdown 2.0.7.

+
+ +
+ + + + + + + + diff --git a/docs/reference/bhicv.html b/docs/reference/bhicv.html index f8ecaca4..cc5502bd 100644 --- a/docs/reference/bhicv.html +++ b/docs/reference/bhicv.html @@ -105,7 +105,7 @@

Examples

bh <- st_read(system.file("etc/shapes/bhicv.shp",
       package="spdep")[1])
 #> Reading layer `bhicv' from data source 
-#>   `/tmp/Rtmp0wv3u5/temp_libpath4cfe661e8f5da/spdep/etc/shapes/bhicv.shp' 
+#>   `/tmp/Rtmpza6q35/temp_libpath88034516afce7/spdep/etc/shapes/bhicv.shp' 
 #>   using driver `ESRI Shapefile'
 #> Simple feature collection with 98 features and 8 fields
 #> Geometry type: POLYGON
diff --git a/docs/reference/compon.html b/docs/reference/compon.html
index 631f059c..acbd528c 100644
--- a/docs/reference/compon.html
+++ b/docs/reference/compon.html
@@ -138,10 +138,14 @@ 

Examples

#> set.mcOption if (run) { B <- as(nb2listw(col2, style="B", zero.policy=TRUE), "CsparseMatrix") -g1 <- graph.adjacency(B, mode="undirected") -c1 <- clusters(g1) +g1 <- graph.adjacency(B, mode="undirected") +c1 <- clusters(g1) print(c1$no == res$nc) } +#> Warning: `graph.adjacency()` was deprecated in igraph 2.0.0. +#> Please use `graph_from_adjacency_matrix()` instead. +#> Warning: `clusters()` was deprecated in igraph 2.0.0. +#> Please use `components()` instead. #> [1] TRUE if (run) { print(all.equal(c1$membership, res$comp.id)) @@ -153,8 +157,8 @@

Examples

#> [1] TRUE if (run) { W <- as(nb2listw(col2, style="W", zero.policy=TRUE), "CsparseMatrix") -g1W <- graph.adjacency(W, mode="directed", weighted="W") -c1W <- clusters(g1W) +g1W <- graph.adjacency(W, mode="directed", weighted="W") +c1W <- clusters(g1W) print(all.equal(c1W$membership, res$comp.id, check.attributes=FALSE)) } #> [1] TRUE @@ -162,14 +166,13 @@

Examples

ow <- options("warn")$warn options("warn"=2L) # Matrix 1.4-2 vulnerability work-around -B1 <- try(get.adjacency(g1), silent=TRUE) +B1 <- try(get.adjacency(g1), silent=TRUE) if (!inherits(B1, "try-error")) { #B1 <- get.adjacency(g1) print(all.equal(B, B1)) } options("warn"=ow) } -#> [1] TRUE
diff --git a/docs/reference/dnearneigh.html b/docs/reference/dnearneigh.html index a89a4150..21ab546d 100644 --- a/docs/reference/dnearneigh.html +++ b/docs/reference/dnearneigh.html @@ -239,13 +239,13 @@

Examples

gck1b <- knn2nb(knearneigh(xy1, k=1)) system.time(o <- nbdists(gck1b, xy1)) #> user system elapsed -#> 0.006 0.000 0.006 +#> 0.006 0.000 0.007 (all.linked <- max(unlist(o))) #> [1] 522.4464 # use s2 brute-force dwithin_matrix approach for s2 <= 1.0.7 system.time(gc.nb.dwithin <- dnearneigh(xy1, 0, all.linked, use_s2=TRUE, dwithin=TRUE)) #> user system elapsed -#> 0.009 0.001 0.009 +#> 0.01 0.00 0.01 summary(gc.nb, xy1, scale=0.5) #> Neighbour list object: #> Number of regions: 48 @@ -271,7 +271,7 @@

Examples

system.time(gc.nb.dwithin <- dnearneigh(xy1, 0, all.linked, use_s2=TRUE, dwithin=TRUE)) } #> user system elapsed -#> 0.009 0.000 0.009 +#> 0.01 0.00 0.01 if (packageVersion("s2") > "1.0.7") { summary(gc.nb.dwithin, xy1, scale=0.5) } diff --git a/docs/reference/edit.nb.html b/docs/reference/edit.nb.html index d31b013d..0e2d5b40 100644 --- a/docs/reference/edit.nb.html +++ b/docs/reference/edit.nb.html @@ -121,12 +121,11 @@

See also

Examples

-
# \dontrun{
+    
if (FALSE) {
 columbus <- st_read(system.file("shapes/columbus.shp", package="spData")[1], quiet=TRUE)
 class(columbus)
-#> [1] "sf"         "data.frame"
 if (FALSE) nnb1 <- edit.nb(col.gal.nb, polys=as(columbus, "Spatial"))
-# }
+}
 
diff --git a/docs/reference/geary.mc.html b/docs/reference/geary.mc.html index f41c26cd..2a32b386 100644 --- a/docs/reference/geary.mc.html +++ b/docs/reference/geary.mc.html @@ -73,7 +73,7 @@

Permutation test for Geary's C statistic

geary.mc(x, listw, nsim, zero.policy=attr(listw, "zero.policy"), alternative="greater",
- spChk=NULL, adjust.n=TRUE, return_boot=FALSE)
+ spChk=NULL, adjust.n=TRUE, return_boot=FALSE, na.action=na.fail)
@@ -102,6 +102,8 @@

Arguments

return_boot

return an object of class boot from the equivalent permutation bootstrap rather than an object of class htest

+
na.action
+

a function (default na.fail), can also be na.omit or na.exclude - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted. na.pass is not permitted because it is meaningless in a permutation test.

Value

@@ -146,6 +148,7 @@

See also

Examples

data(oldcol)
+set.seed(1)
 sim1 <- geary.mc(COL.OLD$CRIME, nb2listw(COL.nb, style="W"),
  nsim=99, alternative="less")
 sim1
@@ -153,19 +156,19 @@ 

Examples

#> Monte-Carlo simulation of Geary C #> #> data: COL.OLD$CRIME -#> weights: nb2listw(COL.nb, style = "W") +#> weights: nb2listw(COL.nb, style = "W") #> number of simulations + 1: 100 #> #> statistic = 0.52987, observed rank = 1, p-value = 0.99 #> alternative hypothesis: less #> mean(sim1$res) -#> [1] 0.9905898 +#> [1] 1.002705 var(sim1$res) -#> [1] 0.01235372 +#> [1] 0.01043616 summary(sim1$res) #> Min. 1st Qu. Median Mean 3rd Qu. Max. -#> 0.5299 0.9225 1.0000 0.9906 1.0710 1.2144 +#> 0.5299 0.9362 1.0141 1.0027 1.0673 1.2459 colold.lags <- nblag(COL.nb, 3) sim2 <- geary.mc(COL.OLD$CRIME, nb2listw(colold.lags[[2]], style="W"), nsim=99) @@ -174,15 +177,15 @@

Examples

#> Monte-Carlo simulation of Geary C #> #> data: COL.OLD$CRIME -#> weights: nb2listw(colold.lags[[2]], style = "W") +#> weights: nb2listw(colold.lags[[2]], style = "W") #> number of simulations + 1: 100 #> -#> statistic = 0.81129, observed rank = 2, p-value = 0.02 +#> statistic = 0.81129, observed rank = 1, p-value = 0.01 #> alternative hypothesis: greater #> summary(sim2$res) #> Min. 1st Qu. Median Mean 3rd Qu. Max. -#> 0.8090 0.9579 1.0123 1.0075 1.0575 1.1845 +#> 0.8113 0.9500 1.0173 1.0147 1.0731 1.1962 sim3 <- geary.mc(COL.OLD$CRIME, nb2listw(colold.lags[[3]], style="W"), nsim=99) sim3 @@ -190,15 +193,85 @@

