diff --git a/examples/generalized_linear_models/GLM-ordinal-features.ipynb b/examples/generalized_linear_models/GLM-ordinal-features.ipynb
index 8c3f60f3..ff05b52f 100644
--- a/examples/generalized_linear_models/GLM-ordinal-features.ipynb
+++ b/examples/generalized_linear_models/GLM-ordinal-features.ipynb
@@ -148,38 +148,7 @@
"id": "CQixNaaKJ8fH",
"outputId": "ca76e80a-0950-4b7a-93ea-a86d62061caf"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Requirement already satisfied: pyreadr in /usr/local/lib/python3.10/dist-packages (0.5.2)\n",
- "Requirement already satisfied: watermark in /usr/local/lib/python3.10/dist-packages (2.5.0)\n",
- "Requirement already satisfied: pandas>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from pyreadr) (2.2.2)\n",
- "Requirement already satisfied: ipython>=6.0 in /usr/local/lib/python3.10/dist-packages (from watermark) (7.34.0)\n",
- "Requirement already satisfied: importlib-metadata>=1.4 in /usr/local/lib/python3.10/dist-packages (from watermark) (8.5.0)\n",
- "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from watermark) (75.1.0)\n",
- "Requirement already satisfied: zipp>=3.20 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata>=1.4->watermark) (3.20.2)\n",
- "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (0.19.1)\n",
- "Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (4.4.2)\n",
- "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (0.7.5)\n",
- "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (5.7.1)\n",
- "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (3.0.48)\n",
- "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (2.18.0)\n",
- "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (0.2.0)\n",
- "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (0.1.7)\n",
- "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=6.0->watermark) (4.9.0)\n",
- "Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadr) (1.26.4)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadr) (2.8.2)\n",
- "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadr) (2024.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadr) (2024.2)\n",
- "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=6.0->watermark) (0.8.4)\n",
- "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=6.0->watermark) (0.7.0)\n",
- "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=6.0->watermark) (0.2.13)\n",
- "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.2.0->pyreadr) (1.16.0)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# uncomment to install in a Google Colab environment\n",
"# !pip install pyreadr watermark"
@@ -324,14 +293,8 @@
},
{
"data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "summary": "{\n \"name\": \"display(dfr\",\n \"rows\": 68,\n \"fields\": [\n {\n \"column\": \"count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 420.0,\n \"max\": 420.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 420.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8614022691018284,\n \"min\": -0.37857142857142856,\n \"max\": 32.40754761904762,\n \"num_unique_values\": 63,\n \"samples\": [\n 0.8904761904761904\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8974925586512028,\n \"min\": 0.3674134085698405,\n \"max\": 8.167083530776553,\n \"num_unique_values\": 68,\n \"samples\": [\n 1.1833672275446578\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"min\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.11065635219238,\n \"min\": -4.0,\n \"max\": 10.08,\n \"num_unique_values\": 4,\n \"samples\": [\n -3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"25%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.23401786544149,\n \"min\": -1.0,\n \"max\": 26.58,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"50%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.8554082476057916,\n \"min\": 0.0,\n \"max\": 31.865000000000002,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"75%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.443698339410934,\n \"min\": 0.0,\n \"max\": 37.5475,\n \"num_unique_values\": 5,\n \"samples\": [\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"max\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.999315447852746,\n \"min\": 3.0,\n \"max\": 53.17,\n \"num_unique_values\": 3,\n \"samples\": [\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"float64\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
- "type": "dataframe"
- },
"text/html": [
- "\n",
- "
\n",
- "
\n",
+ "
\n",
"\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- "
\n"
+ "68 rows \u00d7 10 columns
\n",
+ ""
],
"text/plain": [
" count mean std min 25% 50% 75% max 0 \\\n",
@@ -754,13 +508,8 @@
},
{
"data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe"
- },
"text/html": [
- "\n",
- " \n",
- "
\n",
+ "
\n",
"\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- "
\n"
+ "5 rows \u00d7 68 columns
\n",
+ ""
],
"text/plain": [
" b1602 b122 b126 b130 b134 b140 b147 b152 b164 b180 ... \\\n",
@@ -1225,15 +765,8 @@
"outputs": [
{
"data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "summary": "{\n \"name\": \"df\",\n \"rows\": 420,\n \"fields\": [\n {\n \"column\": \"rownames\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 420,\n \"samples\": [\n \"152\",\n \"351\",\n \"185\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"d450\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"d455\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 5,\n \"samples\": [\n 3,\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"phcs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8.167083530776553,\n \"min\": 10.08,\n \"max\": 53.17,\n \"num_unique_values\": 399,\n \"samples\": [\n 41.53,\n 30.16,\n 34.59\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
- "type": "dataframe",
- "variable_name": "df"
- },
"text/html": [
- "\n",
- " \n",
- "
\n",
+ "
\n",
"\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- "
\n"
+ ""
],
"text/plain": [
" count mean std min 25% 50% 75% max 0 \\\n",
@@ -1533,15 +857,8 @@
},
{
"data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "summary": "{\n \"name\": \"df\",\n \"rows\": 420,\n \"fields\": [\n {\n \"column\": \"rownames\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 420,\n \"samples\": [\n \"152\",\n \"351\",\n \"185\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"d450\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 4,\n \"samples\": [\n 3,\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"d455\",\n \"properties\": {\n \"dtype\": \"int32\",\n \"num_unique_values\": 5,\n \"samples\": [\n 3,\n 4,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"phcs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8.167083530776553,\n \"min\": 10.08,\n \"max\": 53.17,\n \"num_unique_values\": 399,\n \"samples\": [\n 41.53,\n 30.16,\n 34.59\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
- "type": "dataframe",
- "variable_name": "df"
- },
"text/html": [
- "\n",
- " \n",
- "
\n",
+ "
\n",
"\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- "
\n"
+ ""
],
"text/plain": [
" d450 d455 phcs\n",
@@ -2097,14 +1205,8 @@
},
{
