-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathdemo.py
56 lines (49 loc) · 2.02 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# ---------------------------------------------------------------------
# Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# ---------------------------------------------------------------------
from qai_hub_models.models.litehrnet.app import LiteHRNetApp
from qai_hub_models.models.litehrnet.model import (
MODEL_ASSET_VERSION,
MODEL_ID,
LiteHRNet,
)
from qai_hub_models.utils.args import (
demo_model_from_cli_args,
get_model_cli_parser,
get_on_device_demo_parser,
model_from_cli_args,
validate_on_device_demo_args,
)
from qai_hub_models.utils.asset_loaders import CachedWebModelAsset, load_image
from qai_hub_models.utils.display import display_or_save_image
IA_HELP_MSG = "More inferencer architectures for litehrnet can be found at https://github.com/open-mmlab/mmpose/tree/main/configs/body_2d_keypoint/topdown_heatmap/coco"
IMAGE_LOCAL_PATH = "litehrnet_demo.png"
IMAGE_ADDRESS = CachedWebModelAsset.from_asset_store(
MODEL_ID, MODEL_ASSET_VERSION, IMAGE_LOCAL_PATH
)
# Run LiteHRNet end-to-end on a sample image.
# The demo will display a image with the predicted keypoints.
def main(is_test: bool = False):
# Demo parameters
parser = get_model_cli_parser(LiteHRNet)
parser = get_on_device_demo_parser(parser, add_output_dir=True)
parser.add_argument(
"--image",
type=str,
default=IMAGE_ADDRESS,
help="image file path or URL",
)
args = parser.parse_args([] if is_test else None)
litehrnet_model = model_from_cli_args(LiteHRNet, args)
hub_model = demo_model_from_cli_args(LiteHRNet, MODEL_ID, args)
validate_on_device_demo_args(args, MODEL_ID)
# Load image & model
image = load_image(args.image)
print("Model Loaded")
app = LiteHRNetApp(hub_model, litehrnet_model.inferencer)
keypoints = app.predict_pose_keypoints(image)[0]
if not is_test:
display_or_save_image(keypoints, args.output_dir, "litehrnet_demo_output.png")
if __name__ == "__main__":
main()