-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnextflow.config
186 lines (168 loc) · 4.45 KB
/
nextflow.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
process {
withName: warpMaps {
cpus = 1
memory = 0.5.GB
maxForks = 5
container = 'qmrlab/antsfsl:latest'
}
withName: normalizeToMni152 {
cpus = 2
memory = 3.GB
maxForks = 2
container = 'qmrlab/antsfsl:latest'
}
withName: alignMtsatInputs {
cpus = 1
memory = 0.5.GB
maxForks = 5
container = 'qmrlab/antsfsl:latest'
}
withName: preprocessMtsat {
cpus = 1
memory = 0.5.GB
maxForks = 3
container = 'qmrlab/antsfsl:latest'
}
withName: publishOutputs {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: publishOutputsFmap {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: extractBrain {
cpus = 1
memory = 1.GB
container = 'qmrlab/antsfsl:latest'
}
withName: resampleB1 {
cpus = 1
memory = 0.5.GB
container = 'qmrlab/antsfsl:latest'
}
withName: smoothB1WithMask {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: smoothB1WithoutMask {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: fitMp2rageUni {
cpus = 1
memory = 1.GB
maxForks = 5
container = 'qmrlab/minimal:v2.5.0b'
}
withName: fitMtratio {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: Align_Input_Volumes {
cpus = 1
memory = 1.GB
container = 'qmrlab/antsfsl:latest'
}
withName: Extract_Brain {
cpus = 1
memory = 1.GB
container = 'qmrlab/antsfsl:latest'
}
withName:B1_Align {
cpus = 1
memory = 1.GB
container = 'qmrlab/antsfsl:latest'
}
withName:generateRegionMasks {
cpus = 2
memory = 3.GB
maxForks = 2
container = 'qmrlab/antsfsl:latest'
}
withName:B1_Smooth_Without_Mask {
container = 'qmrlab/minimal:v2.5.0b'
}
withName:fitMtsatWithB1Mask {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName:fitMtsatWithB1 {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName:fitMtsatWithBet {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName:fitMtsat {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName:fitMtsatNoMask {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: prepStat {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
withName: prepStatPhantom {
cpus = 1
memory = 1.GB
container = 'qmrlab/minimal:v2.5.0b'
}
}
//** Suggested use: Enable Docker. **//
//** See more at: https://github.com/qMRLab/qMRflow **//
docker {
enabled = true
}
params {
qmrlab_derivatives = "$params.bids/derivatives/qMRFlow"
//** === (1) PLATFORM SETTINGS === **//
platform="octave"
matlab_path = null
octave_path = null
qmrlab_path = null
wrapper_version = "v1.0.0"
wrapper_repo = "https://github.com/qMRLab/qMRWrappers.git"
matlab_path_exception = null
qmrlab_path_exception = null
//** === (2) PROCESS SPECIFIC SETTINGS === **//
//** ANTs input alignment (to T1w) parameters **//
//** These parameters are also used to map T1w-highres to MTS and MP2RAGE **//
ants_dim=3
ants_metric="MI"
ants_metric_weight=1
ants_metric_bins=32
ants_metric_sampling="Regular"
ants_metric_samplingprct=0.25
ants_transform="Rigid[0.1]"
ants_convergence="[1000x500x250x100,1e-6,10]"
ants_shrink="8x4x2x1"
ants_smoothing = "3x2x1x0vox"
//** BET Brain extraction parameters **//
use_bet=false
bet_recursive=true
bet_threshold=0.45
//** B1+ correction parameters **//
use_b1cor=false
b1cor_factor=0.4
b1_filter_siemens = true
b1_filter_type = "polynomial"
b1_filter_dimension = "2D"
b1_filter_order = 6
b1_filter_size = "[3 3 3]"
}