-
Notifications
You must be signed in to change notification settings - Fork 26
/
b+tree.ts
1865 lines (1716 loc) · 79.8 KB
/
b+tree.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// B+ tree by David Piepgrass. License: MIT
import { ISortedMap, ISortedMapF, ISortedSet } from './interfaces';
export {
ISetSource, ISetSink, ISet, ISetF, ISortedSetSource, ISortedSet, ISortedSetF,
IMapSource, IMapSink, IMap, IMapF, ISortedMapSource, ISortedMap, ISortedMapF
} from './interfaces';
export type EditRangeResult<V,R=number> = {value?:V, break?:R, delete?:boolean};
type index = number;
// Informative microbenchmarks & stuff:
// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)
// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)
// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)
// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)
// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)
// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)
// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)
// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)
// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)
// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)
// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)
// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.
// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:
// - Avoid holes in arrays. Avoid `new Array(N)`, it will be "holey" permanently.
// - Don't read outside bounds of an array (it scans prototype chain).
// - Small integer arrays are stored differently from doubles
// - Adding non-numbers to an array deoptimizes it permanently into a general array
// - Objects can be used like arrays (e.g. have length property) but are slower
// - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements
/**
* Types that BTree supports by default
*/
export type DefaultComparable = number | string | Date | boolean | null | undefined | (number | string)[] |
{ valueOf: () => number | string | Date | boolean | null | undefined | (number | string)[] };
/**
* Compares DefaultComparables to form a strict partial ordering.
*
* Handles +/-0 and NaN like Map: NaN is equal to NaN, and -0 is equal to +0.
*
* Arrays are compared using '<' and '>', which may cause unexpected equality:
* for example [1] will be considered equal to ['1'].
*
* Two objects with equal valueOf compare the same, but compare unequal to
* primitives that have the same value.
*/
export function defaultComparator(a: DefaultComparable, b: DefaultComparable): number {
// Special case finite numbers first for performance.
// Note that the trick of using 'a - b' and checking for NaN to detect non-numbers
// does not work if the strings are numeric (ex: "5"). This would leading most
// comparison functions using that approach to fail to have transitivity.
if (Number.isFinite(a as any) && Number.isFinite(b as any)) {
return a as number - (b as number);
}
// The default < and > operators are not totally ordered. To allow types to be mixed
// in a single collection, compare types and order values of different types by type.
let ta = typeof a;
let tb = typeof b;
if (ta !== tb) {
return ta < tb ? -1 : 1;
}
if (ta === 'object') {
// standardized JavaScript bug: null is not an object, but typeof says it is
if (a === null)
return b === null ? 0 : -1;
else if (b === null)
return 1;
a = a!.valueOf() as DefaultComparable;
b = b!.valueOf() as DefaultComparable;
ta = typeof a;
tb = typeof b;
// Deal with the two valueOf()s producing different types
if (ta !== tb) {
return ta < tb ? -1 : 1;
}
}
// a and b are now the same type, and will be a number, string or array
// (which we assume holds numbers or strings), or something unsupported.
if (a! < b!) return -1;
if (a! > b!) return 1;
if (a === b) return 0;
// Order NaN less than other numbers
if (Number.isNaN(a as any))
return Number.isNaN(b as any) ? 0 : -1;
else if (Number.isNaN(b as any))
return 1;
// This could be two objects (e.g. [7] and ['7']) that aren't ordered
return Array.isArray(a) ? 0 : Number.NaN;
};
/**
* Compares items using the < and > operators. This function is probably slightly
* faster than the defaultComparator for Dates and strings, but has not been benchmarked.
* Unlike defaultComparator, this comparator doesn't support mixed types correctly,
* i.e. use it with `BTree<string>` or `BTree<number>` but not `BTree<string|number>`.
*
* NaN is not supported.
*
* Note: null is treated like 0 when compared with numbers or Date, but in general
* null is not ordered with respect to strings (neither greater nor less), and
* undefined is not ordered with other types.
*/
export function simpleComparator(a: string, b:string): number;
export function simpleComparator(a: number|null, b:number|null): number;
export function simpleComparator(a: Date|null, b:Date|null): number;
export function simpleComparator(a: (number|string)[], b:(number|string)[]): number;
export function simpleComparator(a: any, b: any): number {
return a > b ? 1 : a < b ? -1 : 0;
};
/**
* A reasonably fast collection of key-value pairs with a powerful API.
* Largely compatible with the standard Map. BTree is a B+ tree data structure,
* so the collection is sorted by key.
*
* B+ trees tend to use memory more efficiently than hashtables such as the
* standard Map, especially when the collection contains a large number of
* items. However, maintaining the sort order makes them modestly slower:
* O(log size) rather than O(1). This B+ tree implementation supports O(1)
* fast cloning. It also supports freeze(), which can be used to ensure that
* a BTree is not changed accidentally.
*
* Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of
* c(key,value), in contrast to other methods such as set() and entries()
* which put the key first. I can only assume that the order was reversed on
* the theory that users would usually want to examine values and ignore keys.