"data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "summary": "{\n \"name\": \"display(df\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"count\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"420\",\n \"max\": \"420\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"420\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"unique\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 4,\n \"max\": 5,\n \"num_unique_values\": 2,\n \"samples\": [\n 5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"top\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"c2\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"freq\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"113\",\n \"max\": \"189\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"113\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mean\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 32.40754761904762,\n \"max\": 32.40754761904762,\n \"num_unique_values\": 1,\n \"samples\": [\n 32.40754761904762\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 8.167083530776553,\n \"max\": 8.167083530776553,\n \"num_unique_values\": 1,\n \"samples\": [\n 8.167083530776553\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"min\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 10.08,\n \"max\": 10.08,\n \"num_unique_values\": 1,\n \"samples\": [\n 10.08\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"25%\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 26.58,\n \"max\": 26.58,\n \"num_unique_values\": 1,\n \"samples\": [\n 26.58\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"50%\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 31.865000000000002,\n \"max\": 31.865000000000002,\n \"num_unique_values\": 1,\n \"samples\": [\n 31.865000000000002\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"75%\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 37.5475,\n \"max\": 37.5475,\n \"num_unique_values\": 1,\n \"samples\": [\n 37.5475\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"max\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": 53.17,\n \"max\": 53.17,\n \"num_unique_values\": 1,\n \"samples\": [\n 53.17\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"category\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
- "type": "dataframe"
- },
"text/html": [
- "\n",
- " \n",
- "
\n",
+ "
\n",
"\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- "
\n"
+ ""
],
"text/plain": [
" count unique top freq mean std min 25% 50% \\\n",
@@ -2416,14 +1309,8 @@
},
{
"data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "summary": "{\n \"name\": \"display(df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"oid\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"o002\",\n \"o005\",\n \"o003\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"d450\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"c3\",\n \"c0\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"d455\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"c2\",\n \"c3\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"phcs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10.29209259577468,\n \"min\": 21.09,\n \"max\": 46.29,\n \"num_unique_values\": 5,\n \"samples\": [\n 21.09,\n 46.29\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
- "type": "dataframe"
- },
"text/html": [
- "\n",
- " \n",
- "
\n",
+ "
\n",
"\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "\n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- "
\n"
+ ""
],
"text/plain": [
" d450 d455 phcs\n",
@@ -2748,14 +1426,14 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABqgAAAFTCAYAAABF3I2ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABYlAAAWJQFJUiTwAABvGklEQVR4nO3deZxcVYH3/++tfeu9OxshgCwxAYyRyCIMIsOAIPCwDOOAsoiIDo+Ow6iYDPgb0QdFhwFGZJTBgBJIRCQBGRiQTSASSJDEISwhAoGkIUmn99q3+/vj3rpV1VW9Jd3VSefzfr3qdc49596qU01Tqa5vnXMM0zRNAQAAAAAAAAAAADXimugBAAAAAAAAAAAAYO9CQAUAAAAAAAAAAICaIqACAAAAAAAAAABATRFQAQAAAAAAAAAAoKYIqAAAAAAAAAAAAFBTBFQAAAAAAAAAAACoKQIqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKgAoAAAAAAAAAAAA1RUAFAAAAAAAAAACAmiKgAgAAAAAAAAAAQE0RUAEAAAAAAAAAAKCmCKgAAAAAAAAAAABQUwRUAAAAwG5u9uzZmj17thYuXDjRQxlTy5cvd57biy++ONHDwV7ixRdfdH7vli9fPtHDAQAAAPZaBFQAAADY691yyy2j/sC6NFy55ZZbxnmEAAAAAABMLgRUAAAAACa1Cy+8ULNnz9aJJ5440UMBAAAAANg8Ez0AAAAAAEPbsGHDRA9hXJxzzjk655xzJnoY2MscddRRk/b/KQAAAGBPwgwqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKJf4AAACAcbB8+XItWrRIknTXXXfpqKOO0hNPPKFf//rXev3119Xb26spU6boE5/4hL785S9r3333HfS+Zs+eLUk6++yzdf311zvt1157rZYuXSpJevTRR3XAAQcMOab77rtP11xzjSTpxhtv1Gc+8xmnL5VK6ZlnntHKlSu1fv16bd68WfF4XKFQSPvss4+OOuooff7znx9ynAOf85FHHqn//u//1gMPPKANGzaoq6tLBx98sB588MFBf0YDffDBB/r973+vF198URs3blRHR4ey2awaGhr04Q9/WH/913+tc889V36/v+LahQsXasWKFc5xe3u787MsNdhjt7e3a9myZXr++efV3t6uWCymxsZGzZkzR6eddprOOOMMeTw7/yfVLbfcop/+9KeSpCeffFL77LOPHnjgAd1///3auHGj4vG4pk+frhNOOEFf/vKX1dLSUvV+RvJzLDjxxBPV3t6uI488UkuWLKnoH/i79uabb+qXv/ylXnjhBe3YsUPNzc1asGCB/uEf/kEHHnigc93WrVt111136emnn9YHH3wgn8+nefPm6Stf+YqOOOKIYX8W6XRaDzzwgJ544gm9/vrr6u7uVjAY1MyZM3Xcccfpwgsv1JQpU6pe++KLL+qiiy6SJP3whz/UOeeco2eeeUb33Xef1q9frx07digQCOill14a9PzBdHV16d5779Uf//hHvfPOO+rt7ZXX69U+++yjefPm6aSTTtLxxx8vt9tdcd3SpUv13HPPadOmTYpGowqFQmpsbNS0adN01FFH6a//+q81Z86cYX82AAAAwGRFQAUAAACMs3w+r0WLFmn58uVl7e3t7brvvvv06KOP6o477tBHPvKRUd3vWWed5QRUDzzwgK688sohzy8EQ5FIRCeddFJZ35VXXqknn3yy4pq+vj719fXp9ddf1z333KPvf//7Ovvss4cdWzqd1le+8hX94Q9/GOGzqdTT06NPfepTMk2zom/Hjh1auXKlVq5cqbvvvlu33XbbkOHZaC1evFg33XSTMplMWXtHR4c6Ojr07LPPasmSJfrZz36mqVOn7vLjpVIpfelLX9Jzzz1X1v7uu+/qV7/6lR599FHdfffdmjVr1i4/1kg9/PDDWrRokVKplNP2wQcf6KGHHtJTTz2lxYsXa/78+Vq9erW+9rWvqaenxzkvkUjo2Wef1R//+EfdcMMNOu200wZ9nNdff11f+9rXtHnz5rL2TCaj1157Ta+99pruvvtuXX/99TrllFOGHLNpmvrOd76j3/zmN2XtgUBgFM/csnz5cn3/+99XPB6vGNfGjRu1ceNG/fa3v9UDDzxQFjStW7dOX/7yl8t+HlLx/6X33ntPq1ev1ksvvaRf/vKXox4XAAAAMFkQUAEAAADj7Cc/+YlefvllnXDCCTrnnHM0c+ZM9fT0aPny5frv//5v9ff365vf/KYeeeSRUc3ImTdvng444AC98847euihh/RP//RPMgyj6rnt7e3ODJJPf/rTFTOOcrmc9t9/f5144ok6/PDDNWPGDHk8Hm3dulUvvfSS7r33XsXjcV199dXad999tWDBgiHHdsMNN+iNN97Qcccdp3PPPVezZs1Sf3+/3n777RE/v3w+L5fLpaOPPlrHHnusDjnkEDU3NyuRSGjLli363e9+pz/+8Y966623dMUVV+j++++Xz+dzrr/yyit16aWXatGiRVq/fr2mTJmixYsXVzzOzJkzy45LZzYdcMABOv/883XAAQeopaVF27dv1+9//3s98MADevXVV3XZZZfp3nvvVSgUGvHzquaaa67R2rVrdcYZZ+i0007TtGnTtH37di1ZskQrV67Utm3bdPXVV1ed9TQeNmzYoIcfflgzZszQpZdeqjlz5iidTuvRRx/VkiVLFIvFdNVVV+kXv/iF/uEf/kHBYFDf/va3NX/+fLlcLj3zzDP6r//6L2UyGf1//9//p6OPPlrNzc1VH+eCCy5QPB5XMBjU3/3d3+ljH/uYZsyYoXQ6rZdffll33XWXOjo6dOWVV2rx4sU65phjBh33XXfdpTfeeEPz5s3TBRdcoA996ENKpVL685//PKrnf/fdd+v73/++JMnr9eqcc87R8ccfr+nTpyuTyeidd97R888/ryeeeKLsunQ6ra9//evq6emR2+3WOeecoxNOOEFtbW1yu93q7OzU66+/rueee27Q/1cBAACAvQUBFQAAADDOXn75ZX31q1/V1772tbL2Y489Vj6fT8uXL9e7776rZ555Rn/91389qvs+66yzdNNNN6m9vV2rV68edHm3Bx980JmJdNZZZ1X0L1q0SPvvv39F+2GHHaaTTjpJF198sT772c9q27Zt+o//+I9hg5I33nhDl112mb71rW+VtQ8VLgwUiUT0+OOPa5999qnoW7Bggc466yz99re/1dVXX60333xTDz/8cNnsrqlTp2rq1KlOeOT1enXIIYcM+Zh/+tOfdOutt0qSLr/8cl155ZVyuYpb9x566KH61Kc+pRNPPFFf+9rXnCXwrrjiihE/r2pefvnliuXm5s6dq+OPP16XXnqpVq1apdWrV+uNN97Qhz/84V16rJF47bXXdPjhh+uXv/ylIpGI075gwQK53W798pe/1Hvvvae///u/V2Njo5YtW1a2BN+8efPU2Nio6667Tv39/XrooYd08cUXlz1GLpfTlVdeqXg8rtmzZ2vx4sVqa2srO2fBggU699xzdcEFF2jTpk367ne/q//5n/8p+29S6o033tDpp5+uf/u3fys75+Mf//iIn/tf/vIXZynN5uZmLV68WHPnzi0756Mf/ajOPvts9fX1lT3On/70J23dulWS9O1vf7viOUvSJz/5SX3lK19Rd3f3iMcEAAAATEbV39UDAAAAGDNz587VV7/61ap9l112mVNfs2bNqO/7zDPPdGZiPPDAA4OeV1jeb+bMmVVnP1ULp0pNnz7dGeuaNWsqli8baL/99ht2ycHh+Hy+quFUqb/92791woPf//73u/R4kvTzn/9cpmnqIx/5iP75n/950CDkb/7mb3TyySdLsvb22lUnnXRS1b2QXC6XvvCFLzjHO/M7srOuu+66snCq4POf/7xT7+rq0ne+852q+0Odd955zoy2auN+7LHH9NZbb8kwDN1www0V4VRBS0uLFi5cKEnatGmTVq9ePeiYI5GIrr322kH/u43E7bff7izt+P3vf78inCpVX19f9jPasWOHUx9qLzBJampq2ukxAgAAAJMBARUAAAAwzs4444xBl/M68MADnRk+A/fgGYkZM2boyCOPlGR94J9MJivO+fOf/6xNmzZJkv7P//k/I1parLe3V5s3b9bGjRv15ptv6s0333T28TFNU6+//vqQ15922mmjWq5wJPL5vLZt26a3337bGdObb77phCPDjWk4sVhMzz//vCTpM5/5zLA/p8LP/f3333dmzeysM888c9C+ww8/3KnvzO/IzjjkkEM0e/bsqn377ruvwuGwJKmurk7HH3981fOCwaATfG7ZsqWi//HHH3cea7iZbYWftWTNNhvMiSeeWDVUGynTNJ190/bff/+KvdqGM23aNKd+//33V90/DQAAAICFJf4AAACAcfahD31oyP6GhgbF43FFo9Gduv+zzjpLL774omKxmB5//HGdccYZZf2lM6uqLe9X8Morr2jJkiX64x//WDYTpJrhlicbq2Xocrmcli9frgcffFCvvPJK1QBupGMazmuvvaZsNitJ+uEPf6gf/vCHI752+/btZeHEaA31O9LY2OjUd/Z3ZLSG+52tr69XLBbT/vvvP+Rspfr6eknVx/2///u/kqx9qAYLw6rp6OgYtG9Xf++2bNnizA4sDcVG6mMf+5gOPPBAvfXWW7rrrrv07LPP6pRTTtHHP/5xHXbYYcyaAgAAAEowgwoAAAB7vdKZMiOd8VB63nAzbYLB4JD9hQ/48/n8iB57oFNOOcWZhTVwmb9MJqNHHnlEkjR//nzNmjWr6n3813/9l8477zw9+OCDw4ZTkpRKpYbsb2hoGMHIh9bf36/Pfe5zuuaaa7RmzZohwylJw/YPp7Ozc6ev3dXHHup3pDQA2tnfkdEa6e/srvxud3V17dTYhvpZFwKxnVU6pmrLFg7H7Xbrtttu00c+8hFJ1pKEt912my677DIdc8wxOuOMM/STn/xE27dv36VxAgAAAJMBM6gAAACw1yssXSeNPGhIJBJOfbgP6cdbOBzWSSedpN/97ndatWqVOjo6nP18nnnmGWdGyNlnn131+tWrV+vf//3fJUnNzc269NJLdfTRR2vmzJkKh8POPkKrVq3SJZdcImn4IG9X9gAq+MEPfqC1a9dKkhYsWKALLrhAhx56qNra2hQMBp3HuOqqq5w9tnZFLpdz6ldeeaVOPPHEEV87c+bMXX78vU1httrhhx+uH/zgByO+bqjw0+127/K4dtW+++6r++67Ty+88IKeeOIJvfTSS3rzzTeVy+WcZSnvuOMOXXfddfrMZz4z0cMFAAAAJgwBFQAAAPZ6pR94D7V8WKnS88ZittCuOuuss/S73/1OuVxODz30kC699FJJcoIbv9+vU089teq19957ryTrw/27775bBx54YNXz+vr6xmHk1UWjUT300EOSrGXTlixZMmjoNVbjam5uduoej2fYfZF2F6OZYRWPx8d7OCPW3NysrVu3KpFI7DY/69LfgV2d5XT00Ufr6KOPlmT9Pr/00kt66KGH9MgjjyiRSOiqq67SnDlzhl1OEQAAAJisWOIPAAAAe73SfWteffXVEV1Tet6cOXPGfEyjdcwxx2jq1KmSisv89fb26umnn5YkfepTnxp0+bM333xTkjR79uxBwylJWr9+/RiOeGibNm1SJpORJJ166qmDhlOmaY7ZuObMmeM8zksvvTQm91kLkUjEqQ8V1nV1de3yPl1j6dBDD5Ukvf322zu93N9YmzlzprPn1+rVq8fsfiORiE444QT9+7//u77xjW9IsmaQPfbYY2P2GAAAAMCehoAKAAAAe705c+Y4MycKS+QNZdu2bXrhhRckSS0tLWUB10RxuVw688wzJUkbNmzQG2+8oUceecQJec4666xBry0stVa6bOFA8XhcK1asGLsBD6N0ub2hll184oknhv3vVVjCMZ1OD3leY2OjPv7xj0uSnn32WW3cuHGkw51QpcsLvvLKK4Oe97vf/a4Wwxmxk08+WZI16+uOO+6Y4NFYDMNwlnbctGmTnnjiiTF/jOOOO86p7y7BHAAAADARCKgAAACw1/N4PPrc5z4nScpkMlq0aJFSqVTVc1OplBYtWuQEP5///Od3i31vpPIQ6oEHHnCW92tpadFf/dVfDXrd/vvvL0l699139fLLL1f0Z7NZ/cu//MuIlz8cC7NmzXJmMz388MNVw6V33nlH11577bD3NWXKFElSZ2en+vv7hzz3a1/7mgzDUC6X01e/+lVt3rx5yPPfeustPfzww8OOYTwddNBBampqkiQtX768aujxxhtv6JZbbqn10IZ0+umn64ADDpAkLV68eNgANBaL6c477xx2GcNdddlll8nr9UqSvvOd7+j1118f9Nz+/n5Fo1Hn+KWXXtJbb7015P0/99xzTn3ffffdxdECAAAAey72oAIAAAAkXX755Xrqqaf06quv6rnnntPpp5+uv//7v9fhhx+uuro69ff3a/369Vq2bJnee+89SdLhhx+uyy67bIJHXnTQQQfp0EMP1auvvqr777/fWe7t9NNPl8cz+Fv/c845R0899ZTy+by+/OUv69JLL9URRxyhQCCgDRs26O6779Ybb7yhI444Qn/6059q8lyampp0wgkn6KmnntIbb7yh888/X5dccon2228/JRIJPf/881qyZIlyuZzznAezYMEC/fa3v1U+n9e//Mu/6MILL1RLS4vTP2PGDAWDQUnSxz/+cX3961/XzTffrE2bNumMM87Q2WefrWOPPVbTpk1TPp9XZ2enXn/9dT3zzDNat26dzjjjDH3mM58Z95/JYDwejy644ALdeuut6uzs1AUXXKArrrhCBx10kPr7+7Vy5UrdfffdmjJlinw+324za8fj8eiWW27R+eefr/7+fi1cuFAPPPCATj/9dB100EEKBALq6+vTW2+9pZdeeklPP/204vG4LrzwwkGXfBwLBx54oBYtWqTvfe976urq0nnnnadzzjlHJ5xwgqZOnapsNqt3331Xq1at0mOPPaZ77rnHWeZz1apVuvXWWzVv3jwdf/zxmjNnjlpbWyVZe1o9+eSTThDX2Nio008/fdyeBwAAALC7I6ACAAAAJPl8Pt1xxx361re+pWeffVbvvfeefvzjHw96/gknnKAf//jH8vl8NRzl8M466yy9+uqrZXsRDbW8nyT9zd/8jf7+7/9ev/71r9XX16ebb7654pwzzzxT55xzji655JKxHfAQvvvd72rjxo3avHmz1q9fr29+85tl/aFQSDfccIOefPLJIQOqU089Vbfffrveeust/f73v9fvf//7sv677rpLRx11lHP8D//wD2pubtb111+veDyupUuXaunSpYPef11d3U4+w7Hzla98RWvWrNHq1av1zjvv6Fvf+lZZ/6xZs3Tbbbfp0ksvnaARVnfwwQfr3nvv1ZVXXqkNGzbohRdecJbPrCYcDsswjHEf1+c+9zn5fD5dd911SiQSuvfee3XvvfeO6FrTNLVu3TqtW7du0HPa2tp0yy23OEuLAgAAAHsjAioAAADA1tjYqNtvv12rV6/WQw89pLVr12rbtm2KxWIKh8OaOnWq5s+frzPPPNPZq2h3c/rpp+vHP/6xswThIYccorlz5w573bXXXqujjz5av/71r/Xaa68pkUioublZhx56qM4991yddNJJevHFF8d7+GWmTp2q5cuXa/HixXriiSe0efNmud1uTZ06Vccdd5wuvPBC7bfffnryySeHvJ9AIKBly5Zp8eLFeu655/Tee+8pHo8PuVTcZz/7WZ188sm677779Mc//lFvvfWWenp65HK51NjYqP3331/z58/XiSeeqHnz5o31Ux81n8+nxYsX65577tFDDz2kd955R5K1P9XJJ5+sL3zhC4pEIhM8yuoOPPBAPfDAA3riiSf02GOP6X//93+1Y8cOpdNphcNh7bPPPpo7d66OPfZYfepTn6rZkprnnXeePvWpT2np0qVauXKl3n33XfX39ysQCGifffbRRz/6UZ1yyille9B98Ytf1Jw5c/TCCy/otdde0/bt29XZ2alMJqP6+nodfPDB+tSnPqW//du/3W3/ewAAAAC1YpimaU70IAAAAAAAAAAAALD3GL+FuwEAAAAAAAAAAIAqCKgAAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAAAAAAANQUARUAAAAAAAAAAABqioAKAAAAAAAAAAAANUVABQAAAAAAAAAAgJoioAIAAAAAAAAAAEBNEVABAAAAAAAAAACgpgioAAAAAAAAAAAAUFMEVAAAAAAAAAAAAKgpAioAAAAAAAAAAADUFAEVAAAAAAAAAAAAaoqACgAAAAAAAAAAADVFQAUAAAAAAAAAAICaIqACAAAAAAAAAABATRFQAQAAAAAAAAAAoKYIqAAAAAAAAAAAAFBTBFQAAAAAAAAAAACoKQIqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKgAoAAAAAAAAAAAA1RUAFAAAAAAAAAACAmiKgAgAAAAAAAAAAQE0RUAEAAAAAAAAAAKCmCKgAAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAAAAAAANQUARUAAAAAAAAAAABqioAKAAAAAAAAAAAANUVABQAAAAAAAAAAgJoioAIAAAAAAAAAAEBNEVABAAAAAAAAAACgpgioAAAAAAAAAAAAUFMEVAAAAAAAAAAAAKgpAioAAAAAAAAAAADUFAEVAAAAAAAAAAAAaoqACgAAAAAAAAAAADVFQAUAAAAAAAAAAICaIqACAAAAAAAAAABATRFQAQAAAAAAAAAAoKYIqAAAAAAAAAAAAFBTBFQAAAAAAAAAAACoKQIqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKgAoAAAAAAAAAAAA1RUAFAAAAAAAAAACAmiKgAgAAAAAAAAAAQE0RUAEAAAAAAAAAAKCmCKgAAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAosXDhQs2ePVu33HLLRA8FAAAAACYtAioAAAAAAAAAAADUFAEVAAAAAAAAAAAAaoqACgAAAAAAAAAAADVFQAUAAAAAAAAAAICa8kz0AAAAAABgPJx44olqb2/XXXfdpX333Ve33nqrVq5cqa6uLrW1temUU07RFVdcobq6ukHvI5fLacmSJVq+fLneffdd+f1+zZ8/X1/96ld1+OGHD3pdPB7XsmXL9Pjjj+vtt99WIpHQlClTdPDBB+u0007TqaeeKq/X65y/efNm/eIXv9ALL7ygDz74QIZhqLm5WTNnztRxxx2n8847T83NzWP68wEAAACAiURABQAAAGBSe++99/RP//RP6urqUigUkmEYam9v1x133KEnn3xSd999t6ZMmVJxXTab1eWXX66VK1fK6/XK6/Wqt7dXf/jDH7Rq1Sr96le/0vz58yuu+8tf/qLLL79c7e3tkiSPx6NIJKKtW7dqy5Ytevrpp/Wxj31MM2fOlCS9+uqruvDCCxWLxSRJXq9XwWBQ77//vt5//32tXr1ac+bM0fHHHz+OPyUAAAAAqC2W+AMAAAAwqf3oRz9SXV2d7rnnHq1du1br1q3TrbfeqqamJr377rtauHBh1euWLl2q9evX66abbtLLL7+stWvX6sEHH9QhhxyiVCql6667ruKanp4eXXbZZWpvb9fMmTN16623au3atXrxxRe1bt06LV26VOecc448nuJ3BX/0ox8pFotp3rx5WrFihdavX681a9Zo3bp1+u1vf6uLL754yFleAAAAALAnMkzTNCd6EAAAAAAw1gpL/Pn9fj300EPab7/9yvpfeOEFXXzxxZKke+65RwsWLJAkLVy4UCtWrKhoL1i/fr3OPfdcSdLTTz+tGTNmOH0//vGPtXjxYjU1NenBBx/U1KlThx3nvHnzlEwm9Zvf/Ebz5s3b+ScMAAAAAHsQZlABAAAAmNROPfXUinBKko4++mhnib7HHnuson/BggUV4ZQkHXbYYZo2bZokaePGjWV9Dz74oCTp0ksvHVE4JUmRSESS1NHRMaLzAQAAAGAyIKACAAAAMKkdeeSRw/a99tprFX2HH374oNcVwqfe3l6nbcuWLdqxY4ck6ZOf/OSIx1fYW+qqq67SDTfcoHXr1imTyYz4egAAAADYExFQAQAAAJjUhprJVOjr6uqq6AuHw4Ne5/f7JUnZbNZp6+zsdOqly/4N56qrrtL8+fMVi8V0++2367Of/ayOOOIIXXTRRVq6dKmSyeSI7wsAAAAA9hQEVAAAAAAwgZqamrRs2TLdeeeduvDCCzV37lxlMhm9+OKLuvbaa3X66adr69atEz1MAAAAABhTBFQAAAAAJrXt27cP29fc3LzLj9PS0uLU29vbR3WtYRj6xCc+oWuuuUYrVqzQCy+8oO9973tqbGzU5s2b9YMf/GCXxwcAAAAAuxMCKgAAAACT2po1awbtW716tSRp7ty5u/w4M2fOVFtbmyTp2Wef3aX7amho0Gc/+1ldeeWVkoZ+DgAAAACwJyKgAgAAADCpPfLII9q8eXNF+5o1a/Tyyy9Lkj796U+PyWOdeeaZkqQ77rhD27ZtG/b8fD5fto/VQIFAQJKUTqfHZHwAAAAAsLsgoAIAAAAwqXm9Xl122WVOGJXP5/XUU0/pH//xHyVJxx57rI444ogxeawvfelLmjp1qrq7u3XBBRfoySefdMKlTCaj1atX68orr3T2lIpGozr55JP1s5/9TBs2bFAul3PGuGrVKt10002SpOOOO25MxgcAAAAAuwvPRA8AAAAAAMbTt7/9bd144406//zzFQqFlM/nlUwmJUn77befrr/++jF7rKamJt1+++26/PLLtWXLFl1xxRXyer0Kh8OKRqPObKlvfOMbzjXt7e26+eabdfPNNzvn9vf3O2HVvvvuq0WLFo3ZGAEAAABgd0BABQAAAGBSmzVrlu6//3799Kc/1cqVK9XV1aV99tlHp5xyiq644grV1dWN6ePNnj1bDz/8sJYsWaInnnhCmzZtUiKR0PTp0zV79myddtppmjZtmiQpEonotttu0/PPP6+1a9dq69at6u7uVjAY1AEHHKCTTjpJn//85xWJRMZ0jAAAAAAw0QzTNM2JHgQAAAAAjLUTTzxR7e3tuuuuu3TUUUdN9HAAAAAAACXYgwoAAAAAAAAAAAA1RUAFAAAAAAAAAACAmiKgAgAAAAAAAAAAQE0RUAEAAAAAAAAAAKCmDNM0zYkeBAAAAAAAAAAAAPYezKACAAAAAAAAAABATRFQAQAAAAAAAAAAoKYIqAAAAAAAAAAAAFBTBFQAAAAAAAAAAACoKQIqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKgAoAAAAAAAAAAAA15dmVi/N5U9lsbqzGMun4fNaPN53OTvBIAGDvw2swAEwsXocBYGLxOgwAE4fXYOxtPB63XC5j9NftyoNmszn19iZ25S4mtba2OkniZwQAE4DXYACYWLwOA8DE4nUYACYOr8HY2zQ0BJ1gdjRY4g8AAAAAAAAAAAA1RUAFAAAAAAAAAACAmiKgAgAAAAAAAAAAQE0RUAEAAAAAAAAAAKCmCKgAAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAAAAAAANQUARUAAAAAAAAAAABqioAKAAAAAAAAAAAANeWZ6AEAAAAAwO4ql8spk0krm80pm80ol8spm80ql8sqmy3ccvZxpqSedc7N5/MyTVOSKdOUTDNvl1ZbPl/oq7wZhiGXyyWXyy2322XXS4/dg7a53W55PF75fD75fF55vT55vdax1+uTx+ORYRgT/BMGAAAAsLcioAIAAACwx8vlskomk0omk0okEkomE/axVU+lUkqn006ZyRTr6XR5Wdqey+Um+qmNG8Mw5PWWB1eF8Mrr9SoQCCgQCCoYDA5aBoMhBQIBp3S5WKQDAAAAwMgQUAEAAACYUPl8XqlUUvF4XPF4zC6L9UTCqhcCqELoVKgnEkllMumJfhp7HNM07SBu7H52fr9fwWBIwWBIkUhEkUhE4bB1i0TqStrqnL5AIMBMLgAAAGAvREAFAAAAYExks1nFYlHFYjF1dOQVjUb1/vsdisdjTntp4FQIohKJuL3cXS24JJdHcnklwyO5PDJK6oV2Y8A5MtyS4ZJhl9ZxZb1qvwzJCWAM+7ikLlX2y5rhVFgGUKYpKS+Zefs4X97m1K3SNAvtWSmfs8usTLssazezMp22rGTmrHPzaalwy6Wtxx1GKpVSKpVST0/3iP+LuN3ustAqEomorq5B9fX1amhoVH19gxoaGlRf36C6unpmaQEAAACTBAEVAAAAgDKmaSqZTCgWiyoatW6FuhU0WWFTLBa1wyernkqlxmlEhuTySW6f5PLJcPmcY8PlterOsa/k2Fty7LXCKMM9TmMcH9bMokKgNfKxj/V8JNM0rQArZwVWZj4l5TJSPmUd54phllVPSbmkzGxCyiWt2yABVy6XU29vr3p7e4d/Xoahurr6stCqcLPCrHo1NjaqoaFJXq93jH8KAAAAAMYSARUAAAAwiZmmqVQqWRI09VcJnfrLjqPRqPL5sd57ySW5/ZI7IMPttwMkvwx3QHL5rXDJ7ZdcgWK9cOzysgTcBDMMQzK8VtCn8KgDMNM0i6FVLillk1IuYdUHBFlmLiFl41bgVeV++vp61dfXqy1bhn7Murp6NTU1qbGxWU1NzWpqarLLZjU2NqmxsUkeD38SAwAAABOFd+MAAADAHiSTydhBUjFosur9JQFTeT2bzY7hCAw7aLLDJfvm1F1+GR67zRWQPFYoJYOQaW9mGEbxd2WE15j5rJSNy8zG7DJePM4VjmNSNqFqs7P6+/vU39+n9957d9DHsGZclYdXzc0tamlpVXNzi+rq6vm9BQAAAMYJARUAAAAwQXK5rKLRWMVMpoEBU3F2U/8YL6NnVAZM7oAMT3BAW9AJneTy84E9asJweSRfvQxf/ZDnmWbemn3lhFkxmZmozExUyhZL5TMV1/b19amvr0/vvbep6n17vT47sGpRc3OrXVoBVktLK3tiAQAAALuAgAoAAAAYA8WZTcV9mirrMcVi/YrFYopG+5VIJMZ2EC6/5AnIcAdLgqdgZZsdQBE2YTIwDJfkCUmekAy1DnqemUtL2X6ZmZiUicos1IcIsTKZtLZt+0Dbtn1Q9T49Ho+am4vhVUtLq1pb25xbOBzh/zEAAABgEARUAAAAQIlcLqd4PKZ4PGYHSlawZB0X69bMp37nnLGd2SRrrx/3IMFSSbs1s8muG8zkAAZjuH2Su0WGv6Vqv7NPVqZfpn1z6uk+KdNv9ZfIZrPavn2btm/fVvU+A4GAWlvbKoKr1tY2NTe3yuv1jvnzBAAAAPYUBFQAAACYdEzTVCaTVjwedwKleDyueDxql7GS0Kk8eBrzWU2SZHikAcvmGe6SYMkTqAyjXLxVB2qpbJ+sQFvVc8xc2g6t+soCrEKbcsmy85PJpLZs2awtWzZXfbyGhsaK4KqtbYpaW9sUidQx+woAAACTGn/1AgAAYLdkmqZSqaTi8YQdHMUVj8edshg6lZbFejabHZ+Buf12gGTvyeQZsH9TtQDK5R6fsQCoKWcWVmCQWVi5tJTpswKsdJ9VT1vHyvRJZq54rmmqp6dbPT3d+stf3qy4r8Lsq9bWKU5w1dZmHTc1Ncvt5nUFAAAAezYCKgAAAIwLaxZTpixYKtYTJWFTrCR0ipedn8/nx2l0huT2Sa5CkOQvCZWGqLNnE4AhWAFWq4xA5V5YpmlK2ZgVVtmhVbHeK2XjZecPNfvK5XKrpaXFmW1llYUAq00+n3/cniMAAAAwVgioAAAAUFXpMnlWaJQYEDJZZTKZqBpAJRLx8ZvFVODyFYMjO0yS2667/CUhk9+e8eS3z/cRNAGoKcMwJG9EhjcihWZU9Jv5THHGVbrXrvda4VW6X1IxsM/nc+ro2K6Oju1VH6uhocEOrKZUhFjhcJjXPwAAAOwWCKgAAAAmsWw2WzFDqbDPUmE5vKECp1wuN/yD7ArDJbn8ZaGSFSbZQZLbZwdLvgHthZDJNb7jA4AaMVxeyd8iw1+5fKBp5qVM1A6rrBlXxSCrV8pnys7v7e1Vb2+v3nprY8V9BYPBktlW5QFWY2OTXC5eVwEAAFAbBFQAAAC7uVwuV7a/UiwWUywWUzwedY4L/eVBVFyZTHp8B1caMJWFSsUQqdg3oO7yy3DxdhQAhmMYLslXL8NXL4XL+0zTlHJJO7yyg6tCkJXulXLlSwcmEglt3vyuNm9+t+JxPB6PmptbSmZctamlxaq3tLQqEAiM59MEAADAXoZPBAAAAGokn88rmUwoGo0qFos6ZXm9GDYV6slkcvwGZbjtgMk3YAZTcem8Yh8BEwDsbgzDkDxBGZ6gFJxW0W/mM05Y5YRYmcLsq35JpnNuNpvV9u3btH37tqqPVV9f7wRWra1tZbf6+gZmXwEAAGBU+EQBAABgJ6XTaUWj/erv71N/v1VaQVO/YrGYotHyMhaLKp/PD3/Ho1WxD1Oh7rP2ZHL5BrSXBlG8HQSAycxweaVAi4xAtaUDc9bSgaWzruzlA6stHdjX16e+vj69885bFfdVOvuqpaVVLS1tam1tteutCocj7H0FAACAMnwiAQAAYMvn8yVBUzF06u/vrwii+vv7lEqlxvDRDStMcgeKYZI7ULJs3sD2gLMXE/swAQB2hmG4JV+DDF+DpH3L+opLB/YNmHXVZwVY2WjZ+cPNvgoEAmpubi0JrawAq7m5VS0tLQoGQ+P1NAEAALCbIqACAACTXjqdUm9vr/r6ekvKHvX1lbf19/dZH8jtMpcVNnkCMtwByR20w6WgHTQFSvqDxVlOfLMcALCbKF86cGpFv5nPSpl+O7jqs4Ir+1jpPilf/iWOZDKp99/fovff31L18YLBoJqbW9Tc3GqXLWppaVFTU7Oam1tVX1/Pv5MAAACTDAEVAADYY2WzWfX29qinp1vd3d3q7e1WT0+3enp6SkKoPiWTiV18JHt2kydkBUqeYEUpd8j6EI+wCQCwFzBcHsnfJMPfVLXfzKXs2VZ2aJXpKwmz+iUzW3Z+IpFQe/sWtbdXD7AKSwgOvDU1NaupqVmNjU3y+Xxj/jwBAAAwfgioAADAbsc0TSWTCSds6unpssvSIKpH/f19u/AoRkmwFLbCJ0+oWLrtb427Q/YyegROAACMlDVzuE1GoK2iz1o+MGEHV/0yM/1OWagP3P9quCUEJSkcjpQFVla9qazN6/WO+XMFAADAziGgAgAANZfLZdXT06Ourk51dXWpu7uyTCaTO3fnhscOmUpDp3B5+OQJW0vtsXcTAAA1Zy0faP+bHJxW0W+aprVE4IDQysxEi4FWrnJ2dCwWVSwW1ZYt7w362JFInRNaNTQ0qbGxUQ0NhVuDGhoaFQ5H5HLxHgEAAGC8EVABAIAxl0jE1dm5o2r41NXVqd7enp3b68ntlzwRK3zyWqXhiUjeYikXs50AANiTGYa9tK47UHUGliSZ+YyUicrMRu0yZodXMadt4D5YkhSN9isa7dfmzYOHWG63uyS0Kt5Kw6z6+gaFw2HecwAAAOwCAioAADBqqVRKnZ071NnZoc7OzooyHo+N/k7dASt88tbJ8EbsACpizX7y2qWLty4AAEAyXN4h98CSJDOflkoCK7Ms0IpK2ZiUqwyxcrmcPcu7c8gxuN1u1dXVq66uXvX1DaqvL9St40K9ro4wCwAAoBo+5QEAABUymYy6ujrV2blDO3Z02GFU8RaN9o/yHl1W4OSNSN46GZ66Yr0QRrnY2BwAAIwdw+WT/L5hQqyslI1bM7CyMbu0jzMxp135dMW1uVzO3i+ze9ixlIdZ9YpE6uxbpKRep7o6qy0YDBFoAQCASY+ACgCAvZBpmorFotqxo0M7dnSoo2O7Xd+hHTu2q6ene3RL8BluO2yql+Gtkwqlzwqj5Amy3xMAANjtGC6P5KuX4asf8jwzn7EDrLg9Aysu5RJWmY07x8omJOUrrh9NmCVJLpfbDq8iFUFWOBxROBxWOBxWKBRWOBxRKBRWKBRi7ywAALBHIaACAGCSyuWy6uzsdEKogbdksnJz8cEVZkDVWx/i2GFUIZSSh2/5AgCAyctweSVfowxf45DnmaYp5ZJSLi4zmygLr8rDrKQVaJm5qveTz+fU19ervr7eUY0zGAw5wVVTU4MikYjcbp/dFlEoFFIwGLLLoFMPBIKEWwAAoOYIqAAA2IOlUqmSGVDb1dGxXR0dHdqxY7u6ujqVz1d+g3dQ7qAMX4M1+8lXL8Pb4IRR8oSZAQUAADAMwzAkT9CaPe4f+lzTNCUzK2UTMguBVS5pBVs5uy1rtxVmZ+Ur98wqlUjElUjEJXXovfdGN/ZAIKBgMGTfgiVBVvE4GAzI7w8oEAgqGAzK7w+UtXm93tE9KAAA2KsRUAEAsJuLxaLq6OhQR8c2J4wqBFK9vaP5Vq3LDpzqqwRRdewBBQAAUEOGYUiGV/J5ZWjoJQYLTDMv5VJSLiUzn7RnYqXsgCtlh1ml9ZSUt4+HkUwmlUwm1d3dtdPPye12KxAIKhAI2LdgWen3++Xz+eX3++X3BwaUA9utc5nZBQDA5EVABQDABDNNU319fero2FY2E2r7dmtfqHg8NvI7c/kkX4MMb4MVPvkaJLvOLCgAAIA9m2G4ijO0RnGdaZrW7KtcSsqlZeatUvmUHWKl7dDLKpVPl7Urn5Y0/P6kuVxOsVhUsVh0p5/jQF6vzw6rrNLr9Tl1n88nn69QltaLbaXXFEtv2TEhGAAAE4OACgCAGsjn8+rp6bZnP21zwqfCrKhUavhvtTrcISt4smc/FeuNktvPXlAAAAAoYxiG5A5YN2lU4ZZUCLgyVlCVT8ss1HMZ+zht99nHufSA89NSPmu3ZTSSsKsgk0krk0mPcsSj4/F4KkIrr7c0yPIOOPbJ6/XY5cDzBp5b2mYdezwe3rMDACACKgAAxkwmk1Fn546SWVAdzmyozs4dymazI78zb11F+GT46q06S/EBAACghqyAy2fdNPqAq5S191auGFblMzLNTPlxvvzYOidbDLnsullSd9p3QjabVTabVSKR2IVnNnKGYcjj8crn89pleQhWre7zlYZjleGZz+et6GOWGABgd0dABQDAKCQScWc/qGIAZZU9Pd3WH9wjMmA/KGdZPntvKJd7XJ8HAAAAMBGsvbc8kssjKWi1jdF9l4VfZtYOu7LFEKukLLbnioFXlfOs9lzxuLS+C+OsxcywUtYsMV/JcojWUoilYZZ17CtbHtHaM8wnr9cqC3uIFcviMorMCgMAjBYBFQAAJXK5nHp6urVjR4dz6+zssJfj6xjdevqGxw6eSkIoO4iSN8J+UAAAAMAYKg+/7LZxeiwrDMuXhFkDgy772K6bA8Mtu9+sCL5K23MDArOcRrM8YqniLLH42P4gbIZhlO3/FQgE5PcH5Pf7y+qlpdVeWQ8GgwoEgiyFCAB7AQIqAMBexTRNxeOxkvBpR1kY1dXVpXw+N/I7dAeswMlXXwyf7L2h5AnxBxUAAAAwCVlhmFuSW3L7y/vG6TGt1RryFSFX5eyvAeGXU2bs2WCZIWaU7dxyiaZpKpVKjW5v3WG4XG4FgwEFAkEFAoUyWNJWbC+0WeFWSKFQSMFgUMFgSB4PH38CwO6KV2gAwKQTj8e1aVOnOjo69M47m9XZ2anOzh3q6rLCqNGtLW9Ys5289SXL8NkzorwNMtzsBwUAAABg/FlffnNLbrek8Q3FrBlipYGVvVxiybGzD1g+ax+XtpXuKZYu31NM+RGNIZ/PKRaLKRaL7dJz8Xp9TlhVGlwNLEOhwi1cVrrdfHwKAOOFV1gAwB6lMAOqGDoVw6dCfdSbG7v99rJ79Vb45K139oeyluJjPygAAAAAew9rhphXcnk19nuF5aRcRjLTUi4j08xYx/mMlE/bAVfauZm5Qt0Ou3LFPmvZw6EV9vvq6+vdqfH6/X47wApXDbAKZTgcVigUVjgcUTgcVjAYksvFsu4AMBQCKgDAbiWdTqunp1vd3V1Vb52dO0a/bIThlrx11l5QJeGT4au3QqkBS3IAAAAAAMaHYbglj1tSQPLuWvDlLFloh1ZWgJWygy2rVC5V1l5+nLL2EhtCYenCnp7uUT5PQ8FgaXA1sIyUtZUeE2wB2FsQUAEAaiabzaq3t2fQ8Km7u0vRaHT0d2x4igGUr86u11nhk7dOcgfZCwoAAAAAJhnDsJc8dAes4524D2vpwpSUK4RaSSvEyqWcEKtqPZcccq+uwuof8fjoligsDbYKoVX1MlJyHJbfH+DvXgB7HAIqAMAuy+fz6u/vU29vj3p6etTbW7xZx93q6elRNNq/cw/gDkieiAxvxA6eCrOhrLrcvBEHAAAAAIye4fJILo/kCY864LKWK0zZs7Ls0CqXkplLDqhbfU49P/iqIKXBVkfH9hGPxePxlM3MCocjikTKA61QKDygLcweWwAmFK9AAIBBpdMp9fX1qb+/zy571dfXp97e3rIQqq+vV/n8yDa6reDyWfs8eSJOaXgL9TrJG5bh8o7tEwMAAAAAYBdZyxWGJE9oVOGWaebt5QaTVQKs8pCr2Ja0ljMcRDabVV9f76j32goEgs4srNJwqxh2RSr62V8LwFghoAKAvYhpmkomk4pG+8sCp2IAVd6WTCZ37QHdQetbaN6wVdo3ee0QylMnw+0bmycHAAAAAMAewDBc1koh7sAog61clVlaxRDLzFa2KZeSNPgXSpPJhJLJhDo7d4xi/IZCoZAdZIWcMKtYt/bSKtZDCoWsfq+XL6ACKCKgAoA9WDqdUjQatW/9isWsstAWi1XWc7ncrj+wy2/NbPIUgyendNqD1rfJAAAAAADALrNmbIVHtRyhaZrWzKsBs7HK66kB7cMvQxiLxRSLjW5/LUny+XxOcBUMhuwgK6RQKGQfF8tQKFzW5vf7Wd4fmGQIqABggmUyGcXjcXuN6fIykSgex2KxAefElMkMPr1/1Nx+yR2S4QlZ4ZLbLj0hqawetNboBgAAAAAAuzXDMCS3T3L7ZKh+xNeZZl7K2csQ5pNSNinlq83cSpXvtTVEsCVJ6XRa6XRaPT3do34uLpdboVBQoVBYgUBQwWBQwWDILoN2W/HYais9ZgYXsLvhE0YA2En5fF7pdErJZFKJRNwuranx1cvK/ng8rkwmPT4DdAesMMleNsAKnewlBNwBa41sO3hithMAAAAAACgwDJfkCUie0S5DWNhfK1UZYOVT5TO28mm7bgdbQ+yxJUn5fM5ZJWZneTweJ9wKBALy+wMKBKx6sRyuLSC/3y+3m4/WgV3F/0UAJj3TNJXJZJROp5ROp5VKpZTJWGXhOJVKKpWywqZC3SoL9Wp9Q38raMy4vNaSem6/DLffrgesujsowxMYEEYFrW9GGWxYCgAAAAAAaqd8f62GUV1rzdpK2TO1UtYMrrwdcNllsZ4uBlz5tH0bfpWZbDZrb43Qv7NP0eHxeOT3W2FVsfQrEAiovj6iQCAg03Q7gZbf75fPVzjXJ5+vcFworTaXi89zsPcgoAIwIUzTVD6fUzqdUTabcaZ4ZzIZZTJpZTJpuy3j1K32jFMv7bNuqbKyEESl02lrzeWJ4vJKLp/k8slwWdPqnWO3FTzJ5S/W3X4ZroBd9zGzCQAAAAAATHrWrK2gpOCoZm0VFGdv2eGVPZPLCrLssMvuNwuBltNXPJY5sr27s9msstmoYrGdn9FVjdfrLQmufFVDLK/XV9Lvqzi2wq+Bdat0u93s5YXdBgEVsBczTdP+xzRjB0OZsnomM3jfwHpp0FR+HxknWBp4PKGh0ZCMklDJK8PltY+Lt/K28uDJcPkltz3ryeVlJhMAAAAAAMA4K529JWmnQi5JMs1cMazKZewwK108NjN2v3Urhl2F4/J+mdlRPX7h87OxDr4KDMOoCLEKoVgh7CoNvirrXnm9fvl83rL2Yul16swGw3AIqIAJUphBZAU82SFCoKFCouyw1ww8f+DxnsmQXB7J8Dil4Rx7rTaXV0ah3+V1+qzzCueUnucrBk4G3yQBgPFmmqaUjY/424kAgEnMcFv7o/IeHACwGzAMt+R2W0GXd+eDrgJrZle2ZJZWtiTkylqhlpktD7Wcc4rt1jnZYuiVz446/LLGYzrbWYw3j8djh1Vee+aXt2qQVQzJygOvgW0Dryvet489wfZQ/FfDXiuXy1WENsOFO6Vt1cOhwQKj6n277wyiUTBcVvhjuK2by2MHPB6n7pROkOS2AyO3c63hctvBkdsJnoySAEol/Sx5BwB7LjPVpdz2VTITH1jLbQCTWFtbm/7zP/9TknTFFVeoo6NjgkcE7MbcfhnB6XJPOUaGv3miRwMAwJixZnbZK+8U2sbovk3TLAmr7GCrEFwVAjAza8/qypYHW/lsSehVvMaZQVZ6rpnfqfFZn7tmlUiM0RMegsvlGiTY8laEXqXBltVWvKZ0Rtl+++2vQCA4/oPfixFQoWby+bzzopTNZpTN5uzSasvlsk44VDguhjrZsqBn8OPi9QNDodL2SRMOSQPCIXdJEOSu0