Examples

#> Monte-Carlo simulation of Geary C #> #> data: COL.OLD$CRIME -#> weights: nb2listw(colold.lags[[3]], style = "W") +#> weights: nb2listw(colold.lags[[3]], style = "W") #> number of simulations + 1: 100 #> -#> statistic = 1.1303, observed rank = 93, p-value = 0.93 +#> statistic = 1.1303, observed rank = 89, p-value = 0.89 #> alternative hypothesis: greater #> summary(sim3$res) #> Min. 1st Qu. Median Mean 3rd Qu. Max. -#> 0.8015 0.9369 1.0017 0.9932 1.0467 1.1948 +#> 0.7903 0.9609 0.9989 1.0148 1.0656 1.2726 +crime <- COL.OLD$CRIME +is.na(crime) <- sample(1:length(crime), 10) +try(geary.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, + na.action=na.fail)) +#> Error in na.fail.default(x) : missing values in object +geary.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + na.action=na.omit) +#> Warning: subsetting caused increase in subgraph count +#> +#> Monte-Carlo simulation of Geary C +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "W") +#> omitted: 14, 16, 17, 21, 24, 31, 32, 42, 44, 47 +#> number of simulations + 1: 100 +#> +#> statistic = 0.49368, observed rank = 1, p-value = 0.01 +#> alternative hypothesis: greater +#> +geary.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + return_boot=TRUE, na.action=na.omit) +#> Warning: subsetting caused increase in subgraph count +#> NA observations omitted: 14, 16, 17, 21, 24, 31, 32, 42, 44, 47 +#> +#> DATA PERMUTATION +#> +#> +#> Call: +#> boot(data = x, statistic = geary_boot, R = nsim, sim = "permutation", +#> listw = listw, n = n, n1 = wc$n1, S0 = wc$S0, zero.policy = zero.policy, +#> parallel = parallel, ncpus = ncpus, cl = cl) +#> +#> +#> Bootstrap Statistics : +#> original bias std. error +#> t1* 0.4936767 0.4891213 0.1517218 +geary.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + na.action=na.exclude) +#> Warning: subsetting caused increase in subgraph count +#> +#> Monte-Carlo simulation of Geary C +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "W") +#> omitted: 14, 16, 17, 21, 24, 31, 32, 42, 44, 47 +#> number of simulations + 1: 100 +#> +#> statistic = 0.49368, observed rank = 1, p-value = 0.01 +#> alternative hypothesis: greater +#> +geary.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + return_boot=TRUE, na.action=na.exclude) +#> Warning: subsetting caused increase in subgraph count +#> NA observations omitted: 14, 16, 17, 21, 24, 31, 32, 42, 44, 47 +#> +#> DATA PERMUTATION +#> +#> +#> Call: +#> boot(data = x, statistic = geary_boot, R = nsim, sim = "permutation", +#> listw = listw, n = n, n1 = wc$n1, S0 = wc$S0, zero.policy = zero.policy, +#> parallel = parallel, ncpus = ncpus, cl = cl) +#> +#> +#> Bootstrap Statistics : +#> original bias std. error +#> t1* 0.4936767 0.4570379 0.1307276 +try(geary.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, na.action=na.pass)) +#> Error in geary.mc(crime, nb2listw(COL.nb, style = "W"), nsim = 99, na.action = na.pass) : +#> na.pass not permitted
diff --git a/docs/reference/geary.test.html b/docs/reference/geary.test.html index 049c5dcf..54c9a5ba 100644 --- a/docs/reference/geary.test.html +++ b/docs/reference/geary.test.html @@ -73,7 +73,7 @@

Geary's C test for spatial autocorrelation

geary.test(x, listw, randomisation=TRUE, zero.policy=attr(listw, "zero.policy"),
-    alternative="greater", spChk=NULL, adjust.n=TRUE)
+ alternative="greater", spChk=NULL, adjust.n=TRUE, na.action=na.fail)
@@ -99,6 +99,9 @@

Arguments

adjust.n

default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted

+
na.action
+

a function (default na.fail), can also be na.omit or na.exclude - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted. na.pass is not permitted.

+

Value

@@ -151,7 +154,7 @@

Examples

#> Geary C test under randomisation #> #> data: COL.OLD$CRIME -#> weights: nb2listw(COL.nb, style = "W") +#> weights: nb2listw(COL.nb, style = "W") #> #> Geary C statistic standard deviate = 4.7605, p-value = 9.655e-07 #> alternative hypothesis: Expectation greater than statistic @@ -165,7 +168,7 @@

Examples

#> Geary C test under normality #> #> data: COL.OLD$CRIME -#> weights: nb2listw(COL.nb, style = "W") +#> weights: nb2listw(COL.nb, style = "W") #> #> Geary C statistic standard deviate = 4.6388, p-value = 1.752e-06 #> alternative hypothesis: Expectation greater than statistic @@ -180,7 +183,7 @@

Examples

#> Geary C test under randomisation #> #> data: COL.OLD$CRIME -#> weights: nb2listw(colold.lags[[2]], style = "W") +#> weights: nb2listw(colold.lags[[2]], style = "W") #> #> Geary C statistic standard deviate = 2.2896, p-value = 0.01102 #> alternative hypothesis: Expectation greater than statistic @@ -194,7 +197,7 @@

Examples

#> Geary C test under randomisation #> #> data: COL.OLD$CRIME -#> weights: nb2listw(colold.lags[[3]], style = "W") +#> weights: nb2listw(colold.lags[[3]], style = "W") #> #> Geary C statistic standard deviate = -1.5667, p-value = 0.9414 #> alternative hypothesis: Expectation greater than statistic @@ -213,7 +216,7 @@

Examples

#> Geary C test under randomisation #> #> data: COL.OLD$CRIME -#> weights: nb2listw(COL.k4.nb, style = "W") +#> weights: nb2listw(COL.k4.nb, style = "W") #> #> Geary C statistic standard deviate = 6.4415, p-value = 5.916e-11 #> alternative hypothesis: Expectation greater than statistic @@ -227,7 +230,7 @@

Examples

#> Geary C test under normality #> #> data: COL.OLD$CRIME -#> weights: nb2listw(COL.k4.nb, style = "W") +#> weights: nb2listw(COL.k4.nb, style = "W") #> #> Geary C statistic standard deviate = 6.2873, p-value = 1.615e-10 #> alternative hypothesis: Expectation greater than statistic @@ -243,7 +246,7 @@

Examples

#> Geary C test under randomisation #> #> data: COL.OLD$CRIME -#> weights: listw2U(nb2listw(COL.k4.nb, style = "W")) +#> weights: listw2U(nb2listw(COL.k4.nb, style = "W")) #> #> Geary C statistic standard deviate = 6.4415, p-value = 5.916e-11 #> alternative hypothesis: Expectation greater than statistic @@ -257,7 +260,7 @@

Examples

#> Geary C test under normality #> #> data: COL.OLD$CRIME -#> weights: listw2U(nb2listw(COL.k4.nb, style = "W")) +#> weights: listw2U(nb2listw(COL.k4.nb, style = "W")) #> #> Geary C statistic standard deviate = 6.2873, p-value = 1.615e-10 #> alternative hypothesis: Expectation greater than statistic @@ -265,6 +268,43 @@

Examples

#> Geary C statistic Expectation Variance #> 0.399254423 1.000000000 0.009129529 #> +crime <- COL.OLD$CRIME +is.na(crime) <- sample(1:length(crime), 10) +try(geary.test(crime, nb2listw(COL.nb, style="W"), na.action=na.fail)) +#> Error in na.fail.default(x) : missing values in object +geary.test(crime, nb2listw(COL.nb, style="W"), zero.policy=TRUE, + na.action=na.omit) +#> +#> Geary C test under randomisation +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "W") +#> omitted: 3, 4, 10, 20, 21, 23, 27, 29, 31, 38 +#> +#> Geary C statistic standard deviate = 4.2726, p-value = 9.661e-06 +#> alternative hypothesis: Expectation greater than statistic +#> sample estimates: +#> Geary C statistic Expectation Variance +#> 0.45199742 1.00000000 0.01645071 +#> +geary.test(crime, nb2listw(COL.nb, style="W"), zero.policy=TRUE, + na.action=na.exclude) +#> +#> Geary C test under randomisation +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "W") +#> omitted: 3, 4, 10, 20, 21, 23, 27, 29, 31, 38 +#> +#> Geary C statistic standard deviate = 4.2726, p-value = 9.661e-06 +#> alternative hypothesis: Expectation greater than statistic +#> sample estimates: +#> Geary C statistic Expectation Variance +#> 0.45199742 1.00000000 0.01645071 +#> +try(geary.test(crime, nb2listw(COL.nb, style="W"), na.action=na.pass)) +#> Error in geary.test(crime, nb2listw(COL.nb, style = "W"), na.action = na.pass) : +#> na.pass not permitted
diff --git a/docs/reference/globalG.test.html b/docs/reference/globalG.test.html index d2cca182..d391e8a6 100644 --- a/docs/reference/globalG.test.html +++ b/docs/reference/globalG.test.html @@ -73,7 +73,8 @@

Global G test for spatial autocorrelation

globalG.test(x, listw, zero.policy=attr(listw, "zero.policy"), alternative="greater",
- spChk=NULL, adjust.n=TRUE, B1correct=TRUE, adjust.x=TRUE, Arc_all_x=FALSE)
+ spChk=NULL, adjust.n=TRUE, B1correct=TRUE, adjust.x=TRUE, Arc_all_x=FALSE, + na.action=na.fail)
@@ -105,6 +106,9 @@

Arguments

Arc_all_x

default FALSE, if Arc_all_x=TRUE and adjust.x=TRUE, use the full x vector in part of the denominator term for G

+
na.action
+

a function (default na.fail), can also be na.omit or na.exclude - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted. na.pass is not permitted.