* BTree's forEach() therefore works the same way, but a second method
* `.forEachPair((key,value)=>{...})` is provided which sends you the key
* first and the value second; this method is slightly faster because it is
* the "native" for-each method for this class.
*
* Out of the box, BTree supports keys that are numbers, strings, arrays of
* numbers/strings, Date, and objects that have a valueOf() method returning a
* number or string. Other data types, such as arrays of Date or custom
* objects, require a custom comparator, which you must pass as the second
* argument to the constructor (the first argument is an optional list of
* initial items). Symbols cannot be used as keys because they are unordered
* (one Symbol is never "greater" or "less" than another).
*
* @example
* Given a {name: string, age: number} object, you can create a tree sorted by
* name and then by age like this:
*
* var tree = new BTree(undefined, (a, b) => {
* if (a.name > b.name)
* return 1; // Return a number >0 when a > b
* else if (a.name < b.name)
* return -1; // Return a number <0 when a < b
* else // names are equal (or incomparable)
* return a.age - b.age; // Return >0 when a.age > b.age
* });
*
* tree.set({name:"Bill", age:17}, "happy");
* tree.set({name:"Fran", age:40}, "busy & stressed");
* tree.set({name:"Bill", age:55}, "recently laid off");
* tree.forEachPair((k, v) => {
* console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);
* });
*
* @description
* The "range" methods (`forEach, forRange, editRange`) will return the number
* of elements that were scanned. In addition, the callback can return {break:R}
* to stop early and return R from the outer function.
*
* - TODO: Test performance of preallocating values array at max size
* - TODO: Add fast initialization when a sorted array is provided to constructor
*
* For more documentation see https://github.com/qwertie/btree-typescript
*
* Are you a C# developer? You might like the similar data structures I made for C#:
* BDictionary, BList, etc. See http://core.loyc.net/collections/
*
* @author David Piepgrass
*/
export default class BTree<K=any, V=any> implements ISortedMapF<K,V>, ISortedMap<K,V>
{
private _root: BNode<K, V> = EmptyLeaf as BNode<K,V>;
_size: number = 0;
_maxNodeSize: number;
/**
* provides a total order over keys (and a strict partial order over the type K)
* @returns a negative value if a < b, 0 if a === b and a positive value if a > b
*/
_compare: (a:K, b:K) => number;
/**
* Initializes an empty B+ tree.
* @param compare Custom function to compare pairs of elements in the tree.
* If not specified, defaultComparator will be used which is valid as long as K extends DefaultComparable.
* @param entries A set of key-value pairs to initialize the tree
* @param maxNodeSize Branching factor (maximum items or children per node)
* Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.
*/
public constructor(entries?: [K,V][], compare?: (a: K, b: K) => number, maxNodeSize?: number) {
this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32;
this._compare = compare || defaultComparator as any as (a: K, b: K) => number;
if (entries)
this.setPairs(entries);
}
/////////////////////////////////////////////////////////////////////////////
// ES6 Map<K,V> methods /////////////////////////////////////////////////////
/** Gets the number of key-value pairs in the tree. */
get size() { return this._size; }
/** Gets the number of key-value pairs in the tree. */
get length() { return this._size; }
/** Returns true iff the tree contains no key-value pairs. */
get isEmpty() { return this._size === 0; }
/** Releases the tree so that its size is 0. */
clear() {
this._root = EmptyLeaf as BNode<K,V>;
this._size = 0;
}
forEach(callback: (v:V, k:K, tree:BTree<K,V>) => void, thisArg?: any): number;
/** Runs a function for each key-value pair, in order from smallest to
* largest key. For compatibility with ES6 Map, the argument order to
* the callback is backwards: value first, then key. Call forEachPair
* instead to receive the key as the first argument.
* @param thisArg If provided, this parameter is assigned as the `this`
* value for each callback.
* @returns the number of values that were sent to the callback,
* or the R value if the callback returned {break:R}. */
forEach<R=number>(callback: (v:V, k:K, tree:BTree<K,V>) => {break?:R}|void, thisArg?: any): R|number {
if (thisArg !== undefined)
callback = callback.bind(thisArg);
return this.forEachPair((k, v) => callback(v, k, this));
}
/** Runs a function for each key-value pair, in order from smallest to
* largest key. The callback can return {break:R} (where R is any value
* except undefined) to stop immediately and return R from forEachPair.
* @param onFound A function that is called for each key-value pair. This
* function can return {break:R} to stop early with result R.
* The reason that you must return {break:R} instead of simply R
* itself is for consistency with editRange(), which allows
* multiple actions, not just breaking.
* @param initialCounter This is the value of the third argument of
* `onFound` the first time it is called. The counter increases
* by one each time `onFound` is called. Default value: 0
* @returns the number of pairs sent to the callback (plus initialCounter,
* if you provided one). If the callback returned {break:R} then
* the R value is returned instead. */
forEachPair<R=number>(callback: (k:K, v:V, counter:number) => {break?:R}|void, initialCounter?: number): R|number {
var low = this.minKey(), high = this.maxKey();
return this.forRange(low!, high!, true, callback, initialCounter);
}
/**
* Finds a pair in the tree and returns the associated value.
