-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_3.Rmd
executable file
·109 lines (88 loc) · 3.14 KB
/
figure_3.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
title: 'Figure 3'
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(root.dir='/local1/USERS/jfleck/data/PUBLIC_ORGANOIDS')
```
This notebook reproduces the main analyses from figure 3 of the manuscript. First we import the necessary packages.
```{r message=FALSE, warning=FALSE, results='hide'}
library(voxhunt)
library(tidyverse)
library(Seurat)
```
Now we load the data. The loaded seurat object contains the neuronal popultions of the datasets shown in the manuscript. We further subset the ones shown in figure 2.
```{r}
load_aba_data('voxhunt_data/')
neurons <- read_rds('combined_neurons_srt.rds')
neurons <- subset(neurons, orig.ident%in%c('cerebral', 'hCS', 'hSS', 'tanaka_thalamus'))
neurons <- subset(neurons,
cluster%in%c('mesen_ex_cerebral', 'mesen_in_cerebral', 'ctx_ex_cerebral',
'ge_in_cerebral', 'dien_ex_cerebral', 'ge_hss', 'ctx_hcs', 'dien_tho')
)
print(unique(neurons$cluster))
```
We can see that `cluster` already captures the different neuronal types we are interested in. Now we select some structure markers.
```{r}
struct_markers <- structure_markers('E13', 'custom_2')
genes_use <- struct_markers %>%
group_by(group) %>%
top_n(15, auc) %>%
pull(gene) %>% unique()
print(head(genes_use))
```
```{r, include=F, results='hide'}
## Struct ape paper
struct_names <- c(
'pallium',
'subpallium',
'preoptic telencephalon',
'hypothalamus',
'diencephalon',
'midbrain',
'hindbrain',
'NA'
)
struct_colors <- c(
'#ad1457',
'#7b1fa2',
'#5e35b1',
'#ba68c8',
'#303f9f',
'#0097a7',
'#43a047',
'gray'
)
names(struct_colors) <- struct_names
```
Now we run VoxHunt with the selected genes and plot the similarities to brain structures.
```{r message=FALSE, warning=FALSE, fig.height=4, fig.width=6}
neuron_voxmap <- voxel_map(
neurons,
group_name='cluster',
genes_use=genes_use,
pseudobulk_groups=T
)
strct_cor <- summarize_groups(neuron_voxmap) %>%
dplyr::filter(custom_2!='medullary hindbrain') %>%
dplyr::mutate(struct_name=case_when(
str_detect(custom_2, 'hindbrain') ~ 'hindbrain',
str_detect(custom_4, 'septum|subpall|striatum|amygda|telencephalic') ~ 'subpallium',
str_detect(custom_2, 'telen') ~ 'pallium',
TRUE ~ custom_2
)) %>%
dplyr::mutate(struct_name=factor(struct_name, levels=struct_names)) %>%
dplyr::arrange(struct_name) %>%
dplyr::mutate(custom_4=factor(custom_4, levels=unique(.$custom_4))) %>%
dplyr::group_by(group, custom_4, struct_name) %>%
dplyr::summarise(corr=mean(corr)) %>%
dplyr::filter(!str_detect(custom_4, 'telencephalo'))
ggplot(strct_cor, aes(custom_4, corr, fill=struct_name)) +
geom_bar(stat='identity') +
facet_wrap(group~., scales = 'free', ncol=2) +
scale_fill_manual(values=struct_colors) +
theme_bw() +
theme(axis.text.x=element_blank(), axis.ticks.x=element_blank())
```
If we further run VoxHunt on a single cell level, we can assign each cell to the maximum correlating structure using `assign_cells()` we can then color the UMAP projection based on this assignment.