+

Value

@@ -189,6 +193,55 @@

Examples

#> 80 0.24606972 -0.18791364 0.8509443 #> 90 0.30073463 0.11457610 0.9087811 #> 100 0.34879996 0.31591356 0.7520681 +data(oldcol) +crime <- COL.OLD$CRIME +is.na(crime) <- sample(1:length(crime), 10) +res <- try(globalG.test(crime, nb2listw(COL.nb, style="B"), + na.action=na.fail)) +#> Error in na.fail.default(x) : missing values in object +res +#> [1] "Error in na.fail.default(x) : missing values in object\n" +#> attr(,"class") +#> [1] "try-error" +#> attr(,"condition") +#> <simpleError in na.fail.default(x): missing values in object> +globalG.test(crime, nb2listw(COL.nb, style="B"), zero.policy=TRUE, + na.action=na.omit) +#> Warning: subsetting caused increase in subgraph count +#> +#> Getis-Ord global G statistic +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "B") +#> omitted: 2, 3, 5, 6, 7, 10, 13, 30, 39, 49 +#> n reduced by no-neighbour observations +#> +#> standard deviate = 3.8084, p-value = 6.993e-05 +#> alternative hypothesis: greater +#> sample estimates: +#> Global G statistic Expectation Variance +#> 1.441233e-01 1.123755e-01 6.949287e-05 +#> +globalG.test(crime, nb2listw(COL.nb, style="B"), zero.policy=TRUE, + na.action=na.exclude) +#> Warning: subsetting caused increase in subgraph count +#> +#> Getis-Ord global G statistic +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "B") +#> omitted: 2, 3, 5, 6, 7, 10, 13, 30, 39, 49 +#> n reduced by no-neighbour observations +#> +#> standard deviate = 3.8084, p-value = 6.993e-05 +#> alternative hypothesis: greater +#> sample estimates: +#> Global G statistic Expectation Variance +#> 1.441233e-01 1.123755e-01 6.949287e-05 +#> +try(globalG.test(crime, nb2listw(COL.nb, style="B"), na.action=na.pass)) +#> Error in globalG.test(crime, nb2listw(COL.nb, style = "B"), na.action = na.pass) : +#> na.pass not permitted
diff --git a/docs/reference/index.html b/docs/reference/index.html index a4c45098..003e8a1c 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -98,9 +98,9 @@

All functions

Bootstrapping-based test for local spatial heteroscedasticity

-

SDM.RStests()

+

SD.RStests()

-

Rao's score and adjusted Rao's score tests of linear hypotheses for spatial Durbin models

+

Rao's score and adjusted Rao's score tests of linear hypotheses for spatial Durbin and spatial Durbin error models

aggregate(<nb>)

@@ -230,9 +230,9 @@

All functions

Spatial neighbour sparse representation

-

lm.LMtests() print(<LMtestlist>) summary(<LMtestlist>) print(<LMtestlist.summary>)

+

lm.RStests() lm.LMtests() print(<RStestlist>) summary(<RStestlist>) print(<RStestlist.summary>)

-

Lagrange Multiplier diagnostics for spatial dependence in linear models

+

Rao's score (a.k.a Lagrange Multiplier) diagnostics for spatial dependence in linear models

lm.morantest()

diff --git a/docs/reference/joincount.multi.html b/docs/reference/joincount.multi.html index 2816e9dc..d5d04d09 100644 --- a/docs/reference/joincount.multi.html +++ b/docs/reference/joincount.multi.html @@ -161,95 +161,30 @@

Examples

#> high:high 52.000 28.138 18.342 5.5716 #> high:low 28.000 61.170 25.882 -6.5200 #> Jtot 28.000 61.170 33.190 -5.7577 -# \dontrun{ +if (FALSE) { data(oldcol) HICRIME <- cut(COL.OLD$CRIME, breaks=c(0,35,80), labels=c("low","high")) names(HICRIME) <- rownames(COL.OLD) joincount.multi(HICRIME, nb2listw(COL.nb, style="B")) -#> Joincount Expected Variance z-value -#> low:low 34.000 29.592 18.895 1.0141 -#> high:high 54.000 27.224 17.888 6.3307 -#> high:low 28.000 59.184 26.233 -6.0884 -#> Jtot 28.000 59.184 26.233 -6.0884 data(hopkins, package="spData") image(1:32, 1:32, hopkins[5:36,36:5], breaks=c(-0.5, 3.5, 20), col=c("white", "black")) box() - hopkins.rook.nb <- cell2nb(32, 32, type="rook") unlist(spweights.constants(nb2listw(hopkins.rook.nb, style="B"))) -#> n n1 n2 n3 nn S0 S1 S2 -#> 1024 1023 1022 1021 1048576 3968 7936 61984 hopkins.queen.nb <- cell2nb(32, 32, type="queen") hopkins.bishop.nb <- diffnb(hopkins.rook.nb, hopkins.queen.nb, verbose=FALSE) hopkins4 <- hopkins[5:36,36:5] hopkins4[which(hopkins4 > 3, arr.ind=TRUE)] <- 4 hopkins4.f <- factor(hopkins4) table(hopkins4.f) -#> hopkins4.f -#> 0 1 2 3 4 -#> 657 215 98 30 24 joincount.multi(hopkins4.f, nb2listw(hopkins.rook.nb, style="B")) -#> Joincount Expected Variance z-value -#> 0:0 864.00000 816.27273 116.05233 4.4304 -#> 1:1 94.00000 87.14015 55.25216 0.9229 -#> 2:2 18.00000 18.00379 14.81562 -0.0010 -#> 3:3 2.00000 1.64773 1.55539 0.2825 -#> 4:4 5.00000 1.04545 0.99845 3.9576 -#> 1:0 503.00000 535.05682 227.76750 -2.1241 -#> 2:0 213.00000 243.88636 97.21769 -3.1325 -#> 2:1 99.00000 79.81061 59.01930 2.4978 -#> 3:0 61.00000 74.65909 28.58592 -2.5547 -#> 3:1 28.00000 24.43182 18.99976 0.8186 -#> 3:2 15.00000 11.13636 9.82411 1.2327 -#> 4:0 40.00000 59.72727 22.78583 -4.1327 -#> 4:1 23.00000 19.54545 15.26564 0.8842 -#> 4:2 14.00000 8.90909 7.90051 1.8112 -#> 4:3 5.00000 2.72727 2.58616 1.4133 -#> Jtot 1001.00000 1059.89015 273.78610 -3.5591 cat("replicates Upton & Fingleton table 3.4 (p. 166)\n") -#> replicates Upton & Fingleton table 3.4 (p. 166) joincount.multi(hopkins4.f, nb2listw(hopkins.bishop.nb, style="B")) -#> Joincount Expected Variance z-value -#> 0:0 823.00000 790.76420 144.44877 2.6821 -#> 1:1 101.00000 84.41702 55.98143 2.2164 -#> 2:2 19.00000 17.44117 14.61542 0.4077 -#> 3:3 3.00000 1.59624 1.51444 1.1407 -#> 4:4 3.00000 1.01278 0.97111 2.0166 -#> 1:0 497.00000 518.33629 234.93545 -1.3920 -#> 2:0 216.00000 236.26491 104.42142 -1.9831 -#> 2:1 81.00000 77.31652 58.70829 0.4807 -#> 3:0 58.00000 72.32599 31.49151 -2.5529 -#> 3:1 21.00000 23.66832 18.85316 -0.6145 -#> 3:2 17.00000 10.78835 9.62487 2.0022 -#> 4:0 48.00000 57.86080 25.15973 -1.9659 -#> 4:1 21.00000 18.93466 15.14473 0.5307 -#> 4:2 10.00000 8.63068 7.73708 0.4923 -#> 4:3 4.00000 2.64205 2.51686 0.8560 -#> Jtot 973.00000 1026.76858 284.51030 -3.1877 cat("replicates Upton & Fingleton table 3.6 (p. 168)\n") -#> replicates Upton & Fingleton table 3.6 (p. 168) joincount.multi(hopkins4.f, nb2listw(hopkins.queen.nb, style="B")) -#> Joincount Expected Variance z-value -#> 0:0 1687.0000 1607.0369 303.8034 4.5877 -#> 1:1 195.0000 171.5572 114.2057 2.1936 -#> 2:2 37.0000 35.4450 29.6821 0.2854 -#> 3:3 5.0000 3.2440 3.0687 1.0024 -#> 4:4 8.0000 2.0582 1.9674 4.2361 -#> 1:0 1000.0000 1053.3931 480.6959 -2.4353 -#> 2:0 429.0000 480.1513 215.0360 -3.4882 -#> 2:1 180.0000 157.1271 119.3987 2.0932 -#> 3:0 119.0000 146.9851 65.1029 -3.4684 -#> 3:1 49.0000 48.1001 38.3268 0.1454 -#> 3:2 32.0000 21.9247 19.5237 2.2802 -#> 4:0 88.0000 117.5881 52.0312 -4.1019 -#> 4:1 44.0000 38.4801 30.7868 0.9948 -#> 4:2 24.0000 17.5398 15.6933 1.6308 -#> 4:3 9.0000 5.3693 5.0994 1.6078 -#> Jtot 1974.0000 2086.6587 582.8326 -4.6665 cat("replicates Upton & Fingleton table 3.7 (p. 169)\n") -#> replicates Upton & Fingleton table 3.7 (p. 169) -# } +} diff --git a/docs/reference/knearneigh.html b/docs/reference/knearneigh.html index 6681e5d4..258cdbbd 100644 --- a/docs/reference/knearneigh.html +++ b/docs/reference/knearneigh.html @@ -191,7 +191,7 @@