* @param defaultValue a value to return if the key was not found.
* @returns the value, or defaultValue if the key was not found.
* @description Computational complexity: O(log size)
*/
get(key: K, defaultValue?: V): V | undefined {
return this._root.get(key, defaultValue, this);
}
/**
* Adds or overwrites a key-value pair in the B+ tree.
* @param key the key is used to determine the sort order of
* data in the tree.
* @param value data to associate with the key (optional)
* @param overwrite Whether to overwrite an existing key-value pair
* (default: true). If this is false and there is an existing
* key-value pair then this method has no effect.
* @returns true if a new key-value pair was added.
* @description Computational complexity: O(log size)
* Note: when overwriting a previous entry, the key is updated
* as well as the value. This has no effect unless the new key
* has data that does not affect its sort order.
*/
set(key: K, value: V, overwrite?: boolean): boolean {
if (this._root.isShared)
this._root = this._root.clone();
var result = this._root.set(key, value, overwrite, this);
if (result === true || result === false)
return result;
// Root node has split, so create a new root node.
this._root = new BNodeInternal<K,V>([this._root, result]);
return true;
}
/**
* Returns true if the key exists in the B+ tree, false if not.
* Use get() for best performance; use has() if you need to
* distinguish between "undefined value" and "key not present".
* @param key Key to detect
* @description Computational complexity: O(log size)
*/
has(key: K): boolean {
return this.forRange(key, key, true, undefined) !== 0;
}
/**
* Removes a single key-value pair from the B+ tree.
* @param key Key to find
* @returns true if a pair was found and removed, false otherwise.
* @description Computational complexity: O(log size)
*/
delete(key: K): boolean {
return this.editRange(key, key, true, DeleteRange) !== 0;
}
/////////////////////////////////////////////////////////////////////////////
// Clone-mutators ///////////////////////////////////////////////////////////
/** Returns a copy of the tree with the specified key set (the value is undefined). */
with(key: K): BTree<K,V|undefined>;
/** Returns a copy of the tree with the specified key-value pair set. */
with<V2>(key: K, value: V2, overwrite?: boolean): BTree<K,V|V2>;
with<V2>(key: K, value?: V2, overwrite?: boolean): BTree<K,V|V2|undefined> {
let nu = this.clone() as BTree<K,V|V2|undefined>;
return nu.set(key, value, overwrite) || overwrite ? nu : this;
}
/** Returns a copy of the tree with the specified key-value pairs set. */
withPairs<V2>(pairs: [K,V|V2][], overwrite: boolean): BTree<K,V|V2> {
let nu = this.clone() as BTree<K,V|V2>;
return nu.setPairs(pairs, overwrite) !== 0 || overwrite ? nu : this;
}
/** Returns a copy of the tree with the specified keys present.
* @param keys The keys to add. If a key is already present in the tree,
* neither the existing key nor the existing value is modified.
* @param returnThisIfUnchanged if true, returns this if all keys already
* existed. Performance note: due to the architecture of this class, all
* node(s) leading to existing keys are cloned even if the collection is
* ultimately unchanged.
*/
withKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K,V|undefined> {
let nu = this.clone() as BTree<K,V|undefined>, changed = false;
for (var i = 0; i < keys.length; i++)
changed = nu.set(keys[i], undefined, false) || changed;
return returnThisIfUnchanged && !changed ? this : nu;
}
/** Returns a copy of the tree with the specified key removed.
* @param returnThisIfUnchanged if true, returns this if the key didn't exist.
* Performance note: due to the architecture of this class, node(s) leading
* to where the key would have been stored are cloned even when the key
* turns out not to exist and the collection is unchanged.
*/
without(key: K, returnThisIfUnchanged?: boolean): BTree<K,V> {
return this.withoutRange(key, key, true, returnThisIfUnchanged);
}
/** Returns a copy of the tree with the specified keys removed.
* @param returnThisIfUnchanged if true, returns this if none of the keys
* existed. Performance note: due to the architecture of this class,
* node(s) leading to where the key would have been stored are cloned
* even when the key turns out not to exist.
*/
withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K,V> {
let nu = this.clone();
return nu.deleteKeys(keys) || !returnThisIfUnchanged ? nu : this;
}
/** Returns a copy of the tree with the specified range of keys removed. */
withoutRange(low: K, high: K, includeHigh: boolean, returnThisIfUnchanged?: boolean): BTree<K,V> {
let nu = this.clone();
if (nu.deleteRange(low, high, includeHigh) === 0 && returnThisIfUnchanged)
return this;
return nu;
}
/** Returns a copy of the tree with pairs removed whenever the callback
* function returns false. `where()` is a synonym for this method. */
filter(callback: (k:K,v:V,counter:number) => boolean, returnThisIfUnchanged?: boolean): BTree<K,V> {
var nu = this.greedyClone();
var del: any;
nu.editAll((k,v,i) => {
if (!callback(k, v, i)) return del = Delete;
});
if (!del && returnThisIfUnchanged)
return this;
return nu;
}
/** Returns a copy of the tree with all values altered by a callback function. */
mapValues<R>(callback: (v:V,k:K,counter:number) => R): BTree<K,R> {
var tmp = {} as {value:R};
var nu = this.greedyClone();
nu.editAll((k,v,i) => {
return tmp.value = callback(v, k, i), tmp as any;
});
return nu as any as BTree<K,R>;
}
/** Performs a reduce operation like the `reduce` method of `Array`.
* It is used to combine all pairs into a single value, or perform
* conversions. `reduce` is best understood by example. For example,
* `tree.reduce((P, pair) => P * pair[0], 1)` multiplies all keys
* together. It means "start with P=1, and for each pair multiply
* it by the key in pair[0]". Another example would be converting
* the tree to a Map (in this example, note that M.set returns M):
*
* var M = tree.reduce((M, pair) => M.set(pair[0],pair[1]), new Map())
*
* **Note**: the same array is sent to the callback on every iteration.
*/
reduce<R>(callback: (previous:R,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R, initialValue: R): R;
reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R): R|undefined;
reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R, initialValue?: R): R|undefined {
let i = 0, p = initialValue;
var it = this.entries(this.minKey(), ReusedArray), next;
while (!(next = it.next()).done)
p = callback(p, next.value, i++, this);
return p;
}
/////////////////////////////////////////////////////////////////////////////
// Iterator methods /////////////////////////////////////////////////////////
/** Returns an iterator that provides items in order (ascending order if
* the collection's comparator uses ascending order, as is the default.)
* @param lowestKey First key to be iterated, or undefined to start at
* minKey(). If the specified key doesn't exist then iteration
* starts at the next higher key (according to the comparator).
* @param reusedArray Optional array used repeatedly to store key-value
* pairs, to avoid creating a new array on every iteration.
*/
entries(lowestKey?: K, reusedArray?: (K|V)[]): IterableIterator<[K,V]> {
var info = this.findPath(lowestKey);
if (info === undefined) return iterator<[K,V]>();
var {nodequeue, nodeindex, leaf} = info;
var state = reusedArray !== undefined ? 1 : 0;
var i = (lowestKey === undefined ? -1 : leaf.indexOf(lowestKey, 0, this._compare) - 1);
return iterator<[K,V]>(() => {
jump: for (;;) {
switch(state) {
case 0:
if (++i < leaf.keys.length)
return {done: false, value: [leaf.keys[i], leaf.values[i]]};
state = 2;
continue;
case 1:
if (++i < leaf.keys.length) {
reusedArray![0] = leaf.keys[i], reusedArray![1] = leaf.values[i];
return {done: false, value: reusedArray as [K,V]};
}
state = 2;
case 2:
// Advance to the next leaf node
for (var level = -1;;) {
if (++level >= nodequeue.length) {
state = 3; continue jump;
}
if (++nodeindex[level] < nodequeue[level].length)
break;
}
for (; level > 0; level--) {
nodequeue[level-1] = (nodequeue[level][nodeindex[level]] as BNodeInternal<K,V>).children;
nodeindex[level-1] = 0;
}
leaf = nodequeue[0][nodeindex[0]];
i = -1;
state = reusedArray !== undefined ? 1 : 0;
continue;
case 3:
return {done: true, value: undefined};
}
}
});
}
/** Returns an iterator that provides items in reversed order.
* @param highestKey Key at which to start iterating, or undefined to
* start at maxKey(). If the specified key doesn't exist then iteration
* starts at the next lower key (according to the comparator).
* @param reusedArray Optional array used repeatedly to store key-value
* pairs, to avoid creating a new array on every iteration.
* @param skipHighest Iff this flag is true and the highestKey exists in the
* collection, the pair matching highestKey is skipped, not iterated.
*/
entriesReversed(highestKey?: K, reusedArray?: (K|V)[], skipHighest?: boolean): IterableIterator<[K,V]> {
if (highestKey === undefined) {
highestKey = this.maxKey();
skipHighest = undefined;
if (highestKey === undefined)
return iterator<[K,V]>(); // collection is empty
}
var {nodequeue,nodeindex,leaf} = this.findPath(highestKey) || this.findPath(this.maxKey())!;
check(!nodequeue[0] || leaf === nodequeue[0][nodeindex[0]], "wat!");
var i = leaf.indexOf(highestKey, 0, this._compare);
if (!skipHighest && i < leaf.keys.length && this._compare(leaf.keys[i], highestKey) <= 0)
i++;
var state = reusedArray !== undefined ? 1 : 0;
return iterator<[K,V]>(() => {
jump: for (;;) {
switch(state) {
case 0:
if (--i >= 0)
return {done: false, value: [leaf.keys[i], leaf.values[i]]};
state = 2;
continue;
case 1:
if (--i >= 0) {
reusedArray![0] = leaf.keys[i], reusedArray![1] = leaf.values[i];
return {done: false, value: reusedArray as [K,V]};
}
state = 2;
case 2:
// Advance to the next leaf node
for (var level = -1;;) {
if (++level >= nodequeue.length) {
state = 3; continue jump;
}
if (--nodeindex[level] >= 0)
break;
}
for (; level > 0; level--) {
nodequeue[level-1] = (nodequeue[level][nodeindex[level]] as BNodeInternal<K,V>).children;
nodeindex[level-1] = nodequeue[level-1].length-1;
}
leaf = nodequeue[0][nodeindex[0]];
i = leaf.keys.length;
state = reusedArray !== undefined ? 1 : 0;
continue;
case 3:
return {done: true, value: undefined};
}
}
});
}
/* Used by entries() and entriesReversed() to prepare to start iterating.