Examples

sf_use_s2(TRUE) system.time(gck4a.nb <- knn2nb(knearneigh(xy1, k=4))) #> user system elapsed -#> 0.009 0.000 0.008 +#> 0.011 0.000 0.012 summary(gck4a.nb, xy1, scale=0.5) #> Neighbour list object: #> Number of regions: 48 @@ -211,7 +211,7 @@

Examples

#> Spherical geometry (s2) switched off system.time(gck4a.nb <- knn2nb(knearneigh(xy1, k=4))) #> user system elapsed -#> 0.005 0.000 0.005 +#> 0.006 0.000 0.006 summary(gck4a.nb, xy1, scale=0.5) #> Neighbour list object: #> Number of regions: 48 diff --git a/docs/reference/lm.RStests.html b/docs/reference/lm.RStests.html new file mode 100644 index 00000000..1fe4bba9 --- /dev/null +++ b/docs/reference/lm.RStests.html @@ -0,0 +1,277 @@ + +Rao's score (a.k.a Lagrange Multiplier) diagnostics for spatial dependence in linear models — lm.LMtests • spdep + + +
+
+ + + +
+
+ + +
+

The function reports the estimates of tests chosen among five statistics for +testing for spatial dependence in linear models. The statistics are +the simple RS test for error dependence (“RSerr”), the simple RS test +for a missing spatially lagged dependent variable (“RSlag”), variants +of these adjusted for the presence of the other (“adjRSerr” +tests for error dependence in the possible presence of a missing lagged +dependent variable, “adjRSlag” the other way round), and a portmanteau test +(“SARMA”, in fact “RSerr” + “adjRSlag”). Note: from spdep 1.3-2, the tests are re-named “RS” - Rao's score tests, rather than “LM” - Lagrange multiplier tests to match the naming of tests from the same family in SDM.RStests.

+
+ +
+
lm.RStests(model, listw, zero.policy=attr(listw, "zero.policy"), test="RSerr",
+ spChk=NULL, naSubset=TRUE)
+lm.LMtests(model, listw, zero.policy=attr(listw, "zero.policy"), test="LMerr",
+ spChk=NULL, naSubset=TRUE)
+# S3 method for RStestlist
+print(x, ...)
+# S3 method for RStestlist
+summary(object, p.adjust.method="none", ...)
+# S3 method for RStestlist.summary
+print(x, digits=max(3, getOption("digits") - 2), ...)
+<!-- %tracew(listw) -->
+
+ +
+

Arguments

+
model
+

an object of class lm returned by lm, or optionally a vector of externally calculated residuals (run though na.omit if any NAs present) for use when only "RSerr" is chosen; weights and offsets should not be used in the lm object

+ +
listw
+

a listw object created for example by nb2listw, +expected to be row-standardised (W-style)

+ +
zero.policy
+

default attr(listw, "zero.policy") as set when listw was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without +neighbours, if FALSE assign NA

+ +
test
+

a character vector of tests requested chosen from RSerr, RSlag, +adjRSerr, adjRSlag, SARMA; test="all" computes all the tests.

+ +
spChk
+

should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()

+ +
naSubset
+

default TRUE to subset listw object for omitted observations in model object (this is a change from earlier behaviour, when the model$na.action component was ignored, and the listw object had to be subsetted by hand)

+ +
x, object
+

object to be printed

+ +
p.adjust.method
+

a character string specifying the probability value adjustment (see p.adjust) for multiple tests, default "none"

+ +
digits
+

minimum number of significant digits to be used for most numbers

+ +
...
+

printing arguments to be passed through

+ +
+
+

Details

+

The two types of dependence are for spatial lag \(\rho\) and spatial error \(\lambda\):

+

$$ +\mathbf{y} = \mathbf{X \beta} + \rho \mathbf{W_{(1)} y} + \mathbf{u}, +$$ +$$ +\mathbf{u} = \lambda \mathbf{W_{(2)} u} + \mathbf{e} +$$

+

where \(\mathbf{e}\) is a well-behaved, uncorrelated error +term. Tests for a missing spatially lagged dependent variable test +that \(\rho = 0\), tests for spatial autocorrelation of +the error \(\mathbf{u}\) test whether \(\lambda = 0\). \(\mathbf{W}\) is a spatial weights matrix; for the tests used +here they are identical.

+
+
+

Value

+ + +

A list of class RStestlist of htest objects, each with:

+
statistic
+

the value of the Rao's score (a.k.a Lagrange multiplier) test.

+ +
parameter
+

number of degrees of freedom

+ +
p.value
+

the p-value of the test.

+ +
method
+

a character string giving the method used.

+ +
data.name
+

a character string giving the name(s) of the data.

+ +
+
+

References

+

Anselin, L. 1988 Spatial econometrics: methods and +models. (Dordrecht: Kluwer); Anselin, L., Bera, A. K., Florax, R. and +Yoon, M. J. 1996 Simple diagnostic tests for spatial dependence. Regional +Science and Urban Economics, 26, 77--104 doi:10.1016/0166-0462(95)02111-6 +; +Malabika Koley (2024) Specification Testing under General Nesting Spatial +Model, https://sites.google.com/view/malabikakoley/research.

+
+
+

Author

+

Roger Bivand Roger.Bivand@nhh.no and Andrew Bernat

+
+
+

See also

+ +
+ +
+

Examples

+
data(oldcol)
+oldcrime.lm <- lm(CRIME ~ HOVAL + INC, data = COL.OLD)
+summary(oldcrime.lm)
+#> 
+#> Call:
+#> lm(formula = CRIME ~ HOVAL + INC, data = COL.OLD)
+#> 
+#> Residuals:
+#>     Min      1Q  Median      3Q     Max 
+#> -34.418  -6.388  -1.580   9.052  28.649 
+#> 
+#> Coefficients:
+#>             Estimate Std. Error t value Pr(>|t|)    
+#> (Intercept)  68.6190     4.7355  14.490  < 2e-16 ***
+#> HOVAL        -0.2739     0.1032  -2.654   0.0109 *  
+#> INC          -1.5973     0.3341  -4.780 1.83e-05 ***
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+#> 
+#> Residual standard error: 11.43 on 46 degrees of freedom
+#> Multiple R-squared:  0.5524,	Adjusted R-squared:  0.5329 
+#> F-statistic: 28.39 on 2 and 46 DF,  p-value: 9.341e-09
+#> 
+lw <- nb2listw(COL.nb)
+res <- lm.RStests(oldcrime.lm, listw=lw, test="all")
+summary(res)
+#> 	Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
+#> 	dependence
+#> data:  
+#> model: lm(formula = CRIME ~ HOVAL + INC, data = COL.OLD)
+#> test weights: lw
+#>  
+#>          statistic parameter  p.value   
+#> RSerr     5.723131         1 0.016743 * 
+#> RSlag     9.363684         1 0.002213 **
+#> adjRSerr  0.079495         1 0.777983   
+#> adjRSlag  3.720048         1 0.053763 . 
+#> SARMA     9.443178         2 0.008901 **
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+if (require("spatialreg", quietly=TRUE)) {
+  oldcrime.slx <- lm(CRIME ~ HOVAL + INC, data = COL.OLD, listw=lw)
+  summary(lm.RStests(oldcrime.slx, listw=lw, test=c("adjRSerr", "adjRSlag")))
+}
+#> Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
+#>  extra argument ‘listw’ will be disregarded
+#> 	Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
+#> 	dependence
+#> data:  
+#> model: lm(formula = CRIME ~ HOVAL + INC, data = COL.OLD, listw = lw)
+#> test weights: lw
+#>  
+#>          statistic parameter p.value  
+#> adjRSerr  0.079495         1 0.77798  
+#> adjRSlag  3.720048         1 0.05376 .
+#> ---
+#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+
+
+
+ +
+ + +
+ +
+

Site built with pkgdown 2.0.7.