* It develops a "node queue" for each non-leaf level of the tree.
* Levels are numbered "bottom-up" so that level 0 is a list of leaf
* nodes from a low-level non-leaf node. The queue at a given level L
* consists of nodequeue[L] which is the children of a BNodeInternal,
* and nodeindex[L], the current index within that child list, such
* such that nodequeue[L-1] === nodequeue[L][nodeindex[L]].children.
* (However inside this function the order is reversed.)
*/
private findPath(key?: K): { nodequeue: BNode<K,V>[][], nodeindex: number[], leaf: BNode<K,V> } | undefined
{
var nextnode = this._root;
var nodequeue: BNode<K,V>[][], nodeindex: number[];
if (nextnode.isLeaf) {
nodequeue = EmptyArray, nodeindex = EmptyArray; // avoid allocations
} else {
nodequeue = [], nodeindex = [];
for (var d = 0; !nextnode.isLeaf; d++) {
nodequeue[d] = (nextnode as BNodeInternal<K,V>).children;
nodeindex[d] = key === undefined ? 0 : nextnode.indexOf(key, 0, this._compare);
if (nodeindex[d] >= nodequeue[d].length)
return; // first key > maxKey()
nextnode = nodequeue[d][nodeindex[d]];
}
nodequeue.reverse();
nodeindex.reverse();
}
return {nodequeue, nodeindex, leaf:nextnode};
}
/**
* Computes the differences between `this` and `other`.
* For efficiency, the diff is returned via invocations of supplied handlers.
* The computation is optimized for the case in which the two trees have large amounts
* of shared data (obtained by calling the `clone` or `with` APIs) and will avoid
* any iteration of shared state.
* The handlers can cause computation to early exit by returning {break: R}.
* Neither of the collections should be changed during the comparison process (in your callbacks), as this method assumes they will not be mutated.
* @param other The tree to compute a diff against.
* @param onlyThis Callback invoked for all keys only present in `this`.
* @param onlyOther Callback invoked for all keys only present in `other`.
* @param different Callback invoked for all keys with differing values.
*/
diffAgainst<R>(
other: BTree<K, V>,
onlyThis?: (k: K, v: V) => { break?: R } | void,
onlyOther?: (k: K, v: V) => { break?: R } | void,
different?: (k: K, vThis: V, vOther: V) => { break?: R} | void
): R | undefined {
if (other._compare !== this._compare) {
throw new Error("Tree comparators are not the same.");
}
if (this.isEmpty || other.isEmpty) {
if (this.isEmpty && other.isEmpty)
return undefined;
// If one tree is empty, everything will be an onlyThis/onlyOther.
if (this.isEmpty)
return onlyOther === undefined ? undefined : BTree.stepToEnd(BTree.makeDiffCursor(other), onlyOther);
return onlyThis === undefined ? undefined : BTree.stepToEnd(BTree.makeDiffCursor(this), onlyThis);
}
// Cursor-based diff algorithm is as follows:
// - Until neither cursor has navigated to the end of the tree, do the following:
// - If the `this` cursor is "behind" the `other` cursor (strictly <, via compare), advance it.
// - Otherwise, advance the `other` cursor.
// - Any time a cursor is stepped, perform the following:
// - If either cursor points to a key/value pair:
// - If thisCursor === otherCursor and the values differ, it is a Different.
// - If thisCursor > otherCursor and otherCursor is at a key/value pair, it is an OnlyOther.
// - If thisCursor < otherCursor and thisCursor is at a key/value pair, it is an OnlyThis as long as the most recent
// cursor step was *not* otherCursor advancing from a tie. The extra condition avoids erroneous OnlyOther calls
// that would occur due to otherCursor being the "leader".
// - Otherwise, if both cursors point to nodes, compare them. If they are equal by reference (shared), skip
// both cursors to the next node in the walk.
// - Once one cursor has finished stepping, any remaining steps (if any) are taken and key/value pairs are logged
// as OnlyOther (if otherCursor is stepping) or OnlyThis (if thisCursor is stepping).
// This algorithm gives the critical guarantee that all locations (both nodes and key/value pairs) in both trees that
// are identical by value (and possibly by reference) will be visited *at the same time* by the cursors.
// This removes the possibility of emitting incorrect diffs, as well as allowing for skipping shared nodes.
const { _compare } = this;
const thisCursor = BTree.makeDiffCursor(this);
const otherCursor = BTree.makeDiffCursor(other);
// It doesn't matter how thisSteppedLast is initialized.
// Step order is only used when either cursor is at a leaf, and cursors always start at a node.
let thisSuccess = true, otherSuccess = true, prevCursorOrder = BTree.compare(thisCursor, otherCursor, _compare);
while (thisSuccess && otherSuccess) {
const cursorOrder = BTree.compare(thisCursor, otherCursor, _compare);
const { leaf: thisLeaf, internalSpine: thisInternalSpine, levelIndices: thisLevelIndices } = thisCursor;
const { leaf: otherLeaf, internalSpine: otherInternalSpine, levelIndices: otherLevelIndices } = otherCursor;
if (thisLeaf || otherLeaf) {
// If the cursors were at the same location last step, then there is no work to be done.
if (prevCursorOrder !== 0) {
if (cursorOrder === 0) {
if (thisLeaf && otherLeaf && different) {
// Equal keys, check for modifications
const valThis = thisLeaf.values[thisLevelIndices[thisLevelIndices.length - 1]];
const valOther = otherLeaf.values[otherLevelIndices[otherLevelIndices.length - 1]];
if (!Object.is(valThis, valOther)) {
const result = different(thisCursor.currentKey, valThis, valOther);
if (result && result.break)
return result.break;
}
}
} else if (cursorOrder > 0) {
// If this is the case, we know that either:
// 1. otherCursor stepped last from a starting position that trailed thisCursor, and is still behind, or
// 2. thisCursor stepped last and leapfrogged otherCursor
// Either of these cases is an "only other"
if (otherLeaf && onlyOther) {
const otherVal = otherLeaf.values[otherLevelIndices[otherLevelIndices.length - 1]];
const result = onlyOther(otherCursor.currentKey, otherVal);
if (result && result.break)
return result.break;
}
} else if (onlyThis) {
if (thisLeaf && prevCursorOrder !== 0) {
const valThis = thisLeaf.values[thisLevelIndices[thisLevelIndices.length - 1]];
const result = onlyThis(thisCursor.currentKey, valThis);
if (result && result.break)
return result.break;
}
}
}
} else if (!thisLeaf && !otherLeaf && cursorOrder === 0) {
const lastThis = thisInternalSpine.length - 1;
const lastOther = otherInternalSpine.length - 1;
const nodeThis = thisInternalSpine[lastThis][thisLevelIndices[lastThis]];
const nodeOther = otherInternalSpine[lastOther][otherLevelIndices[lastOther]];
if (nodeOther === nodeThis) {
prevCursorOrder = 0;
thisSuccess = BTree.step(thisCursor, true);
otherSuccess = BTree.step(otherCursor, true);
continue;
}
}
prevCursorOrder = cursorOrder;
if (cursorOrder < 0) {
thisSuccess = BTree.step(thisCursor);
} else {
otherSuccess = BTree.step(otherCursor);
}
}
if (thisSuccess && onlyThis)
return BTree.finishCursorWalk(thisCursor, otherCursor, _compare, onlyThis);
if (otherSuccess && onlyOther)
return BTree.finishCursorWalk(otherCursor, thisCursor, _compare, onlyOther);
}
///////////////////////////////////////////////////////////////////////////
// Helper methods for diffAgainst /////////////////////////////////////////
private static finishCursorWalk<K, V, R>(
cursor: DiffCursor<K, V>,
cursorFinished: DiffCursor<K, V>,
compareKeys: (a: K, b: K) => number,
callback: (k: K, v: V) => { break?: R } | void
): R | undefined {
const compared = BTree.compare(cursor, cursorFinished, compareKeys);
if (compared === 0) {
if (!BTree.step(cursor))
return undefined;
} else if (compared < 0) {
check(false, "cursor walk terminated early");
}
return BTree.stepToEnd(cursor, callback);
}
private static stepToEnd<K, V, R>(
cursor: DiffCursor<K, V>,
callback: (k: K, v: V) => { break?: R } | void
): R | undefined {
let canStep: boolean = true;
while (canStep) {
const { leaf, levelIndices, currentKey } = cursor;
if (leaf) {
const value = leaf.values[levelIndices[levelIndices.length - 1]];
const result = callback(currentKey, value);
if (result && result.break)
return result.break;
}
canStep = BTree.step(cursor);
}
return undefined;
}
private static makeDiffCursor<K, V>(tree: BTree<K, V>): DiffCursor<K, V> {
const { _root, height } = tree;
return { height: height, internalSpine: [[_root]], levelIndices: [0], leaf: undefined, currentKey: _root.maxKey() };
}
/**
* Advances the cursor to the next step in the walk of its tree.
* Cursors are walked backwards in sort order, as this allows them to leverage maxKey() in order to be compared in O(1).
* @param cursor The cursor to step
* @param stepToNode If true, the cursor will be advanced to the next node (skipping values)
* @returns true if the step was completed and false if the step would have caused the cursor to move beyond the end of the tree.