+
+ +
+ + + + + + + + diff --git a/docs/reference/lm.morantest.html b/docs/reference/lm.morantest.html index 8c5cfbc1..3224a1a3 100644 --- a/docs/reference/lm.morantest.html +++ b/docs/reference/lm.morantest.html @@ -138,7 +138,7 @@

Author

See also

- +
@@ -160,15 +160,17 @@

Examples

#> Observed Moran I Expectation Variance #> 0.235638354 -0.033302866 0.008289408 #> -lm.LMtests(oldcrime.lm, nb2listw(COL.nb, style="W")) +lm.LMtests(oldcrime.lm, nb2listw(COL.nb, style="W")) +#> Please update scripts to use lm.RStests in place of lm.LMtests #> -#> Lagrange multiplier diagnostics for spatial dependence +#> Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial +#> dependence #> #> data: #> model: lm(formula = CRIME ~ HOVAL + INC, data = COL.OLD) -#> weights: nb2listw(COL.nb, style = "W") +#> test weights: listw #> -#> LMErr = 5.7231, df = 1, p-value = 0.01674 +#> RSerr = 5.7231, df = 1, p-value = 0.01674 #> lm.morantest(oldcrime.lm, nb2listw(COL.nb, style="S")) #> diff --git a/docs/reference/localC.html b/docs/reference/localC.html index 9c4d40c6..7446ae4d 100644 --- a/docs/reference/localC.html +++ b/docs/reference/localC.html @@ -245,11 +245,9 @@

Examples

} #> [1] 0.985611 # pseudo-p values probably wrongly folded https://github.com/GeoDaCenter/rgeoda/issues/28 -# \dontrun{ +if (FALSE) { tmap_ok <- FALSE if (require(tmap, quietly=TRUE)) tmap_ok <- TRUE -#> Breaking News: tmap 3.x is retiring. Please test v4, e.g. with -#> remotes::install_github('r-tmap/tmap') if (run) { # doi: 10.1111/gean.12164 guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda") @@ -263,25 +261,10 @@

Examples

moran(g$Infants, lw, n=nrow(g), S0=Szero(lw))$I moran(g$Suicids, lw, n=nrow(g), S0=Szero(lw))$I } -#> Reading layer `Guerry' from data source -#> `/home/rsb/lib/r_libs/rgeoda/extdata/Guerry.shp' using driver `ESRI Shapefile' -#> Simple feature collection with 85 features and 29 fields -#> Geometry type: MULTIPOLYGON -#> Dimension: XY -#> Bounding box: xmin: 47680 ymin: 1703258 xmax: 1031401 ymax: 2677441 -#> Projected CRS: NTF (Paris) / Lambert zone II -#> [1] 0.4016812 if (run) { o <- prcomp(st_drop_geometry(g), scale.=TRUE) cor(st_drop_geometry(g), o$x[,1:2])^2 #(Tab. 2) } -#> PC1 PC2 -#> Crm_prs 0.009286863 0.418851254 -#> Crm_prp 0.561825664 0.009377232 -#> Litercy 0.560570048 0.020095011 -#> Donatns 0.024138865 0.586720363 -#> Infants 0.436025658 0.012817054 -#> Suicids 0.548623327 0.152958961 if (run) { g$PC1 <- o$x[, "PC1"] brks <- c(min(g$PC1), natural_breaks(k=6, g["PC1"]), max(g$PC1)) @@ -289,7 +272,6 @@

Examples

tm_borders() # Fig. 1 else pplot(g["PC1"], breaks=brks) } - if (run) { g$PC2 <- -1*o$x[, "PC2"] # eigenvalue sign arbitrary brks <- c(min(g$PC2), natural_breaks(k=6, g["PC2"]), max(g$PC2)) @@ -297,7 +279,6 @@

Examples

tm_borders() # Fig. 2 else plot(g["PC2"], breaks=brks) } - if (run) { w <- queen_weights(g) lm_PC1 <- local_moran(w, g["PC1"], significance_cutoff=0.01, @@ -310,7 +291,6 @@

Examples

colorNA="gray95") + tm_borders() # Fig. 3 else plot(g["lm_PC1"]) } - if (run) { set.seed(1) lm_PC1_spdep <- localmoran_perm(g$PC1, lw, nsim=9999) @@ -322,7 +302,6 @@

Examples

colorNA="gray95") + tm_borders() # rep. Fig. 3 else plot(g["lm_PC1_spdep"]) } - if (run) { lg_PC1 <- local_g(w, g["PC1"], significance_cutoff=0.01, permutations=99999) @@ -340,7 +319,6 @@

Examples

colorNA="gray95") + tm_borders() # Fig. 4 (guess) else plot(g["lg_PC1"]) } - if (run) { lc_PC1 <- local_geary(w, g["PC1"], significance_cutoff=0.01, permutations=99999) @@ -352,14 +330,11 @@

Examples

colorNA="gray95") + tm_borders() # Fig. 5 else plot(g["lc_PC1"]) } - if (run) { set.seed(1) system.time(lc_PC1_spdep <- localC_perm(g$PC1, lw, nsim=9999, alternative="two.sided")) } -#> user system elapsed -#> 0.373 0.008 0.381 if (run) { if (require(parallel, quietly=TRUE)) { ncpus <- max(2L, detectCores(logical=FALSE), na.rm = TRUE)-1L @@ -372,7 +347,6 @@

Examples

set.coresOption(cores) } } -#> [1] 1 if (run) { g$lc_PC1_spdep <- attr(lc_PC1_spdep, "cluster") is.na(g$lc_PC1_spdep) <- attr(lc_PC1_spdep, "pseudo-p")[,6] > 0.01 @@ -381,7 +355,6 @@

Examples

colorNA="gray95") + tm_borders() # rep. Fig. 5 else plot(g["lc_PC1_spdep"]) } - if (run) { g$both_PC1 <- interaction(g$lc_PC1, g$lm_PC1) g$both_PC1 <- droplevels(g$both_PC1) @@ -389,7 +362,6 @@

Examples

colorNA="gray95") + tm_borders() # Fig. 6 else plot(g["both_PC1"]) } - if (run) { lc005_PC1 <- local_geary(w, g["PC1"], significance_cutoff=0.005, permutations=99999) @@ -401,7 +373,6 @@

Examples

colorNA="gray95") + tm_borders() # Fig. 7 else plot(g["lc005_PC1"]) } - if (run) { g$lc005_PC1_spdep <- attr(lc_PC1_spdep, "cluster") is.na(g$lc005_PC1_spdep) <- attr(lc_PC1_spdep, "pseudo-p")[,6] > 0.005 @@ -410,7 +381,6 @@

Examples

colorNA="gray95") + tm_borders() # rep. Fig. 7 else plot(g["lc005_PC1_spdep"]) } - if (run) { lc001_PC1 <- local_geary(w, g["PC1"], significance_cutoff=0.001, permutations=99999) @@ -430,7 +400,6 @@

Examples

else plot(g["lc001_PC1_spdep"]) } } - if (run) { lc_PC2 <- local_geary(w, g["PC2"], significance_cutoff=0.01, permutations=99999) @@ -442,7 +411,6 @@

Examples

colorNA="gray95") + tm_borders() # Fig. 9 else plot(g["lc_PC2"]) } - if (run) { lmc_PC <- local_multigeary(w, g[c("PC1","PC2")], significance_cutoff=0.00247, permutations=99999) @@ -452,25 +420,19 @@