*/
private static step<K, V>(cursor: DiffCursor<K, V>, stepToNode?: boolean): boolean {
const { internalSpine, levelIndices, leaf } = cursor;
if (stepToNode === true || leaf) {
const levelsLength = levelIndices.length;
// Step to the next node only if:
// - We are explicitly directed to via stepToNode, or
// - There are no key/value pairs left to step to in this leaf
if (stepToNode === true || levelIndices[levelsLength - 1] === 0) {
const spineLength = internalSpine.length;
// Root is leaf
if (spineLength === 0)
return false;
// Walk back up the tree until we find a new subtree to descend into
const nodeLevelIndex = spineLength - 1;
let levelIndexWalkBack = nodeLevelIndex;
while (levelIndexWalkBack >= 0) {
if (levelIndices[levelIndexWalkBack] > 0) {
if (levelIndexWalkBack < levelsLength - 1) {
// Remove leaf state from cursor
cursor.leaf = undefined;
levelIndices.pop();
}
// If we walked upwards past any internal node, slice them out
if (levelIndexWalkBack < nodeLevelIndex)
cursor.internalSpine = internalSpine.slice(0, levelIndexWalkBack + 1);
// Move to new internal node
cursor.currentKey = internalSpine[levelIndexWalkBack][--levelIndices[levelIndexWalkBack]].maxKey();
return true;
}
levelIndexWalkBack--;
}
// Cursor is in the far left leaf of the tree, no more nodes to enumerate
return false;
} else {
// Move to new leaf value
const valueIndex = --levelIndices[levelsLength - 1];
cursor.currentKey = (leaf as unknown as BNode<K, V>).keys[valueIndex];
return true;
}
} else { // Cursor does not point to a value in a leaf, so move downwards
const nextLevel = internalSpine.length;
const currentLevel = nextLevel - 1;
const node = internalSpine[currentLevel][levelIndices[currentLevel]];
if (node.isLeaf) {
// Entering into a leaf. Set the cursor to point at the last key/value pair.
cursor.leaf = node;
const valueIndex = levelIndices[nextLevel] = node.values.length - 1;
cursor.currentKey = node.keys[valueIndex];
} else {
const children = (node as BNodeInternal<K,V>).children;
internalSpine[nextLevel] = children;
const childIndex = children.length - 1;
levelIndices[nextLevel] = childIndex;
cursor.currentKey = children[childIndex].maxKey();
}
return true;
}
}
/**
* Compares the two cursors. Returns a value indicating which cursor is ahead in a walk.
* Note that cursors are advanced in reverse sorting order.
*/
private static compare<K, V>(cursorA: DiffCursor<K, V>, cursorB: DiffCursor<K, V>, compareKeys: (a: K, b: K) => number): number {
const { height: heightA, currentKey: currentKeyA, levelIndices: levelIndicesA } = cursorA;
const { height: heightB, currentKey: currentKeyB, levelIndices: levelIndicesB } = cursorB;
// Reverse the comparison order, as cursors are advanced in reverse sorting order
const keyComparison = compareKeys(currentKeyB, currentKeyA);
if (keyComparison !== 0) {
return keyComparison;
}
// Normalize depth values relative to the shortest tree.
// This ensures that concurrent cursor walks of trees of differing heights can reliably land on shared nodes at the same time.
// To accomplish this, a cursor that is on an internal node at depth D1 with maxKey X is considered "behind" a cursor on an
// internal node at depth D2 with maxKey Y, when D1 < D2. Thus, always walking the cursor that is "behind" will allow the cursor
// at shallower depth (but equal maxKey) to "catch up" and land on shared nodes.
const heightMin = heightA < heightB ? heightA : heightB;
const depthANormalized = levelIndicesA.length - (heightA - heightMin);
const depthBNormalized = levelIndicesB.length - (heightB - heightMin);
return depthANormalized - depthBNormalized;
}
// End of helper methods for diffAgainst //////////////////////////////////
///////////////////////////////////////////////////////////////////////////
/** Returns a new iterator for iterating the keys of each pair in ascending order.
* @param firstKey: Minimum key to include in the output. */
keys(firstKey?: K): IterableIterator<K> {
var it = this.entries(firstKey, ReusedArray);
return iterator<K>(() => {
var n: IteratorResult<any> = it.next();
if (n.value) n.value = n.value[0];
return n;
});
}
/** Returns a new iterator for iterating the values of each pair in order by key.
* @param firstKey: Minimum key whose associated value is included in the output. */
values(firstKey?: K): IterableIterator<V> {
var it = this.entries(firstKey, ReusedArray);
return iterator<V>(() => {
var n: IteratorResult<any> = it.next();
if (n.value) n.value = n.value[1];
return n;
});
}
/////////////////////////////////////////////////////////////////////////////
// Additional methods ///////////////////////////////////////////////////////
/** Returns the maximum number of children/values before nodes will split. */
get maxNodeSize() {
return this._maxNodeSize;
}
/** Gets the lowest key in the tree. Complexity: O(log size) */
minKey(): K | undefined { return this._root.minKey(); }
/** Gets the highest key in the tree. Complexity: O(1) */
maxKey(): K | undefined { return this._root.maxKey(); }
/** Quickly clones the tree by marking the root node as shared.