Examples

g$lmc_PC <- droplevels(g$lmc_PC) table(interaction((p.adjust(lisa_pvalues(lmc_PC), "fdr") < 0.01), g$lmc_PC)) } -#> -#> FALSE.Positive TRUE.Positive -#> 0 21 if (run) { if (tmap_ok) tm_shape(g) + tm_fill("lmc_PC", textNA="Insignificant", colorNA="gray95") + tm_borders() # Fig. 10 else plot(g["lmc_PC"]) } - if (run) { set.seed(1) lmc_PC_spdep <- localC_perm(g[c("PC1","PC2")], lw, nsim=9999, alternative="two.sided") all.equal(lisa_values(lmc_PC), c(lmc_PC_spdep)) } -#> [1] TRUE if (run) { cor(attr(lmc_PC_spdep, "pseudo-p")[,6], lisa_pvalues(lmc_PC)) } -#> [1] 0.99052 if (run) { g$lmc_PC_spdep <- attr(lmc_PC_spdep, "cluster") is.na(g$lmc_PC_spdep) <- p.adjust(attr(lmc_PC_spdep, "pseudo-p")[,6], "fdr") > 0.01 @@ -479,7 +441,6 @@

Examples

colorNA="gray95") + tm_borders() # rep. Fig. 10 else plot(g["lmc_PC_spdep"]) } - if (run) { lmc_vars <- local_multigeary(w, st_drop_geometry(g)[, 1:6], significance_cutoff=0.00247, permutations=99999) @@ -490,30 +451,22 @@

Examples

table(interaction((p.adjust(lisa_pvalues(lmc_vars), "fdr") < 0.01), g$lmc_vars)) } -#> -#> FALSE.Positive TRUE.Positive -#> 0 21 if (run) { if (tmap_ok) tm_shape(g) + tm_fill("lmc_vars", textNA="Insignificant", colorNA="gray95") + tm_borders() # Fig. 11 else plot(g["lmc_vars"]) } - if (run) { set.seed(1) system.time(lmc_vars_spdep <- localC_perm(st_drop_geometry(g)[, 1:6], lw, nsim=9999, alternative="two.sided")) } -#> user system elapsed -#> 0.811 0.007 0.821 if (run) { all.equal(lisa_values(lmc_vars), c(lmc_vars_spdep)) } -#> [1] TRUE if (run) { cor(attr(lmc_vars_spdep, "pseudo-p")[,6], lisa_pvalues(lmc_vars)) } -#> [1] 0.9938141 if (run) { if (require(parallel, quietly=TRUE)) { ncpus <- max(2L, detectCores(logical=FALSE), na.rm = TRUE)-1L @@ -526,15 +479,12 @@

Examples

set.coresOption(cores) } } -#> [1] 1 if (run) { all.equal(lisa_values(lmc_vars), c(lmc_vars_spdep1)) } -#> [1] TRUE if (run) { cor(attr(lmc_vars_spdep1, "pseudo-p")[,6], lisa_pvalues(lmc_vars)) } -#> [1] 0.9938141 if (run) { g$lmc_vars_spdep <- attr(lmc_vars_spdep1, "cluster") is.na(g$lmc_vars_spdep) <- p.adjust(attr(lmc_vars_spdep1, "pseudo-p")[,6], "fdr") > 0.01 @@ -543,50 +493,31 @@

Examples

colorNA="gray95") + tm_borders() # rep. Fig. 11 else plot(g["lmc_vars_spdep"]) } - -# } -# \dontrun{ +} +if (FALSE) { library(reticulate) use_python("/usr/bin/python", required = TRUE) gp <- import("geopandas") -#> Error in py_module_import(module, convert = convert): ModuleNotFoundError: No module named 'geopandas' -#> Run `reticulate::py_last_error()` for details. ps <- import("libpysal") -#> Error in py_module_import(module, convert = convert): ModuleNotFoundError: No module named 'libpysal' -#> Run `reticulate::py_last_error()` for details. W <- listw2mat(listw) w <- ps$weights$full2W(W, rownames(W)) -#> Error in eval(expr, envir, enclos): object 'ps' not found w$transform <- "R" -#> Error in envRefSetField(x, what, refObjectClass(x), selfEnv, value): ‘transform’ is not a field in class “Weight” esda <- import("esda") -#> Error in py_module_import(module, convert = convert): ModuleNotFoundError: No module named 'esda' -#> Run `reticulate::py_last_error()` for details. lM <- esda$Moran_Local(x, w) -#> Error in eval(expr, envir, enclos): object 'esda' not found all.equal(unname(localmoran(x, listw, mlvar=FALSE)[,1]), c(lM$Is)) -#> Error in h(simpleError(msg, call)): error in evaluating the argument 'current' in selecting a method for function 'all.equal': object 'lM' not found # confirm x and w the same lC <- esda$Geary_Local(connectivity=w)$fit(scale(x)) -#> Error in eval(expr, envir, enclos): object 'esda' not found # np$std missing ddof=1 n <- length(x) D0 <- spdep:::geary.intern((x - mean(x)) / sqrt(var(x)*(n-1)/n), listw, n=n) # lC components probably wrongly ordered https://github.com/pysal/esda/issues/192 o <- match(round(D0, 6), round(lC$localG, 6)) -#> Error in eval(expr, envir, enclos): object 'lC' not found all.equal(c(lC$localG)[o], D0) -#> Error in h(simpleError(msg, call)): error in evaluating the argument 'target' in selecting a method for function 'all.equal': object 'lC' not found # simulation order not retained lC$p_sim[o] -#> Error in eval(expr, envir, enclos): object 'lC' not found attr(C, "pseudo-p")[,6] -#> [1] 0.408 0.374 0.144 0.056 0.010 0.284 0.032 0.264 0.186 0.004 0.150 0.224 -#> [13] 0.022 0.150 0.438 0.084 0.126 0.184 0.002 0.238 0.126 0.100 0.068 0.372 -#> [25] 0.124 0.234 0.230 0.016 0.318 0.176 0.272 0.164 0.164 0.206 0.402 0.250 -#> [37] 0.410 0.402 0.328 0.294 0.438 0.248 -# } +}
diff --git a/docs/reference/moran.mc.html b/docs/reference/moran.mc.html index 6d9844d8..17940581 100644 --- a/docs/reference/moran.mc.html +++ b/docs/reference/moran.mc.html @@ -184,6 +184,72 @@

Examples

summary(sim3$res[1:nsim]) #> Min. 1st Qu. Median Mean 3rd Qu. Max. #> -0.192986 -0.055468 -0.024154 -0.026327 0.004769 0.129996 +crime <- COL.OLD$CRIME +is.na(crime) <- sample(1:length(crime), 10) +try(moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, + na.action=na.fail)) +#> Error in na.fail.default(x) : missing values in object +moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + na.action=na.omit) +#> +#> Monte-Carlo simulation of Moran I +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "W") +#> omitted: 5, 7, 9, 15, 19, 33, 40, 45, 47, 48 +#> number of simulations + 1: 100 +#> +#> statistic = 0.42342, observed rank = 100, p-value = 0.01 +#> alternative hypothesis: greater +#> +moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + return_boot=TRUE, na.action=na.omit) +#> NA observations omitted: 5, 7, 9, 15, 19, 33, 40, 45, 47, 48 +#> +#> DATA PERMUTATION +#> +#> +#> Call: +#> boot(data = x, statistic = moran_boot, R = nsim, sim = "permutation", +#> listw = listw, n = n, S0 = S0, zero.policy = zero.policy, +#> parallel = parallel, ncpus = ncpus, cl = cl) +#> +#> +#> Bootstrap Statistics : +#> original bias std. error +#> t1* 0.4234221 -0.4429891 0.1293935 +moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + na.action=na.exclude) +#> +#> Monte-Carlo simulation of Moran I +#> +#> data: crime +#> weights: nb2listw(COL.nb, style = "W") +#> omitted: 5, 7, 9, 15, 19, 33, 40, 45, 47, 48 +#> number of simulations + 1: 100 +#> +#> statistic = 0.42342, observed rank = 100, p-value = 0.01 +#> alternative hypothesis: greater +#> +moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE, + return_boot=TRUE, na.action=na.exclude) +#> NA observations omitted: 5, 7, 9, 15, 19, 33, 40, 45, 47, 48 +#> +#> DATA PERMUTATION +#> +#> +#> Call: +#> boot(data = x, statistic = moran_boot, R = nsim, sim = "permutation", +#> listw = listw, n = n, S0 = S0, zero.policy = zero.policy, +#> parallel = parallel, ncpus = ncpus, cl = cl) +#> +#> +#> Bootstrap Statistics : +#> original bias std. error +#> t1* 0.4234221 -0.4384413 0.1243937 +try(moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, na.action=na.pass)) +#> Error in moran.mc(crime, nb2listw(COL.nb, style = "W"), nsim = 99, na.action = na.pass) : +#> na.pass not permitted diff --git a/docs/reference/moran.test.html b/docs/reference/moran.test.html index a00a8b64..56cd011f 100644 --- a/docs/reference/moran.test.html +++ b/docs/reference/moran.test.html @@ -344,33 +344,37 @@

Examples

#> <simpleError in na.fail.default(x): missing values in object> moran.test(crime, nb2listw(COL.nb, style="W"), zero.policy=TRUE, na.action=na.omit) +#> Warning: subsetting caused increase in subgraph count #> #> Moran I test under randomisation #> #> data: crime #> weights: nb2listw(COL.nb, style = "W") -#> omitted: 5, 7, 9, 15, 19, 33, 40, 45, 47, 48 +#> omitted: 7, 10, 12, 13, 14, 18, 26, 41, 42, 47 +#> n reduced by no-neighbour observations #> -#> Moran I statistic standard deviate = 3.8759, p-value = 5.311e-05 +#> Moran I statistic standard deviate = 3.9826, p-value = 3.408e-05 #> alternative hypothesis: greater #> sample estimates: #> Moran I statistic Expectation Variance -#> 0.42342213 -0.02631579 0.01346387 +#> 0.43709247 -0.02702703 0.01358066 #> moran.test(crime, nb2listw(COL.nb, style="W"), zero.policy=TRUE, na.action=na.exclude) +#> Warning: subsetting caused increase in subgraph count #> #> Moran I test under randomisation #> #> data: crime #> weights: nb2listw(COL.nb, style = "W") -#> omitted: 5, 7, 9, 15, 19, 33, 40, 45, 47, 48 +#> omitted: 7, 10, 12, 13, 14, 18, 26, 41, 42, 47 +#> n reduced by no-neighbour observations #> -#> Moran I statistic standard deviate = 3.8759, p-value = 5.311e-05 +#> Moran I statistic standard deviate = 3.9826, p-value = 3.408e-05 #> alternative hypothesis: greater #> sample estimates: #> Moran I statistic Expectation Variance -#> 0.42342213 -0.02631579 0.01346387 +#> 0.43709247 -0.02702703 0.01358066 #> moran.test(crime, nb2listw(COL.nb, style="W"), na.action=na.pass) #> Warning: NAs in lagged values @@ -380,11 +384,11 @@

Examples

#> data: crime #> weights: nb2listw(COL.nb, style = "W") #> -#> Moran I statistic standard deviate = 1.3275, p-value = 0.09216 +#> Moran I statistic standard deviate = 2.4925, p-value = 0.006342 #> alternative hypothesis: greater #> sample estimates: #> Moran I statistic Expectation Variance -#> 0.103248466 -0.020833333 0.008736122 +#> 0.212782897 -0.020833333 0.008784908 #> columbus <- st_read(system.file("shapes/columbus.shp", package="spData")[1], quiet=TRUE) col_geoms <- st_geometry(columbus) @@ -421,8 +425,8 @@

Examples

#> Moran I test under randomisation #> #> data: COL.OLD$CRIME -#> weights: lw n reduced by no-neighbour observations -#> +#> weights: lw +#> n reduced by no-neighbour observations #> #> Moran I statistic standard deviate = 2.7707, p-value = 0.002797 #> alternative hypothesis: greater diff --git a/docs/reference/mstree.html b/docs/reference/mstree.html index d863af05..a9322aa1 100644 --- a/docs/reference/mstree.html +++ b/docs/reference/mstree.html @@ -142,7 +142,7 @@

Examples

### find a minimum spanning tree system.time(mst.bh <- mstree(nb.w,5)) #> user system elapsed -#> 0.003 0.000 0.003 +#> 0.002 0.000 0.002 dim(mst.bh) #> [1] 97 3 head(mst.bh) diff --git a/docs/reference/nb2blocknb.html b/docs/reference/nb2blocknb.html index a6330a80..0e108571 100644 --- a/docs/reference/nb2blocknb.html +++ b/docs/reference/nb2blocknb.html @@ -127,96 +127,31 @@

See also

Examples

-
# \dontrun{
+    
if (FALSE) {
 data(boston, package="spData")
 summary(as.vector(table(boston.c$TOWN)))
-#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-#>     1.0     2.0     4.0     5.5     7.0    30.0 
 townaggr <- aggregate(boston.utm, list(town=boston.c$TOWN), mean)
 block.rel <- graph2nb(relativeneigh(as.matrix(townaggr[,2:3])),
  as.character(townaggr[,1]), sym=TRUE)
 block.rel
-#> Neighbour list object:
-#> Number of regions: 92 
-#> Number of nonzero links: 240 
-#> Percentage nonzero weights: 2.835539 
-#> Average number of links: 2.608696 
 print(is.symmetric.nb(block.rel))
-#> [1] TRUE
 plot(block.rel, as.matrix(townaggr[,2:3]))
 points(boston.utm, pch=18, col="lightgreen")
-
 block.nb <- nb2blocknb(block.rel, as.character(boston.c$TOWN))
 block.nb
-#> Neighbour list object:
-#> Number of regions: 506 
-#> Number of nonzero links: 15234 
-#> Percentage nonzero weights: 5.949945 
-#> Average number of links: 30.10672 
 print(is.symmetric.nb(block.nb))
-#> [1] TRUE
 plot(block.nb, boston.utm)
 points(boston.utm, pch=18, col="lightgreen")
-
 n.comp.nb(block.nb)$nc
-#> [1] 1
 moran.test(boston.c$CMEDV, nb2listw(boston.soi))
-#> 
-#> 	Moran I test under randomisation
-#> 
-#> data:  boston.c$CMEDV  
-#> weights: nb2listw(boston.soi)    
-#> 
-#> Moran I statistic standard deviate = 21.786, p-value < 2.2e-16
-#> alternative hypothesis: greater
-#> sample estimates:
-#> Moran I statistic       Expectation          Variance 
-#>       0.690285059      -0.001980198       0.001009685 
-#> 
 moran.test(boston.c$CMEDV, nb2listw(block.nb))
-#> 
-#> 	Moran I test under randomisation
-#> 
-#> data:  boston.c$CMEDV  
-#> weights: nb2listw(block.nb)    
-#> 
-#> Moran I statistic standard deviate = 22.455, p-value < 2.2e-16
-#> alternative hypothesis: greater
-#> sample estimates:
-#> Moran I statistic       Expectation          Variance 
-#>      0.3122905961     -0.0019801980      0.0001958827 
-#> 
 block.nb <- nb2blocknb(NULL, as.character(boston.c$TOWN))
 block.nb
-#> Neighbour list object:
-#> Number of regions: 506 
-#> Number of nonzero links: 4868 
-#> Percentage nonzero weights: 1.901295 
-#> Average number of links: 9.620553 
-#> 17 regions with no links:
-#> 1 55 56 57 58 65 196 257 284 285 286 287 342 343 348 349 354
-#> 92 disjoint connected subgraphs
 print(is.symmetric.nb(block.nb))
-#> [1] TRUE
 plot(block.nb, boston.utm)
-
 n.comp.nb(block.nb)$nc
-#> [1] 92
 moran.test(boston.c$CMEDV, nb2listw(block.nb, zero.policy=TRUE), zero.policy=TRUE)
-#> 
-#> 	Moran I test under randomisation
-#> 
-#> data:  boston.c$CMEDV  
-#> weights: nb2listw(block.nb, zero.policy = TRUE)  n reduced by no-neighbour observations
-#>   
-#> 
-#> Moran I statistic standard deviate = 21.145, p-value < 2.2e-16
-#> alternative hypothesis: greater
-#> sample estimates:
-#> Moran I statistic       Expectation          Variance 
-#>      0.6188830566     -0.0020491803      0.0008623116 
-#> 
-# }
+}
 
diff --git a/docs/reference/nb2lines.html b/docs/reference/nb2lines.html index 2f7d0da7..2ef38698 100644 --- a/docs/reference/nb2lines.html +++ b/docs/reference/nb2lines.html @@ -158,12 +158,12 @@

Examples

tf <- paste0(tempfile(), ".gpkg") st_write(res, dsn=tf, driver="GPKG") #> writing: substituting ENGCRS["Undefined Cartesian SRS with unknown unit"] for missing CRS -#> Writing layer `file4f69d37c7043c' to data source -#> `/tmp/RtmpKdrxsr/file4f69d37c7043c.gpkg' using driver `GPKG' +#> Writing layer `file881e628ba198' to data source +#> `/tmp/RtmpTuIGvZ/file881e628ba198.gpkg' using driver `GPKG' #> Writing 230 features with 5 fields and geometry type Line String. inMap <- st_read(tf) -#> Reading layer `file4f69d37c7043c' from data source -#> `/tmp/RtmpKdrxsr/file4f69d37c7043c.gpkg' using driver `GPKG' +#> Reading layer `file881e628ba198' from data source +#> `/tmp/RtmpTuIGvZ/file881e628ba198.gpkg' using driver `GPKG' #> Simple feature collection with 230 features and 5 fields #> Geometry type: LINESTRING #> Dimension: XY diff --git a/docs/reference/nb2listwdist.html b/docs/reference/nb2listwdist.html index 15877f5c..5f28c581 100644 --- a/docs/reference/nb2listwdist.html +++ b/docs/reference/nb2listwdist.html @@ -162,8 +162,8 @@