* Both copies remain editable. When you modify either copy, any
* nodes that are shared (or potentially shared) between the two
* copies are cloned so that the changes do not affect other copies.
* This is known as copy-on-write behavior, or "lazy copying". */
clone(): BTree<K,V> {
this._root.isShared = true;
var result = new BTree<K,V>(undefined, this._compare, this._maxNodeSize);
result._root = this._root;
result._size = this._size;
return result;
}
/** Performs a greedy clone, immediately duplicating any nodes that are
* not currently marked as shared, in order to avoid marking any
* additional nodes as shared.
* @param force Clone all nodes, even shared ones.
*/
greedyClone(force?: boolean): BTree<K,V> {
var result = new BTree<K,V>(undefined, this._compare, this._maxNodeSize);
result._root = this._root.greedyClone(force);
result._size = this._size;
return result;
}
/** Gets an array filled with the contents of the tree, sorted by key */
toArray(maxLength: number = 0x7FFFFFFF): [K,V][] {
let min = this.minKey(), max = this.maxKey();
if (min !== undefined)
return this.getRange(min, max!, true, maxLength)
return [];
}
/** Gets an array of all keys, sorted */
keysArray() {
var results: K[] = [];
this._root.forRange(this.minKey()!, this.maxKey()!, true, false, this, 0,
(k,v) => { results.push(k); });
return results;
}
/** Gets an array of all values, sorted by key */
valuesArray() {
var results: V[] = [];
this._root.forRange(this.minKey()!, this.maxKey()!, true, false, this, 0,
(k,v) => { results.push(v); });
return results;
}
/** Gets a string representing the tree's data based on toArray(). */
toString() {
return this.toArray().toString();
}
/** Stores a key-value pair only if the key doesn't already exist in the tree.
* @returns true if a new key was added
*/
setIfNotPresent(key: K, value: V): boolean {
return this.set(key, value, false);
}
/** Returns the next pair whose key is larger than the specified key (or undefined if there is none).
* If key === undefined, this function returns the lowest pair.
* @param key The key to search for.
* @param reusedArray Optional array used repeatedly to store key-value pairs, to
* avoid creating a new array on every iteration.
*/
nextHigherPair(key: K|undefined, reusedArray?: [K,V]): [K,V]|undefined {
reusedArray = reusedArray || ([] as unknown as [K,V]);
if (key === undefined) {
return this._root.minPair(reusedArray);
}
return this._root.getPairOrNextHigher(key, this._compare, false, reusedArray);
}
/** Returns the next key larger than the specified key, or undefined if there is none.
* Also, nextHigherKey(undefined) returns the lowest key.
*/
nextHigherKey(key: K|undefined): K|undefined {
var p = this.nextHigherPair(key, ReusedArray as [K,V]);
return p && p[0];
}
/** Returns the next pair whose key is smaller than the specified key (or undefined if there is none).
* If key === undefined, this function returns the highest pair.
* @param key The key to search for.
* @param reusedArray Optional array used repeatedly to store key-value pairs, to
* avoid creating a new array each time you call this method.
*/
nextLowerPair(key: K|undefined, reusedArray?: [K,V]): [K,V]|undefined {
reusedArray = reusedArray || ([] as unknown as [K,V]);
if (key === undefined) {
return this._root.maxPair(reusedArray);
}
return this._root.getPairOrNextLower(key, this._compare, false, reusedArray);
}
/** Returns the next key smaller than the specified key, or undefined if there is none.
* Also, nextLowerKey(undefined) returns the highest key.
*/
nextLowerKey(key: K|undefined): K|undefined {
var p = this.nextLowerPair(key, ReusedArray as [K,V]);
return p && p[0];
}
/** Returns the key-value pair associated with the supplied key if it exists
* or the pair associated with the next lower pair otherwise. If there is no
* next lower pair, undefined is returned.
* @param key The key to search for.
* @param reusedArray Optional array used repeatedly to store key-value pairs, to
* avoid creating a new array each time you call this method.
* */
getPairOrNextLower(key: K, reusedArray?: [K,V]): [K,V]|undefined {
return this._root.getPairOrNextLower(key, this._compare, true, reusedArray || ([] as unknown as [K,V]));
}
/** Returns the key-value pair associated with the supplied key if it exists
* or the pair associated with the next lower pair otherwise. If there is no
* next lower pair, undefined is returned.
* @param key The key to search for.
* @param reusedArray Optional array used repeatedly to store key-value pairs, to
* avoid creating a new array each time you call this method.
* */
getPairOrNextHigher(key: K, reusedArray?: [K,V]): [K,V]|undefined {
return this._root.getPairOrNextHigher(key, this._compare, true, reusedArray || ([] as unknown as [K,V]));
}
/** Edits the value associated with a key in the tree, if it already exists.
* @returns true if the key existed, false if not.
*/
changeIfPresent(key: K, value: V): boolean {
return this.editRange(key, key, true, (k,v) => ({value})) !== 0;
}
/**
* Builds an array of pairs from the specified range of keys, sorted by key.
* Each returned pair is also an array: pair[0] is the key, pair[1] is the value.