Examples

#> Moran I test under randomisation #> #> data: world$lifeExp -#> weights: world_weights n reduced by no-neighbour observations -#> +#> weights: world_weights +#> n reduced by no-neighbour observations #> #> Moran I statistic standard deviate = 2.7769, p-value = 0.002744 #> alternative hypothesis: greater @@ -171,43 +171,15 @@

Examples

#> Moran I statistic Expectation Variance #> 0.473883371 -0.007042254 0.029994057 #> -# \dontrun{ +if (FALSE) { # Moran's I (life expectancy) with IDW with alpha = 2, no coding scheme world_weights <- nb2listwdist(nb_world, pts, type = "idw", alpha = 2, zero.policy = TRUE) moran.test(world$lifeExp, world_weights, zero.policy = TRUE, na.action = na.pass) -#> Warning: NAs in lagged values -#> -#> Moran I test under randomisation -#> -#> data: world$lifeExp -#> weights: world_weights n reduced by no-neighbour observations -#> -#> -#> Moran I statistic standard deviate = 2.7769, p-value = 0.002744 -#> alternative hypothesis: greater -#> sample estimates: -#> Moran I statistic Expectation Variance -#> 0.473883371 -0.007042254 0.029994057 -#> # Moran's I (life expectancy), DPD, alpha = 2, dmax = 1000 km, no coding scheme world_weights <- nb2listwdist(nb_world, pts, type = "dpd", dmax = 1000000, alpha = 2, zero.policy = TRUE) moran.test(world$lifeExp, world_weights, zero.policy = TRUE, na.action = na.pass) -#> Warning: NAs in lagged values -#> -#> Moran I test under randomisation -#> -#> data: world$lifeExp -#> weights: world_weights n reduced by no-neighbour observations -#> -#> -#> Moran I statistic standard deviate = 8.8557, p-value < 2.2e-16 -#> alternative hypothesis: greater -#> sample estimates: -#> Moran I statistic Expectation Variance -#> 0.601498970 -0.007042254 0.004722063 -#> # Boston examples data(boston, package="spData") boston_coords <- data.frame(x = boston.utm[,1], y = boston.utm[,2]) @@ -217,37 +189,11 @@

Examples

boston_weights <- nb2listwdist(nb_boston, boston.geoms, type = "exp", alpha = 2, style="raw", zero.policy = TRUE) moran.test(boston.c$CRIM, boston_weights, zero.policy = TRUE, na.action = na.pass) -#> -#> Moran I test under randomisation -#> -#> data: boston.c$CRIM -#> weights: boston_weights n reduced by no-neighbour observations -#> -#> -#> Moran I statistic standard deviate = 51.34, p-value < 2.2e-16 -#> alternative hypothesis: greater -#> sample estimates: -#> Moran I statistic Expectation Variance -#> 0.8845114518 -0.0019960080 0.0002981586 -#> # Moran's I (crime) with idw weights with alpha = 2, coding scheme = W boston_weights <- nb2listwdist(nb_boston, boston.geoms, type = "idw", alpha = 2, style="W", zero.policy = TRUE) moran.test(boston.c$CRIM, boston_weights, zero.policy = TRUE, na.action = na.pass) -#> -#> Moran I test under randomisation -#> -#> data: boston.c$CRIM -#> weights: boston_weights n reduced by no-neighbour observations -#> -#> -#> Moran I statistic standard deviate = 18.976, p-value < 2.2e-16 -#> alternative hypothesis: greater -#> sample estimates: -#> Moran I statistic Expectation Variance -#> 0.4392852330 -0.0019960080 0.0005408065 -#> -# } +}
diff --git a/docs/reference/nblag.html b/docs/reference/nblag.html index 78115ec4..3e6e19d6 100644 --- a/docs/reference/nblag.html +++ b/docs/reference/nblag.html @@ -173,16 +173,18 @@

Examples

if (require(igraph, quietly=TRUE) && require(spatialreg, quietly=TRUE)) run <- TRUE if (run) { W <- as(nb2listw(col.gal.nb), "CsparseMatrix") -G <- graph.adjacency(W, mode="directed", weight="W") +G <- graph.adjacency(W, mode="directed", weight="W") D <- diameter(G) nbs <- nblag(col.gal.nb, maxlag=D) n <- length(col.gal.nb) lmat <- lapply(nbs, nb2mat, style="B", zero.policy=TRUE) mat <- matrix(0, n, n) for (i in seq(along=lmat)) mat = mat + i*lmat[[i]] -G2 <- shortest.paths(G) +G2 <- shortest.paths(G) print(all.equal(G2, mat, check.attributes=FALSE)) } +#> Warning: `shortest.paths()` was deprecated in igraph 2.0.0. +#> Please use `distances()` instead. #> [1] TRUE diff --git a/docs/reference/poly2nb.html b/docs/reference/poly2nb.html index 475da2d4..efa59d19 100644 --- a/docs/reference/poly2nb.html +++ b/docs/reference/poly2nb.html @@ -174,7 +174,7 @@

Examples

nc.sids <- st_read(system.file("shapes/sids.shp", package="spData")[1], quiet=TRUE) system.time(xxnb <- poly2nb(nc.sids)) #> user system elapsed -#> 0.018 0.000 0.018 +#> 0.017 0.000 0.018 system.time(xxnb <- poly2nb(as(nc.sids, "Spatial"))) #> user system elapsed #> 0.03 0.00 0.03 diff --git a/docs/reference/skater.html b/docs/reference/skater.html index 1c977fd3..2b806a99 100644 --- a/docs/reference/skater.html +++ b/docs/reference/skater.html @@ -292,22 +292,18 @@

Examples

table(res5d$groups) #> Error in eval(expr, envir, enclos): object 'res5d' not found -# \dontrun{ +if (FALSE) { data(boston, package="spData") bh.nb <- boston.soi dpad <- data.frame(scale(boston.c[,c(7:10)])) ### calculating costs system.time(lcosts <- nbcosts(bh.nb, dpad)) -#> user system elapsed -#> 0.038 0.000 0.038 ### making listw nb.w <- nb2listw(bh.nb, lcosts, style="B") ### find a minimum spanning tree mst.bh <- mstree(nb.w,5) ### three groups with no restriction system.time(res1 <- skater(mst.bh[,1:2], dpad, 2)) -#> Error in if (w$num_obs < 1) { stop("The weights is not valid.")}: argument is of length zero -#> Timing stopped at: 0 0 0 library(parallel) nc <- max(2L, detectCores(logical=FALSE), na.rm = TRUE)-1L # set nc to 1L here @@ -321,26 +317,20 @@

Examples

} ### calculating costs system.time(plcosts <- nbcosts(bh.nb, dpad)) -#> user system elapsed -#> 0.037 0.000 0.037 all.equal(lcosts, plcosts, check.attributes=FALSE) -#> [1] TRUE ### making listw pnb.w <- nb2listw(bh.nb, plcosts, style="B") ### find a minimum spanning tree pmst.bh <- mstree(pnb.w,5) ### three groups with no restriction system.time(pres1 <- skater(pmst.bh[,1:2], dpad, 2)) -#> Error in if (w$num_obs < 1) { stop("The weights is not valid.")}: argument is of length zero -#> Timing stopped at: 0 0 0 if(!get.mcOption()) { set.ClusterOption(NULL) stopCluster(cl) } all.equal(res1, pres1, check.attributes=FALSE) -#> Error in h(simpleError(msg, call)): error in evaluating the argument 'target' in selecting a method for function 'all.equal': object 'res1' not found invisible(set.coresOption(coresOpt)) -# } +} diff --git a/docs/sitemap.xml b/docs/sitemap.xml index 01b1c18d..8547d8c7 100644 --- a/docs/sitemap.xml +++ b/docs/sitemap.xml @@ -48,6 +48,9 @@ /reference/LOSH.mc.html + + /reference/SD.RStests.html + /reference/SDM.RStests.html @@ -153,6 +156,9 @@ /reference/lm.LMtests.html + + /reference/lm.RStests.html + /reference/lm.morantest.exact.html