uexwh0nNCoJl1we6x9MozQQKr2vkvsrDZb4liMAYITyPa8pt/WZnf7jBgAwieVSMqOblI1tlnvaJ+VqnDPRIwIAYLdnGIb9hW6vJCtIGY9P6pxZYGUBV86e5ZWzwzGrNMuOS0OvIQKyMQjD8vm8ksmkksnkmD3vpqZmfe971zM7axzxk90D5fN55XI55XI55fM5p15sq95vhT455XJZ+zinfD6rbLb0+uyg5xYCo9LwqHhudpBziiFUPj8JP4wadPZQ+XFpvzHguFA3nFCoMiQyyoKhktlHchEQAQD2CGaqi3AKADA8M6fc1mdkBKcykwoAgN2EMwtMvvL2cXgs08w7AVhp0GVWDbhGGnzlql5vLTk/+CSG7u4u9fT0qKWldRyeKSQCqpp5+unH9dpr65XL5Z3QqBAk5fOFNqssbS+ETKWh06SZ+bNLXCVhTfnNqGgvDXoq25z2gTOKCoFQJq581zqZmT77sY1iOfBV2MxZL3hDjJz/egCAvVI2TjgFABgZM6fsO7+RPKGJHgkAAJhsSmedmVLx09qSsrBnGMYdAVUN9PR06777lk30MHaCyw5s3FXLYthT/RzDOS7tqxYkVfaVz0IaEBrVeFm5bMfvrH0yAAAAAAC1YeakTP9EjwIAAADjiICqBhIj3QVusD1+CnWXxymNAcdl7YareKsImVx2cGS3qbyv2G6wdBwAAAAAAAAAABgXBFQ1MOKgx14eTpKUK2muduqwD1oIp9z2tEX3gMCqMANqQEClamFWtVlS1WZKVZsx5Srfc6nKjKrdPQhzT/0r5batlJnunuihAACwZzJNKRud6FEAAPY0noj19ywAAEAt5TNSLjnRo9grEFDVwJQpU7X//h/Spk1v1+5Bzbwke0O5wU4Zyd2M2YCGYodjVfaUqgi3Bu4bNaCtel/5nlKGUdlWvM5VMTrD3yTPrDNq8pMAAGCyym5+WGZ000QPAwCwhzAi+8uz72cmehgAAGAvlO95XbkPnproYewVCKhqwOVy6VvfulrxeEz5fF75fF65XE75fE65XL6kzJe1Fc4r3KzjbJX23BDHxcfKZrN2m1UWj3NOezabKzun2Fa8ZuzlrUAtV3nfQwVk4xOeVQnKXJ6SUMveD6ss1Co99pSFXsaAcwvXGka18z17xIwyAAB2hnvKMcrG3rO/RAMAwBAMt9xTjpnoUQAAgN2YaeakfM6aoJHPOqVZdpyTzIzMKufJzNr3UdJuZmXms1J2hFv2YJcRUNWIYRgKhyMTPYxdZppmSbhVDK+qHVfeMva1GWWzWWUylW1We8a5v0K9cH3hmvJzM2MYnOWlfF5Spvx5D/UzGaNHLnKVz/yy64PPCvOUzzRzeQYJz9xl4ZoxIExz+uQiJAMAjDnD3yz3tBOU2/pMcUljAAAGMtxyT/ukDH/zRI8EAACMgmma1hcShwyMhm4381nr78V8xi4Hv74Wa3+53W4Fg6Fxf5y9mWGa5k7/l0yns+rtJU0cTFtbnSSpo6N/gkcy+RWCs9LAqhhulQZbGWUyGaev/Jxi28D7KR4Xri+9ptiWz0+SD9yqzOyS4Zbh8owgCPOUhGqeAWGbx2qvaLNLwjEAmPTMVJdy21fJTHwg5VITPRwAwO7C7ZcRnC73lGMIpwAAGENmaWg0VECUz8o0M86so/LQaMC1FUGSXdZow5hd4Xa75fX65PN55fX65PV67WNfRftHPvJRffSjR0z0kPcIDQ1B+Xyjnw/FDCpMCoZhyOPxyOPxSApO2Djy+byy2YzS6dJAKzsgGKveVgzD0gOCseyAICxTEaiV9u1C5lxkFv7BGdA82Om7/og2ww6rvAMCLY8dfBVLo6S/eJ7Xrtuly24zPNZ9FvoMgjAAmCiGv1mefT9j/XuVjTObCgBgvff3hHiPDgDYK5lm3g6IMk4wZOYLAVHGai+0mdnicUm9GBxlSsKkQt/u/zdXaTDk8xXDovLwyCufz192XmW45BvQX7iueK7b7Z7op4sSBFTAGHK5XPYLpX9CHt80TeXzuaqzwQYLt6r3VwZfg93P2M4iM61/RAfsR1YtANu1UMwoCbe8kstrh1vekmPfgGO7bnglt0+GUXK+22fPGOMPagAYKcMwJG94oocBAAAAACNiLWFnzxayb1aQlC4/NjNSLmPvfZQpOT9tn1MeRu2uAdJgoVHpTCOfz19SH9hfHhCVh0jFwMjr9fKZ2l6MgAqYRAzDkNvtkds9cf9rly61WJhJlk6nqx6Xhl/pdMqZQZZOF8p0SVu6Sp9Vjn7WmGm9EVBGyiUKLQPPGCVDcvmssMrlswMu69goaXf6Cue5/ZLLL7n91jH/IAMAAAAAAIwZa4ZSRsqnpFxaZj5thUU5KzRyjvMZmbn0gDCp0GefP3C5oQlQ+IK83+9zAiK/318WAA08LpxfGhBVBkZ+J2jyeLxyuVwT/VSxFyCgAjCm3G63PVU2UJPHK+w/lk6nlU6nlE6nlUqlyo6HarfarDKVSimZTCqVStrHSWWz2eEHYY3EeqOTTxWOSntGyLCDK78Md8AOrfxWiGXfDJdfsvus9qDkDljLIAIAAAAAAEwi1qylrLV/bS4l0w6ZlE/ZYVLKDo/soCmXKoZOTn+m5uM2DEN+v9++BZzSCo8CToBkBUf+krK8v7zPCpkm8ovpwFjjtxnAHq10/7FQKDTm95/NZpVOp5RMppRKJSqCrGTSuiUScbueUCKRqFoOH3aZxTdcmb7S1uEZHskTtIMtO7RyByRPSd1t93sCVpvBmrsAAAAAAGB8maa9kk0uaYdMyQGB04DwKZcshk25lGo1a8nv9ysQCCoQCJSUAfn9AQWDQQUCQfn9hbZi8DTw2O8PaMaMZrlcLnV09Ndk7MCeioAKAIZQDL92fZ+UTCajZDJhB1oJJRJxJRJxxeNxxeOxYcr40Pt7mVkp0y8zU3zjM2yw5fJbm1F7gpLbLj0hGe6QFWyV9jFDCwAAAACAvZpp5u3QKCkzlyzW86li+JQrqZe07+pu4kPxeDwKBIIKBgu3UMVxIWAq1gNlYZTf7x/TJe1YHg8YGT5xBIAasTZ/9Kqurn7U15qmqVQqZQdWVmgVi8UUi0UVjUYVi/UrGq2sJ5OJwe80n5LSKZnpbusxhhqAy2fP0ArZwVVI8oRleMKS1y49YfbRAgAAAABgN2fNaLJnLeWSdog0IHSqqCetpfTGgcvlVigUcm5WiBRSKBRWKBRUKBS2j4vtpeGT1+sdl3EBGH8EVACwBzAMw5la3tzcMuLrstmsE2JFo/1l9b6+XvX396mvr88pBw208mkpnZapXklDhFmGxwquvGE7wCoJskrbXbx5BAAAAABgV5n57BABU7JKADU+M5qszy2CCofDdrAULqmHFA5bx8FgeXsoFJbPx5ddgb0VARUATGIej0cNDY1qaGgc0fnpdFr9/cXAqjzE6nXCrN7e3uphlpmVMr0yM8MEWW6/5InI8NbJ8EQkb0SGN2K32cfskQUAAAAA2EsUl8+rNqspOSB0SjltMofb73r0gsFCoBQpK63QKaJIJFIWQFnBU4hl7QCMGgEVAMDh8/nU0tKqlpbWYc9NJpPq6+tVT0+Penu77bL81tPTrUwmU3lx4U13qnOIECsow1tnhVWlIZa3Toa33urnG1YAAAAAgN1IWdCUL85YKp29VD7TyQ6b8qkxH4vX61M4HFYkElE4HHECptI2K2SKKBKx+oLBkNxuvjAKoDYIqAAAO6Ww5OCUKVMHPcc0TSUSCfX0dJeFVt3dXeru7lJXl1UmEvHKi3MJmbmElNxePcQy3E5YZQVX9XagZQdYnhABFgAAAABg1Er3aLKCppJ6LmX3JUvqdnvheIwZhuHMVLJCpYgdMJXPaiqf8RSRz+cb87EAwFgioAIAjBvrTbS1kemMGfsMel4ymXRCq/KbFWb19HQplRrwJt/MSekememeQQIsl+Spk+Grc8IrK8Cql+Grl9wEWAAAAAAwGZlm3tpLOZeW8imZdqlc2g6bCu0p+7yUTLscr5CpoLB8XjFwCpfMbIpULK0XiUQUCARZPg/ApERABQCYcIFAQNOnz9D06TOq9lszseLq6upUV1enOjs71dW1o6yMxaIDLsoPvR+W4bFmW/karBlXvnp7NpZdd3nH/okCAAAAAAZlBUsZKzTKp2XminXruKSez9hBU+G4GEgpX2Wp+THkdrsVCoXtL2QWy9LgKRSKOAFUYXm9YDDI8nkAUIKACgCw2yssZxAKhTVz5qyq5ySTibLwKh7vU0dHhz74YJs6O3coGu0vv8DMSulumenu6jOw3EFrppUdWln1Bhm+BskTZvYVAAAAgL2aaebsMCnrlKaZsevWzXTq6QHHhf502bHMbM3G7/f7FQyGFAwG7TJUETgNVvp8Pv4mBIAxQEAFAJgUAoGgZsyYqRkzZkqS2trqJEkdHVYwlUql1NW1Qzt2dDi3zs7icTqdLr/DXEJmIiEltlWZfeW2lwoszL5qkOGrl+FtsNpdfCMOAAAAwMQwTVNS3g6Oslbo44RHOcnMOH2mWX6OVWZkFkIn5zhTPKcQSik/Yc/R7/fb+yIH7Zu1R3Jp4BQKlYdPVltQgUBIwWBAbjcfiwLAROOVGACwV/D7/Zo+fR9Nn165F5ZpmopG+8vCK+u2Q52dHeru7rL/yCtckBt69pUnYs208jXI8Nrhla/BmoHlZpNaAAAAYG9iLVuXtf6OcIKg3IBwKOeUpjmwzTq2Zixly++jIlyyH6f6XyoTxuVyye+3QiS/319Rt25+Z1ZTIXAqBFDBYHkYxX5MADA5EFABAPZ6hmGorq5edXX1OuCAAyv6s9msuro6tWNHhzo6tmvHju3q6Niujg4ryMpkBsy+ykZlZqNSvL3yz0J3sCK8suqNktvPMhEAAADAODJN09qvdkCoU30mUaHdDopKA6RCEFQ4tyIsKgZOEznTaDQMw5Df75fX65PP55Pf75fP5y8pffL5Stsqzym0WeFTMYDyeDz8rQMAqEBABQDAMDwej6ZMmaopU6ZW9Jmmqd7engHhVYdTxmLR8gucpQO3VoZXLt+A8KpYlyfEH3QAAACY9KwAaeA+ReXLzRWDo0zlsnQly9CZpUvSFfZL2g1nFw3F7XbbgZFXXq9PXq93wLHV5vP5Ks4rBEbFPt+Qx263m785AAA1RUAFAMAuMAxDjY1Namxs0kEHHVLRH4/HS2Zcld96e3vKT86nZSY7pGRHlX2vPJK9z1UxuCosHVgnw2CJCwAAANSetXxd2rrlMjIL9XzGen+bz0i5dDFsqgifyo9lZif6KQ3K4/E4IZDHUwiFikFR9XZvWahU3l95TrHudUIjAAAmKwIqAADGUSgU0qxZ+2vWrP0r+tLplHbs6ND27dsrQqyurs4B+15lpVSXzFRXle97uiRvRIav0Voy0A6xnLqLf+4BAABQyTRzdniUkmmXyqWsYCmXKvbl03Z7SQBVCJ0mOFAqLEtXOluovG4dFwKi0tlDpTONCrOQyvvLgyX2PQIAYGzxiRUAABPE5/NrxoyZmjFjZkVfNptVZ+cO7dixfUCA1aHOzg5ls6UfBOSlTJ/MTJ/MWJUH8oRleOtLZl0VQqx6a08slvEAAADYY5lm3gqLckmZ+aSUS0q5lEy7VC5ph03JAUFUuqbhktfrs/cj8jv7EpXWC/sYlfcFnH2PBoZQhb2S2NsIAIA9FwEVAAC7IY/Ho6lTp2nq1Gk69NDyvnw+r56ebnvPqw51dGwr2fdqu5LJZPkF2ZjMbExKfDDI0oGVwZXhrZe89TJcLCkCAABQK1bYlJSyCTtgsstsolgfGEDlU+M2HsMwFAgEFQwWbiEFAgH7FpTfH1AwGFQgECipF9qtcwp9LFUHAAAGIqACAGAP43K51NzcoubmFs2ePaeszzRNRaP9ZUsH7tjR4ZS9vb3ld2ZmpVSnzFRn9a2iPREZ3jp7/6u6YnDlq7P62PsKAABgUGWBUzYu5eIyC2FTNmGHTSUh1DiETcFgUKFQWOFwWMFgSKFQ2AmbQqGQAoGgQqGQgsFQWXswaAVNLGsHAADGCwEVAACTiGEYqqurV11dvQ444MCKfmvfqx12aNVREmBZt/KlAyVlozKz0eqzr2RI3jorwPLaAZav3m6rt5YWZLkVAAAwyZimKeUS9iynuJSNW+FTlWPlElL1rwGNWjAYVCRSp3A4onA47IROxdJqL7TNmjVV4XBYXV3xMXl8AACAsUZABQDAXsTa92ofzZixT0VfPp9XX1+vvWygNfuqs7NTnZ0d6uzsVG9vj/WBjMN09r6S2qssH+gqzsDy1snwRmR46iRvoS0iw+Udx2cLAAAwclbwlCouj1xaZgrHVgAl5XfpsVwutyKRiH2rs2+l9TrV1VlhVKH0eEb3EU59fd0ujREAAGC8EVABAABJ1tKBjY1Namxs0kEHHVLRn8lk1N3dpR07OtTVtUM7duwoK/v6+sovMPMlAdYg3x12B5wQywmtCqUnInlCLCMIAAB2mZnPWTPDM9GSshA4FYMomTsfPHk8Hmcme319g+rrC3XruK6uwa7XKxgMMdMcAADs9QioAADAiHi9Xk2ZMlVTpkyt2p9Op9TZ2emEVp2dO9Td3aWurk51d3dVmYEle9+FpMzUjkEWvzGskMoTkbxhGZ6wHV6F7WDLLl28pQEAYG9lhU8xa1niTL8928kKoay2qL3U3s4JhcJqaGhUQ0OjGhutktAJAABg1/FpDgAAGBM+n1/Tp8/Q9Okzqvbncln19PSoq6vTuZUGWF1dnUqlBm4Mbha/1ZwcYgcHt98KqsoCrJAMT8guw5I7JMPlHsunDAAAxpmz7F6mX2amX2a236lb5c6HT4FA0Amd6usbygKoYnujfD7fGD8rAAAASARUAACgRtxuj1paWtXS0lq13zRNJRLxkvCqWz093ert7VF3d5d6enrU09NVJcSS9cFVLiUz1Wnd16CD8FtBVbUAq+RYLj/fgAYAoAZMMy9l4yWBU7Es1GVmR32/gUBQTU3NampqsstmNTY2lZRNCgSC4/CMAAAAMFIEVAAAYLdgGIZCobBCobBmzpw16HmJREI9Pd1VblaA1dPTo/7+vuoXF4KsdLekIYIsuSRPUHIH7dAqKMMdLCutvqA9M4u3VAAAVGPNgEpYe1Kmrb0pzUy/U1cmKml0+z55vV41N7eoqamlLIAqBFKNjc0KBgmfAAAAdnd8mgIAAPYowWBQwWBw0KUEJSmbzaq/v0+9vb3q6+tVX1+P+vr61Nvbo76+3pL2XmWz1b6Vnbc2Ss/GZNoTtgYPsyS5vCWBVVByB2S4A3ZpHctTbJM7IMNw7cqPAQCA3YaZS0mZPpnpfjt0soOodN9OzYAKhcJqbm4puTWrublVzc0tamlpUSRSx0xnAACASYCACgAATDoej8f5JvVQCssKWsGVFWD19vYqGu1Xf3+f+vutsnCcyWSq31E+I+Uz1odyhfsebpAuv+T2Vw+wXH4Zbr8dZpXUXT6CLQBAzZlmXspE7VlQvXb41GuHUn1Svsryu0OIRCJqaWlzlv4tBFEtLdasKGY/AQAA7B0IqAAAwF6rdFnB6dP3GfJc0zSVSqUUjRaDK6vsL2uLRqOKRvsVi0UHD7Qk68O8fGp0oZZUEmwF7D21/DJcJXW3v3iOXcrtt8Mtvm0OAKjOzKXtwKm3ZDm+3uIsqFEsw+f3+9XS0qbW1lY7hCrU29TS0sLeTwAAAJBEQAUAADAihmEoEAgoEAiotXXKiK5Jp1OKRmOKxazAygqvok69tCzcUqlhvoW+s8GWZAdXvpIZWv4BdV9JwOUrCbh8kuEl4AKAPZhpmlI2LjPTWxI+9Rb3gsolRnxfLpdLzc0tam2dotbWVrW2tpUFUeFwhH8zAAAAMCwCKgAAgHHi8/nV3OxXc/PQSw2WymazisdjisViZWWxHrfrUbs97pxjmsNEVXa4JfWXhVojC7gMJ9yyZmf5SgKuknY76CrO4LL7XARcADDerKX4+ktmQfWW1UezF1QwGLQDqDa1trapra3NqTc1tcjtdo/jMwEAAMDegIAKAABgN+LxeFRf36D6+oZRXZfP55VKJe0AK65EwgqyrDI+bHsmkx7mEUwpl7JuGY1zwFVZl+Em4AIASWY+YwdPffZsqNI9ofo14ldlw1BjY5NaW6fY4VN5GBUKhXndBQAAwLgioAIAAJgEXC6XgsGQgsGQWlpGf30mk1EymbBDrIQSibgTYpWWiUSipF5sT6fHOeAyXNVDrJJ9tqz2QLHu9kvugGR4+JAVwB7DNE0pl7D3fuqtmA01mqX4PB6PWlpay0Kotjbr1tLSKq/XO47PBAAAABgaARUAAADk9Xrl9XpVV1e/U9fnctkq4VViQLg1sJ5wZnMNG3CZeetD2VxiJ2ZvuZywqnLvrUBJ+4C6y0+wBWBcmGbOXorP3v+pdE+oTJ+Uz4z4vgKBYEn4VB5CNTY2yeVyjeMzAQAAAHYeARUAAAB2mdvtUSRSp0ikbqeuz2azJcsOxuywKzbk0oSFtng8Psz+W7sQbtmzsgYPs8pLeQKSwX5bwN7OmQXlhE999owoeym+bHRU99fQ0OAET9YSfMUyHI7wmgMAAIA9EgEVAAAAJpzH41FdXf1OzeAq3X8rFouVBFtRJ/Cq7Is5QdiQ7GUJzZLJDMMGW4arJMAKloRawYowq9Avl48PmIE9jJlLWYFTpl9mpn/AjKheycyO+L7cbre9FF8hfJri7AXV2tomn88/js8EAAAAmBgEVAAAANijle+/1Tqqa3O5nBKJuGKxqGKxmFPG4+X1aDSmeLxwTkzJ5BDBlpmXsnEpG3fCrOFna9nLEHqCdoAVLAmySuqFdmZqAePKmgE1MIAqD6OUH27vvXL19fVqabECp9ZWK4xqaZmi1tZWluIDAADAXomACgAAAHstt9u9U0sT5nLZskArGo3a9WhJPaZYrF/RqHVePB5TPp8f5B4rlyEcfqaWuzhTyxMsD7XcQRme0llc9uwtl3tUzxOYrMx8VspGZWaiUiYqM1ssiwHUyPeBkiSv16fW1taSEKo0iGqT388sKAAAAKAUARUAAAAwSm63R/X1DaqvbxjxNfl8XslkUtFo/4Agy6pHo/1OW2l90P21zJyUjUnZmMyU3TTcIFzeAUFWIdwq3UsrWL4MoUGohT1LWfiUjdmBU8wOn6LW/k+55Kjv1+/3q6WlVc3NrWppabHLVjU3t6ilpUWRSB2zGgEAAIBRIKACAAAAasDlcikUCikUCkmaOqJr8vm8Eom4HWBFFYv1q7+/35611T8g3LJCrUQiPsQdZqR8xtojxzZ8qOUr3zurou6vaJOL5QcxtkzTtJbUy8ZlZmN2GbcCqMKSmjnrWLnUTj1GOBxWY2NT1RCqpaVFoVCY32sAAABgDBFQAQAAALspl8ulcDiicDiiqSPLtJzlBwuhViG8Gjgzy2qzgq5UaogP9PNpKZ8eXahV2FPLCa78ZWGWXH4Zbp/V7iq0+6w6yxDuNUwzJ2WTUi4pM5ewy6SUTUi5eDF4soMombmdfqxQyAqfmpqa7ZtVL7Q1NjaxBB8AAABQYwRUAAAAwCSyM8sPZjKZsmUHS8Or0qUI+/v7FY9be2olk0MtkVa5p5Y0kmBLkuGxwyq/HW4V6n57NpdPcvlkuHzOseHyWvXCMcsS1pSZzxaDzJxVKpcaJHiy67mkdd4u8niKv+8NDYWysSyEamhoUiAQGINnCgAAAGAsEVABAAAAezmv16vGxiY1NjaN+JrCTC0rvIoNqEeVy6UUjUbV1dWreLx4TiYzTChhZqVsVlJ89OFWgeG2AysruDLcdt3wWMsPujyS4ZVcHutm2G1l7V4Z9vlyua37NNyS4ZLk2iOXejPNvPXzzefsMiuZWStgctozUj4n07RDJztwMivqKXvJyJRk5sd8rKFQWPX19WpoaHQCqEIIZbVZfcFgaI/8bwEAAACAgAoAAADAThhuplZbW50kqaOjv6w9k8kokYgrHo8rHo+V1a2y0J5w2qxzYkomk9ZeRMMxc84MLqky3BpV2DUYw1UeWpWVbhmlbTLsmySjpC7DPtbg/ZKkvGSadhBUKCvbzLJ+uyyET2Z2XIKkkfD7/QqHI4pEIopE6qrWrbLOqXs8/KkKAAAATHa86wcAAABQM16vV17v6JYgLDBNU6lUSqlUUslkQomEVVq3pBKJYn1gWyqVUjqdVjpdLDOZzM4/ETNvBz7V72NMQrDdgGEYCgSCCgaDTjlYPRAIKRgMKBAIKRQKOgGU1+ud6KcBAAAAYDdEQAUAAABgj2CFJQEFAgE1NDTu8v3l83llMhkntKoWYlllWrlcVtmsdcvlciX10raMstlcSbvVZpqmc5MKdWvJPau02vP50n7TmS3mdrvlcrnldrtkGC653S65XG65XC653e4qbcW61+uVz+eT1+uzS++g9eJ5VrvfH5Df72cJPQAAAADjgoAKAAAAwF7J5XLJ7/fL7/dP9FAAAAAAYK/jmugBAAAAAAAAAAAAYO9CQAUAAAAAAAAAAICaIqACAAAAAAAAAABATRFQAQAAAAAAAAAAoKYIqAAAAAAAAAAAAFBTBFQAAAAAAAAAAACoKQIqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKgAoAAAAAAAAAAAA1RUAFAAAAAAAAAACAmjJM0zR39uJ83lQ2mxvL8UwqPp9HkpROZyd4JACw9+E1GAAmFq/DADCxeB0GgInDazD2Nh6PWy6XMerrdimgAgAAAAAAAAAAAEaLJf4AAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAAAAAAANQUARUAAAAAAAAAAABqioAKAAAAAAAAAAAANUVABQAAAAAAAAAAgJoioAIAAAAAAAAAAEBNEVABAAAAAAAAAACgpgioAAAAAAAAAAAAUFMEVAAAAAAAAAAAAKgpAioAAAAAAAAAAADUFAEVAAAAAAAAAAAAaoqACgAAAAAAAAAAADVFQAUAAAAAAAAAAICaIqACAAAAAAAAAABATRFQAQAAAAAAAAAAoKYIqAAAAAAAAAAAAFBTBFQAAAAAAAAAAACoKc9ED2BP8/bbb+u5557TK6+8ovXr12vTpk0yTVP/8R//oU9/+tNDXvvQQw9p2bJl2rBhg/L5vA444ACde+65Ov/88+VykRUCwHAymYxeeuklPfPMM1q9erU2bdqkdDqtpqYmzZ8/X5/73Od01FFHDXo9r8MAsOuWLFmil156SW+++aa6uroUjUZVV1enD3/4wzr77LN15plnyjCMiuvy+byWLVum+++/X++8845cLpdmz56tCy64QKeffvoEPBMAmBxuvPFG3XbbbZKkq666Sl/84hernsd7YQDYdQsXLtSKFSsG7T/ggAP06KOPVrTzXhiojoBqlJYtW6a77rpr1Ndde+21Wrp0qfx+v4455hh5PB6tWrVK3/ve97Rq1Sr95Cc/4Q0hAAxjzZo1+sIXviBJamtr08c//nEFg0G99dZbeuyxx/TYY4/piiuu0Ne//vWKa3kdBoCxcfvtt6urq0sHH3yw5s+fr2AwqPfff18vvPCCVq1apccee0w//elPy15Tc7mcvvrVr+qpp55SJBLRscceq3Q6rVWrVukb3/iG1q1bp2uuuWYCnxUA7Jn+93//V7/4xS9kGIZM0xz0PN4LA8DY+tjHPqb99tuvor2tra2ijffCwOAIqEbpkEMO0Re/+EUddthhOuyww3T11Vdr9erVQ17z2GOPaenSpWpra9Pdd9+t/fffX5K0Y8cOXXTRRXr88ce1ZMkSXXzxxTV4BgCw5zIMQ6eccoouuugiLViwoKzvkUce0Te/+U3953/+p4466igdffTRTh+vwwAwdm688UbNnTtXoVCorH3jxo265JJL9OSTT2rFihU699xznb5f/epXeuqpp3TQQQfpV7/6lVpbWyVJmzZt0uc+9zktWbJERx99tE466aSaPhcA2JOl02ktXLhQLS0t+shHPqInnnii6nm8FwaAsXfeeefpnHPOGdG5vBcGBsfXY0bpvPPO01VXXaXTTjtNs2bNGtE1han23/zmN503gpLU2tqq7373u5Ksb6Lm8/mxHi4ATCrHHHOMfvKTn1SEU5J02mmn6eyzz5Yk/e53vyvr43UYAMbOggULKsIpSTr44IN1wQUXSJKef/55pz2Xy+kXv/iFJOm73/2u8we5JO2///765je/KUn6+c9/Pp7DBoBJ5z/+4z/01ltv6dprr1VdXd2g5/FeGAAmDu+FgaERUI2zrVu36tVXX5XX6626R9WRRx6pqVOnqqOjQ+vWrav9AAFgEpk7d64kadu2bU4br8MAUDsej7VAg8/nc9rWrl2rzs5OTZs2TR//+Mcrrvn0pz8tr9erV155pez1GwAwuD//+c+68847dfrpp+vEE08c9DzeCwPAxOK9MDA0Aqpx9tprr0myvlEaCASqnnP44YdLkl5//fWajQsAJqNNmzZJKl/zmddhAKiNzZs369e//rUklX1YWnhtLbzWDhQMBnXQQQeVnQsAGFwqldK3v/1tNTQ06Oqrrx7yXN4LA8D4ePHFF/XDH/5Q3/nOd3TzzTfrueeeqzoTlffCwNDYg2qcbdmyRZI0Y8aMQc+ZPn162bkAgNHr6OjQihUrJEknn3yy087rMACMj/vvv19r1qxRJpPRtm3btHbtWuXzeX3lK1/R3/zN3zjnjfR1+PXXX+d1GABG4KabbtI777yjm266Sc3NzUOey3thABgfDzzwQEXbQQcdpBtvvFGzZ8922ngvDAyNgGqcxeNxSVYaPphwOCxJisViNRkTAEw22WxW3/rWt9Tf369jjjmm7Jv7vA4DwPh4+eWXnS8GSNbyfl//+tf1hS98oey8kbwOF/a04nUYAIb28ssv61e/+pVOOukknXbaacOez3thABhbH/7wh3XNNdfoE5/4hKZPn65oNKrXXntNN910k9544w194Qtf0IoVKzR16lRJvBcGhsMSfwCAPd6//uu/atWqVZo+fbr+7d/+baKHAwB7heuuu04bNmzQn//8Zz388MO66KKL9NOf/lR/93d/x/r5ADAOksmkFi1apEgkon/913+d6OEAwF7pkksu0YUXXqgDDzxQoVBIU6ZM0QknnKD77rtPH/3oR9XZ2anbbrttoocJ7DEIqMZZIQFPJBKDnlNIxwvfWgIAjNz/+3//T7/97W/V1tamX/7yl2X7T0m8DgPAeAsEAjrooIP07W9/W//8z/+sN954Q9///ved/pG8Dhe+WcrrMAAM7sYbb9SmTZu0cOFCTZkyZUTX8F4YAGrD5/Pp8ssvlyQ988wzTjvvhYGhscTfONtnn30kSe+///6g52zdurXsXADAyFx//fVasmSJmpub9ctf/lL7779/xTm8DgNA7Zx99tn60Y9+pKefflqZTEZer5fXYQAYI0888YRcLpceeOCBir1P3n77bUnSsmXL9Ic//EGzZs3Sddddx2swANTQhz70IUkqW02A12FgaARU42zu3LmSpI0bNyqZTCoQCFSc88orr0iS5syZU9OxAcCe7Mc//rHuvPNONTY26s4779RBBx1U9TxehwGgdhoaGuTxeJTNZtXb26vW1lbndbjwWjtQIpHQxo0bJRVfswEA1eXzea1evXrQ/s2bN2vz5s3q6+uTxHthAKilnp4eSeUzoXgvDAyNJf7G2fTp03XooYcqk8no0UcfrehfvXq1tm7dqra2Ns2fP38CRggAe54bbrhBixcvVkNDg+688059+MMfHvRcXocBoHbWrFmjbDar+vp6NTU1SZLmz5+v5uZmbd26VWvWrKm45tFHH1Umk9Hhhx/ubCYNAKj01FNPacOGDVVvZ599tiTpqquu0oYNG/Tggw9K4r0wANTS//zP/0iSDjvsMKeN98LA0AioaqCw/ugNN9ygd99912nv7OzUtddeK0n60pe+JJeL/xwAMJybbrpJt99+u+rr63XHHXeM6BtGvA4DwNh46aWX9PTTTyubzVb0/elPf9LVV18tSfrbv/1bud1uSZLb7dZll10mSfrud7+rzs5O55pNmzbp3//93yVJX/nKV8Z7+ACwV+K9MACMjddff11PP/20crlcWXs2m9Udd9yhJUuWSJIuueQSp4/3wsDQWOJvlF599VXnDZwk/eUvf5FkfWB6xx13OO2/+c1vnPqnP/1pnX/++Vq2bJnOOOMMfeITn5DH49GqVasUjUZ10kkn6fOf/3ztngQA7KGefPJJ/fznP5ckzZo1S3fffXfV8z70oQ85f4hLvA4DwFh57733tGjRItXX12vu3LlqbW1VLBbT5s2bnffFJ5xwgr7+9a+XXXfJJZdozZo1evrpp3XyySfrmGOOUTab1fPPP69UKqULL7xQJ5100kQ8JQCY9HgvDABjo729Xf/3//5fNTY2au7cuWpublZPT4/efPNNbd++XS6XS9/61rf0V3/1V2XX8V4YGJxhmqY50YPYk7z44ou66KKLhj1vw4YNFW0PPfSQ7rnnHr355pvK5/P60Ic+pHPPPVfnn38+31QCgBFYvny5Fi1aNOx5Rx55pPPNpVK8DgPArtm8ebOWL1+ul156SZs3b1ZXV5dM01RbW5sOO+wwnXnmmYP+cZ3P57V06VItX75cb7/9tlwul2bPnq0LLrhAZ5xxRo2fCQBMLgsXLtSKFSt01VVX6Ytf/GLVc3gvDAC7ZvPmzbrrrrv0yiuvqL29XT09PTIMQ9OmTdMRRxyhz33uc2XL+5XivTBQHQEVAAAAAAAAAAAAaoqvyAAAAAAAAAAAAKCmCKgAAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAAAAAAANQUARUAAAAAAAAAAABqioAKAAAAAAAAAAAANUVABQAAAAAAAAAAgJoioAIAAAAAAAAAAEBNEVABAAAAAAAAAACgpgioAAAAAAAAAAAAUFMEVAAAAAAAAAAAAKgpAioAAAAAKLFw4ULNnj1bt9xyy0QPBQAAAAAmLQIqAAAAAAAAAAAA1BQBFQAAAAAAAAAAAGqKgAoAAAAAAAAAAAA1RUAFAAAAAAAAAACAmvJM9AAAAAAAYDyceOKJam9v11133aV9991Xt956q1auXKmuri61tbXplFNO0RVXXKG6urpB7yOXy2nJkiVavny53n33Xfn9fs2fP19f/epXdfjhhw96XTwe17Jly/T444/r7bffViKR0JQpU3TwwQfrtNNO06mnniqv1+ucv3nzZv3iF7/QCy+8oA8++ECGYai5uVkzZ87Ucccdp/POO0/Nzc1j+vMBAAAAgIlEQAUAAABgUnvvvff0T//0T+rq6lIoFJJhGGpvb9cdd9yhJ598UnfffbemTJlScV02m9Xll1+ulStXyuv1yuv1qre3V3/4wx+0atUq/epXv9L8+fMrrvvLX/6iyy+/XO3t7ZIkj8ejSCSirVu3asuWLXr66af1sY99TDNnzpQkvfrqq7rwwgsVi8UkSV6vV8FgUO+//77ef/99rV69WnPmzNHxxx8/jj8lAAAAAKgtlvgDAAAAMKn96Ec/Ul1dne655x6tXbtW69at06233qqmpia9++67WrhwYdXrli5dqvXr1+umm27Syy+/rLVr1+rBBx/UIYccolQqpeuuu67imp6eHl122WVqb2/XzJkzdeutt2rt2rV68cUXtW7dOi1dulTnnHOOPJ7idwV/9KMfKRaLad68eVqxYoXWr1+vNWvWaN26dfrtb3+riy++eMhZXgAAAACwJzJM0zQnehAAAAAAMNYKS/z5/X499NBD2m+//cr6X3jhBV188cWSpHvuuUcLFiyQJC1cuFArVqyoaC9Yv369zj33XEnS008/rRkzZjh9P/7xj7V48WI1NTXpwQcf1NSpU4cd57x585RMJvWb3/xG8+bN2/knDAAAAAB7EGZQAQAAAJjUTj311IpwSpKOPvpoZ4m+xx57rKJ/wYIFFeGUJB122GGaNm2aJGnjxo1lfQ8++KAk6dJLLx1ROCVJkUhEktTR0TGi8wEAAABgMiCgAgAAADCpHXnkkcP2vfbaaxV9hx9++KDXFcKn3t5ep23Lli3asWOHJOmTn/zkiMdX2Fvqqquu0g033KB169Ypk8mM+HoAAAAA2BMRUAEAAACY1IaayVTo6+rqqugLh8ODXuf3+yVJ2WzWaevs7HTqpcv+Deeqq67S/PnzFYvFdPvtt+uzn/2sjjjiCF100UVaunSpksnkiO8LAAAAAPYUBFQAAAAAMIGampq0bNky3Xnnnbrwwgs1d+5cZTIZvfjii7r22mt1+umna+vWrRM9TAAAAAAYUwRUAAAAACa17du3D9vX3Ny8y4/T0tLi1Nvb20d1rWEY+sQnPqFrrrlGK1as0AsvvKDvfe97amxs1ObNm/WDH/xgl8cHAAAAALsTAioAAAAAk9qaNWsG7Vu9erUkae7cubv8ODNnzlRbW5sk6dlnn92l+2poaNBnP/tZXXnllZKGfg4AAAAAsCcioAIAAAAwqT3yyCPavHlzRfuaNWv08ssvS5I+/elPj8ljnXnmmZKkO+64Q9u2bRv2/Hw+X7aP1UCBQECSlE6nx2R8AAAAALC7IKACAAAAMKl5vV5ddtllThiVz+f11FNP6R//8R8lSccee6yOOOKIMXmsL33pS5o6daq6u7t1wQUX6Mknn3TCpUwmo9WrV+vKK6909pSKRqM6+eST9bOf/UwbNmxQLpdzxrhq1SrddNNNkqTjjjtuTMYHAAAAALsLz0QPAAAAAADG07e//W3deOONOv/88xUKhZTP55VMJiVJ++23n66//voxe6ympibdfvvtuvzyy7VlyxZdccUV8nq9CofDikajzmypb3zjG8417e3tuvnmm3XzzTc75/b39zth1b777qtFixaN2RgBAAAAYHdAQAUAAABgUps1a5buv/9+/fSnP9XKlSvV1dWlffbZR6eccoquuOIK1dXVjenjzZ49Ww8//LCWLFmiJ554Qps2bVIikdD06dM1e/ZsnXbaaZo2bZokKRKJ6LbbbtPzzz+vtWvXauvWreru7lYwGNQBBxygk046SZ///OcViUTGdIwAAAAAMNEM0zTNiR4EAAAAAIy1E088Ue3t7brrrrt01FFHTfRwAAAAAAAl2IMKAAAAAAAAAAAANUVABQAAAAAAAAAAgJoioAIAAAAAAAAAAEBNEVABAAAAAAAAAACgpgzTNM2JHgQAAAAAAAAAAAD2HsygAgAAAAAAAAAAQE0RUAEAAAAAAAAAAKCmCKgAAAAAAAAAAABQUwRUAAAAAAAAAAAAqCkCKgAAAAAAAAAAANQUARUAAAAAAAAAAABqioAKAAAAAAAAAAAANUVABQAAAAAAAAAAgJoioAIAAAAAAAAAAEBNEVABAAAAAAAAAACgpgioAAAAAAAAAAAAUFMEVAAAAAAAAAAAAKgpAioAAAAAAAAAAADU1P8PpHENPY9DtooAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABqgAAAFYCAYAAAAvG31aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAABYlAAAWJQFJUiTwAABwK0lEQVR4nO3deZxcdZ3v//c5tS+9pzsJKDsJOwKyyWgciIAsiugwXB3kAgPXOygzCrL5gxkGLiIyiKyK4iCrTDAMhEUUkCAg4LCqyJ6wGNJLeq19Oef3xzl1qqq7Or2kujpJv56Px3mc7/l+T1WdauOhu971+X4N27ZtAQAAAAAAAAAAAA1izvYFAAAAAAAAAAAAYG4hoAIAAAAAAAAAAEBDEVABAAAAAAAAAACgoQioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGoqACgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqAAAAAAAAAAAANBQBFQAAAAA5iTLsmb7EgAAAABgziKgAgAAAOrkhBNO0OLFi7V48eJJP+bZZ5/1HnPNNdfU9Xoqn/uBBx6o63PPtIMPPliLFy/WKaecUvfnTqfTuuqqq/TTn/607s+Nxij9f+3www+f7UsBAAAAME0EVAAAAADmlCOOOEI33HCDstnsbF8KAAAAAMxZ/tm+AAAAAAAzIxwOa6uttpIkxWKxWb6aqdlyyy3l8/nU1dVV9+des2ZN3Z8TjdXV1aWtttpKW2655WxfCgAAAIBpIqACAAAANlN77rmnfvOb38z2ZUzLrbfeOtuXgI3Yf/zHf8z2JQAAAADYQEzxBwAAAAAAAAAAgIYioAIAAAA2Us8++6wWL16sxYsXq7e3Vz09Pbr00kt12GGHaY899tC+++6rE044QcuXL5dlWet9/AMPPCBJ+uMf/+j1/fSnP13v699www1avHixdt55Z3344YdVY/39/brhhht0wgkn6G/+5m+02267aa+99tIhhxyiM888U0899VTN57zmmmu0ePFiHX744cpkMrrkkku0//77a88999Rhhx2mu+++W5J08MEHa/HixTrllFNqPs90Xr/0nCXXXnut97MYzbZtPfjgg/ra177mPf/++++vE088UXfddZfy+fx6f3bjqXz/kvTKK6/ozDPP1Kc+9SnttttuOuigg3TGGWfoueeeW+/jS/8mxrP77rtr8eLFOvfcc6v6ly9frsWLF2uvvfaSJL3++us655xztGTJEu2+++5asmSJzjnnHK1evdp7zIsvvqhvfOMbOuigg7TbbrvpkEMO0aWXXqqhoaH1vtff/e53+ud//mctWbJEu+22m/bbbz8df/zxuummm5RKpWo+pnR9u+++u4rFoq699lp98pOf1O67766DDz5YP/rRjyRJJ5xwQtXPsZannnpK3/rWt/SZz3xGe+yxh/bZZx8dd9xxuummm5TJZGo+5oUXXtA555yjQw45xPs3ddhhh+n888/XCy+8sN73CwAAAGBqmOIPAAAA2AS8/PLLOv/886tCgWw2q+eee07PPfecfvOb3+i6666Taa7/O2i77767Fi1apDfeeEMrVqzQP/7jP4577n333SdJOuCAA7Rw4UKv/+GHH9a55547JmTI5/NKpVL64IMPdP/99+vEE0/U+eefX/O5bdvWGWecoZUrV3p9q1ev1kc+8pH1Xn+9Xn99+vv7dcYZZ+gPf/hDVf/g4KCeeeYZPfPMM7r99tt1ww03bNAaSLfffrv+3//7fyoWi15fX1+fHn74YT388MM6++yzxw3o6mHFihU677zzqsK2tWvX6r//+7/129/+Vnfeead+//vf69JLL626xg8++EA///nP9eSTT2rZsmVj1jdLp9M655xz9PDDD1f1Dw0N6cUXX9SLL76o2267TTfccIN22mmnca/voosu0l133eUd//Wvf1VnZ+eE7yuZTOqCCy7wQtmSbDarl19+WS+//LL+67/+Sz/72c+q/ve78cYbx0wdmM/ntXr1aq1evVq//OUvdfLJJ+ucc86Z8BoAAAAATIwKKgAAAGAT8O1vf1u2bev888/XI488oqefflrXXXed9wH7Y489phUrVkzqub74xS9Kkl577TW9+eabNc/54x//qHfeeUeS9IUvfMHrf+ONN/Stb31LqVRKW265pb73ve/pN7/5jZ555hndd999+va3v62WlhZJ0s9//nO98sorNZ9/9erVWrlypY4//ng9+uijeuSRR3ThhRdq//33X++1b8jrP/DAA1VVMP/n//wfvfDCC1V9uVxOp556qv7whz/I7/frlFNO0b333qvnnntODz30kL75zW8qGo3q9ddf18knn6xEIrHe6x3Phx9+qEsuuURbb721rrrqKj311FNauXKlvvOd7ygcDkuSrrzySr3//vvTev6JZLNZnXfeeZo3b56+//3v64knntCDDz6o448/XpITJv3TP/2TLrnkEu2xxx66+eab9cwzz2jFihU69NBDJUlvv/227rzzzqrntW1b3/rWt7xw6ktf+pKWLVumZ599Vo888oguuOACtbW1ac2aNTrppJPGVOaV5HI53XXXXTr00EP14IMPauXKlbrooot0xBFHTPjezjvvPC+cOuSQQ3T77bfr97//vR588EGddtppMk1Tq1ev1te//nWv8vCVV17RlVdeKUnaf//9dfPNN+uJJ57Qk08+qZ/85CfaddddJUk/+9nPxq0OBAAAADA1VFABAAAAm4B8Pq877rhDO++8s9e3dOlSbbvttjryyCNl27Yeeughff7zn5/wuT73uc/piiuuUD6f13333aczzzxzzDn33nuvJCkej3uBhCT95Cc/UaFQkN/v10033aRtt93WG2tra9PixYu19dZb6+tf/7ok6YknntAee+xR8zoOOOAAXXTRRd7xV77ylQmvfUNePxKJVD1XIBAYU/1z8803609/+pMMw9C1116rv/3bv/XGWlpa9LWvfU3777+/vvKVr2j16tX60Y9+pLPOOmvC6x4tk8lo66231rJlyxSPx73+r371qwoEAvq3f/s3FQoFPfLIIzrppJOm/PwTKRaLCoVCuvPOO73quPnz5+vf/u3f9Ic//EFvv/22Vq9erV122UW33HKLgsGgJOdn/B//8R86+OCD1dvbqyeffLKqCu/BBx/UY489Jkm68MILq/43bW1t1T/8wz/oU5/6lI455hj19/fr8ssv1w9+8IOa17jNNtvoqquuks/nkyQvPFufJ554wgvHvvzlL+tf//VfvbH29nadeeaZisfjuvLKK/Xqq6/qscce09KlS/XQQw/Jtm1FIhHdeOONXkgoSZ2dndpjjz108MEHK5lM6r777tNBBx00qZ8zAAAAgPFRQQUAAABsAg4++OCqcKpk++2390KaDz74YFLP1d7eriVLlkiS7r//ftm2XTVeKBT04IMPSpKOOOKIqg/rP/axj+m4447TqaeeWhUOVTrggAO89uDg4LjXMZlqmNHq+fq13HbbbZKkJUuWVIVTlfbaay8deeSRkqS77rqravq7qTjxxBOrwqmSz3zmM157piqoJOnYY4+tmrpRkgzD0Mc//nHv+KSTTvLCqZJgMKjddttNkjMlYKVbb71VkrTjjjuOGzhutdVW+upXvypJ+tWvfqX+/v6a5x122GFeODVZpWC1qalJZ599ds1zTjjhBO2www76xCc+oWw2K0neNIfFYrHmv5nW1lbdcMMNuvPOO8d9XgAAAABTQwUVAAAAsAnYa6+9xh2bN2+e3nnnHaXT6Uk/37HHHqtHHnlEa9as0fPPP18VSjz11FNat26dpOrp/aSJq5wGBgb0/PPPe8eV6xuNtssuu0z6emfi9Ud755131N3dLUnaddddlUwmxz33Yx/7mO677z4NDw/r9ddfn9Z7+djHPlazv6OjQ6ZpyrKsKf1vOlXj/Zvq6Ojw2qUgarSmpiZJzlR8JalUSn/84x8lOWudTfTzkyTLsvT8889XhXIl0/mZlqbf+8QnPjGmYq4kGo2OWZ9q33331a233qpcLqcvfelLOu644/TJT35Se+yxhxeSTTT9JAAAAICpIaACAAAA6sQwjCk/prJ6aX2Pb2trG3esVOEyuhJqfZYsWaJ58+apr69P9913X1VAVapC2WabbbT33nvXfHw+n9fTTz+t119/Xe+9957ef/99rV69ekxFzfquaX3vaSL1eP3R3n33Xa993XXX6brrrpvU49asWTOtMKW9vb1mv2EY8vv9yuVyU7r+qaoMoiqZZnmijVoVXpJqVjZ98MEHKhQKkqTly5dr+fLlk7qONWvW1Oyf6r+PbDargYEBSc6/3an4zGc+o89+9rN66KGH1Nvb6/3v39zcrP3220+f/OQndcghh6izs3NKzwsAAABgfARUAAAAQJ2EQiGvncvlxkyNVktlhUzlVHqjBQKBDbu4Ufx+vz73uc/pZz/7mR5++GH9f//f/6dgMKhEIqFHH31UklNlVcvPf/5z3XTTTV61UaWtttpKBx10kO68884Jr6Hy5zUV9Xr90UZGRqZ1PYlEYlqP8/tn98+x8SqMKk0ldJ3uz2+8x03130fl1HyTeW+VTNPUVVddpaVLl+oXv/iFnn/+eVmWpeHhYT3yyCN65JFHdNFFF+nII4/UBRdcoJaWlik9PwAAAICxCKgAAACAOqmsiBkcHFRXV9eEj6n8UH28ipqZcuyxx+pnP/uZBgcH9cQTT2jp0qV6+OGHlclkZJqmPv/5z495zJVXXqkf//jHkqTOzk4tXbpUu+yyi7bbbjvtsMMOam1tVaFQmFZANBkz+fqVocaNN97ordO1qbEsa0pTG9ZL5c/vwgsvnHA6xpl8/UwmM63nOOqoo3TUUUdpcHBQzzzzjJ599lk9/fTTWr16tSzL0ooVK9Td3e2ttQUAAABg+gioAAAAgDqpnFZs1apVkwqo3njjjZqPb4Qdd9xRu+++u/74xz/qoYce0tKlS7VixQpJzho+CxYsqDq/u7tbP/3pTyU5azTdeuutisViY563v79/Rq53pl9/iy228NqvvfbaegMq27anNaXjhqqcfm+8EGpgYGBGpwYcz8KFC2UYhmzb1uuvv77ec2fi59fU1KR4PK5EIqHVq1ev99w77rhDw8PDWrx4sf72b/92zHhra6sOP/xwHX744ZKc/59++9vf1muvvabnnntOf/7zn7XrrrvW9foBAACAucac+BQAAAAAk7Hvvvt67QcffHDC823b9qbTi0aj2m233Wbs2sZTmsbv8ccf15o1a/Tcc89Jkr7whS+MOfell15SsVj0HlcrHJKkp556ymvXMyiZ6dffaaedvKnbVqxYsd7HXnzxxdpvv/30+c9/Xu+9996kX2NDRaNRrz1eEPfCCy806nKqtLW1accdd5Qk/frXv66avnK0m266SXvvvbeOOuooPf/883V5fcMwtM8++0iSfv/73yuXy9U8z7ZtXXPNNfrBD37grZN15pln6tBDD9WZZ55Z8zGLFi3S6aef7h2PXusMAAAAwNQRUAEAAAB1svfee2vbbbeVJC1btkwrV65c7/k33nij3n33XUlO4DKZNavq7aijjlIoFFIikdAll1yiYrGopqYmfeYznxlzrs/n89pvvfVWzed7//33dcUVV3jH9Zxqrl6vX1rPa/SYz+fTcccdJ0l68803dd1119V8jVdeeUXLli3T0NCQCoWCPvrRj07tjWyArbfe2ms/8MADY8bT6bSuv/76hl3PaF/+8pclOVVcF198cc2Q7/3339dPf/pTJZNJrVu3TjvvvHPdXr/0v9/Q0JCuuuqqmuf8/Oc/98K9o48+WpKUzWb17rvv6rHHHtM777xT83F//vOfvXajqx0BAACAzRFT/AEAAAB1YpqmLr74Yp100knK5/P62te+pmOPPVZHHXWUttlmG0WjUQ0NDekvf/mLli9frscff1yStO222+pf/uVfZuWam5ubtXTpUj3wwANeNdcRRxyhUCg05tyPf/zjikajSqVSuuuuu9TR0aEjjzxSbW1t6u7u1qOPPqr//M//1MjIiPeYVCpVt2ut1+u3traqt7dXK1eu1Je+9CVFIhF1dnZKkr72ta/pkUce0apVq3TNNdforbfe0gknnKDttttOQ0ND+u1vf6vrr79euVxOPp9PF154YUOn+jvggAPU0tKioaEh/ed//qei0aiOOeYYhcNhvfjii7rmmmv0xhtveOc02t/93d/pgQce0B/+8Af98pe/1IcffqhTTz1VO+20k5LJpJ555hldc801GhgYkCSdc845VVVhG+qQQw7Rpz/9aT3++OO66aab1NvbqxNOOEEf/ehH1d3drXvvvVe33HKLJGm//fbzgthTTz1Vjz76qFKplE466SSdfvrp2nfffdXa2qqenh7df//9uummmyRJf/M3f6Ptt9++btcMAAAAzFUEVAAAAEAd7bvvvvrxj3+sc845R729vbr77rt19913j3v+QQcdpO9///tqampq4FVWO/bYY6uqcUrT/o3W2tqqCy64QN/5zndkWZauvfZaXXvttWPOO+SQQ7Ru3Tq99NJLWrVqVd2us16v/4lPfEL33nuvXnvtNS+gePzxx7Vw4ULF43H953/+p04//XT9+c9/1kMPPaSHHnpozHNEIhFdeuml2n///ev2/iYjGo3qoosu0llnnaVCoTDmZ2Caps4880w9//zzXgDaSH6/X9dff72++c1v6sknn9TTTz+tp59+uuZ53/72t3XMMcfU9fUNw9B//Md/6Fvf+pZWrlyp++67T/fdd9+Y8/bee29de+21Xri455576oILLtAll1yitWvX6oILLqj5/Lvuuqu+//3v1/WaAQAAgLmKgAoAAACos4MOOki//vWvdf/99+vxxx/X66+/rr6+PuVyOYXDYW255Zbac889ddRRR+nAAw+c7cvVJz7xCS1cuFAffvihtttuO33sYx8b99xjjz1W22yzjW6++Wa98MILGhgYkN/vV2dnp3bddVd98Ytf1Kc+9Sn95Cc/0UsvvaQ33nhDb7zxhhYtWlSXa63H61944YUKhUJ67LHHNDQ0pNbWVv31r3/VwoULJUkLFy7UsmXLdP/99+uhhx7Sn/70Jw0ODioQCOijH/2oDjroIJ1wwgnaYost6vKepuqzn/2stt9+e91000165plntG7dOrW2tmrvvffWiSeeqH322Uf/5//8n1m5Nsmpyrvpppv02GOP6b//+7/1yiuvaN26dTJNUwsXLtQBBxygf/iHf9AOO+wwI68fj8d144036pFHHtHy5cv1yiuvaHBwUJFIRDvttJM+97nP6dhjj62aMlJypifcZ599dPvtt+t//ud/tGbNGhUKBbW2tmrnnXfW4YcfrmOOOWbM4wAAAABMj2HXc9ViAAAAAAAAAAAAYALmbF8AAAAAAAAAAAAA5hYCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaioAKAAAAAAAAAAAADUVABQAAAAAAAAAAgIYioAIAAAAAAAAAAEBDEVABAAAAAAAAAACgoQioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGoqACgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABoKAIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABqKgAoAAAAAAAAAAAANRUAFAAAAAAAAAACAhiKgAgAAAAAAAAAAQEMRUAEAAAAAAAAAAKChCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaCgCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaioAKAAAAAAAAAAAADUVABQAAAAAAAAAAgIYioAIAAAAAAAAAAEBDEVABAAAAAAAAAACgoQioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGoqACgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABoKAIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABqKgAoAAAAAAAAAAAANRUAFAAAAAAAAAACAhiKgAgAAAAAAAAAAQEMRUAEAAAAAAAAAAKChCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaCgCKgAAAAAAAAAAADQUARUAAAAAjLJ48WItXrxYb7zxxmxfCgAAAABslgioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGso/2xcAAAAAADNp+fLlOu+88/T3f//3Ov3003X55ZfrqaeeUjab1bbbbqvjjz9eX/rSl2SaY7+/Z9u27r77bv3iF7/QW2+9pWAwqN12202nnnqqDjzwwJqv9/jjj+vOO+/Un//8Zw0ODqqrq0uf/OQndfrpp6urq6vq3GeffVa33HKLXn/9da1du1ZNTU3aZZdd9MUvflFHHHHEjPw8AAAAAGBjYNi2bc/2RQAAAADATCkFVAcffLBeffVVrV27Vttvv70sy9KqVaskSYcddpiuvPJK+f3Od/gWL14sSdp77731wgsvqK2tTQsXLtTq1auVSqVkGIauuuoqHX744VWvddFFF+mOO+6QJC1YsEDt7e1atWqV0um0urq6tGzZMi1YsECStGLFCp199tmyLEsLFizQvHnz1NfXp7Vr10qSTj75ZJ1zzjkN+RkBAAAAQKMxxR8AAACAOeGxxx5TJpPRbbfdpgcffFC/+tWvdPPNNysej+vhhx/WnXfeOeYxL730ks4991w9+eSTuueee/TEE09o//33l23b+uEPf1h17vLly3XHHXcoGo3qmmuu0cqVK3XPPffoscce0/7776+enh6dd955kiTLsnTZZZfJsiz94Ac/0MqVK/XLX/5SK1eu1Pe+9z0ZhqGbb75ZH3zwQUN+NgAAAADQaARUAAAAAOaMSy+9VPvuu693fOCBB+r888+XJN14440aPcHEF77wBZ100kleZVVTU5POOussSdI777yjoaEh79wf//jHkqRvf/vbOvTQQ73+9vZ2XXHFFfL7/fr973+v7u5urVu3Tn19fWppadFnP/vZqtc85phjdNxxx+nII49UIpGo47sHAAAAgI0HARUAAACAOWHLLbfUIYccMqb/6KOPViQSUU9Pj1599dWqsaVLl445f/vtt/fag4ODkqTVq1dr9erV8vv9OuaYY8Y8pqurS/fcc4+eeeYZzZ8/X21tbWpqatLQ0JDOP/98vfnmm1Xn//u//7uuuOIK7bTTTtN4pwAAAACw8SOgAgAAADAn7LbbbjX7g8Ggtt56a0nSu+++WzXW1dU15vxYLOa1s9msJOm9996T5IRg0Wi05ussWrRIra2tkiS/368zzjhDkjM14FFHHaVPf/rT+s53vqNf//rXSqfTU3hnAAAAALDpIaACAAAAMCc0NzePO1YKnUZPqRcMBif13KVKqvHCqVq++tWv6sYbb9QnPvEJ+f1+ffjhh7r77rv1jW98QwcddJCuv/76ST8XAAAAAGxq/LN9AQAAAADQCOurSioFU21tbdN67kgkMuFr1LJkyRItWbJEIyMjevbZZ/X000/rt7/9rdasWaMf/vCHisViOvHEE6d1TQAAAACwMaOCCgAAAMCc8Pbbb9fsz2azWr16taTq9aWmYptttpEkffDBB8pkMjXPufDCC3XaaafpueeeUy6X0xtvvKG//OUvkqSmpiYtXbpUF154oR599FF94QtfkCTdd99907oeAAAAANjYEVABAAAAmBP+8pe/6LXXXhvTf9999ymbzWq77bbTdtttN63n3mGHHbRw4UIVCgXdf//9Y8YHBga0YsUKrVy5Uk1NTfrNb36jo48+WmeeeaZs26461zRNHXDAAZIky7KmdT0AAAAAsLEjoAIAAAAwZ/zLv/yLVq1a5R0/8cQT+u53vytJ+ud//udpP69hGDrttNMkSZdddpmefPJJb6y/v19nnXWWUqmU9t9/f+2888769Kc/rVgsprfffluXXnpp1dSAa9as0U033SRJ+tSnPjXtawIAAACAjRlrUAEAAACYEzo7O9Xf368jjjhCixYtUiaT8ab2O/nkk3X44Ydv0PN/+ctf1quvvqply5bplFNO0Uc+8hHF43GtWrVK2WxWW265pS677DJJUiwW0+WXX66vf/3ruuWWW/TLX/5SW221lXK5nN59910VCgXtuuuuOvXUUzf0bQMAAADARokKKgAAAABzQldXl5YtW6alS5fqr3/9q/r7+3XggQfqRz/6kc4555y6vMYll1yiq6++WgceeKCGh4f19ttva/78+TrllFN0zz33aIsttvDOXbp0qW677TYdeuihisVievPNN9Xd3a1ddtlF55xzjn7xi18oHo/X5boAAAAAYGNj2KMnPAcAAACAzcjy5ct13nnnadddd9Xy5ctn+3IAAAAAAKKCCgAAAAAAAAAAAA1GQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEM27bt2b4IAAAAAAAAAAAAzB1UUAEAAAAAAAAAAKChCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaCgCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaioAKAAAAAAAAAAAADUVABQAAAAAAAAAAgIbyb8iDLctWoVCs17VsdoJB58ebyxVm+UoAYO7hHgwAs4v7MADMLu7DADB7uAdjrvH7fTJNY+qP25AXLRSKGhpKb8hTbNY6O5skiZ8RAMwC7sEAMLu4DwPA7OI+DACzh3sw5pqWlogXzE4FU/wBAAAAAAAAAACgoQioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGoqACgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqAAAAAAAAAAAANBQ/tm+AAAAAADYGFiWpWw2q1wuO2qfU6FQcLe8CoWCisWC8vlyX7FY9MbyeWe89BjbtmRZtiRbtm3LtiXbtry989p2Vbt0riT5fD6ZpinT9Mnn88nnc9qmaY4aM6vaPp9PgUBQwaCzBQIhr129hdzxgILBkEyT7zECAAAAmHkEVAAAAAA2SbZtK5/PKZ1Ou1tK6XRamUz1cTqdVjabqQidcu4+o1wu5/Xn8/nZfksbBb/fr0AgqHA4rEgkqmg0qkgkqkgk4h5H3ONojWOn7ffzpyYAAACA9eOvBgAAAACzxrZtZTIZpVJJJZNJpVIJJZOldvXeCZ9SFYFUWpZVnO23sNkpVX6l0ykNDPRP6zlCoZDi8SZva2qq3jvtZu84FArV+V0AAAAA2NgRUAEAAACoi2KxoEQiqWRyRD09loaHh7VmTa+SyYQSiZGaoVMqlZRlWbN96WVmQDL8zt4MyCgdGz7J9EmG6bQNnwyj+rhyM6r6DUnuZshta9Tx6HGj4qIsybYk2x63bXtty+23JbvobFZBtl2QrLxkFSS7UNFXPpaVd9p1kM060yOuW9c3qfODwWBVmNXc3KLW1ja1tLSqtbVNra2tamlpVVNTM1MQAgAAAJsJAioAAAAAYziVTWmNjIxoZGREiUTllvBCp8p2Op1u/IUaPskMSr6gDDPktWUGZfjcYzMowwxKZjl4kumXYQSqjmX4ZRjGxK+5GbNLwZZVkKycZGVlF529ijnZVlYqZiUrJ9vdq5iV7e5L50n2lF43l8upv3+d+vvXrfc80zTd8MoJrEoBVuW+ra1NkUh0A34KAAAAABqBgAoAAACYA2zbVjqd8sKmkZFhd18OnSr7ksmECoX6VNNMyPBLvrDkC8nwhUe1QzJMZ+8ETyEZbgAlMyTD9DXmGucIwzDcCjK/pLDTN8XnsG3bDa7SsgsZqZiSChnZxbTbV71XMe1Wfk3MsiwNDg5ocHBgveeFwxG1t3e4W7va2+epvb1DHR0damtrV3NzC5VYAAAAwCwjoAIAAAA2QbZtK5vNVAVO5Wqnse1EYkTF4kyv12S4QVKkHDT5y+1a4ZPMMCHTZsYwSv8OQjKCE5/vBFr5itAqJbuQkvJJ2YWkVCjvVcxM6hoymbTWrPlAa9Z8UHPc7/erra1dbW3tFUGWs82b16m2tnb5fPy7BAAAAGYSARUAAACwkchmsxVVTKV9okafEzjl8/mZvSDD7wZMEckfcYOniOQvhU0RN3hy+mSG5vwUeZg6J9Byp2kMtqz3XNsqSIVUdXBVFWQlpHxywrW0CoWCent71NvbU3PcNE0vrKq1RaOxab9fAAAAAA4CKgAAAGAGlNZwSiQSFdPmOYFTaS0np8qpHDrl87mZvSgzUBEyuYGTvzJkGjVm8ucCNi6G6ZeCzTKCzeOeY9u2VMzIzo9I+ZGqvRNgjUxYiWVZlvr6etXX11tzPBKJ1gyuOjs71dbWQfUVAAAAMAn8xQkAAABMQqFQUDKZUDKZ8EKnseFTeT2nhqzhZPjckCnqTqcXHRM0EThhrjEMw/m3749Ika6a59hWTsonnNDKC7ASUn5Ydn5YKqTW+xrpdErvv/+u3n//3TFjPp9PHR3z1Nk5X52dXerqcvadnV3q6OiQz8f/DwEAAACJgAoAAABzUD6fVyqVrAibnKCpMoCqDKKSyaQymfTMX5gbOHnBki/sVjhFvH1V6GQEmFIPmAbDDEqhdhmh9prjtpV3QqvcsOz8kJRzgis7Pyzlhtc7hWCxWFRPT7d6errHjJmmTx0dHW5gNV9dXV1ekNXRMU9+P3+iAwAAYO7gt18AAABssizL8oKmZLJyn/TCplLbOc9pZ7PZxlxg5RpOvrDbDtcOnHwRySRwAjYGhhkYN8ByphBMyc4NOxVXuVJwNeSEWeupvrKsYsXaV3+qGjNNUx0d89yKq/maP7+0X6C2tnaZplnvtwkAAADMKgIqAAAAzLpcLucFSJX7sX0ppVIJr51Or38arvoynJDJF3ZDptqBk+H2yxd2PuQGsFlxphCMyfDHJC0cM25bOafiKjfkbPkhKTcoOzckFZLjPq9lWRXh1R+rxvx+f0XVVWlboK6uLrW0tBJsAwAAYJNEQAUAAIC6KE2b52ypqn05XCoFS9VjM75W0xjrC5sq+nwRGX63bYb4EBjAhAwzKIXnyQjPGzNmW/lyeJUfdKqu3E2FxLjPWSgU9OGHa/Thh2vGjIVCoaqqKye4ckKsWCxez7cGAAAA1BUBFQAAADyFQqFmoJRKJZVO1w6bSvt8Pjc7F22GJF+oIlQqBUyhUWFTWIbbJzNI2ASg4QwzIIU7ZIQ7xoyVw6tBdytVXg1KxfHXwMtms3r//ff0/vvvjRmLxeLq6nKmCezs7NL8+Qu8MCsUCtXzrQEAAABTRkAFAACwmbFtW5lMesw0eeXjlLcmk9Mun5fLzVLIJHNUoFQROlUFUKFy0GSGJV9QhsG6LAA2fesNr4rZqsCqKryyxr9vJ5MJrVqV0KpVb48Za21tq5oqsBRczZvXqUCA6UkBAAAw8wioAAAANmK5XFaJRFLJZKJiKx8nEuXjUhCVTqdkWdYsXK1RDpDcUMkJlkJjQybT7S9tRoCKJgAYh+ELyYh0SZGuqn7btqVixgmqKsIr53hIssefPnVwcECDgwN6443Xql/LMNTe3uGud1UKrpx9R0en/H4+RgAAAEB98JslAABAgxSLBSUSCY2MjCiZdPaJhLOV2qNDqHw+3+CrNMrBkulOh+e1KwOncLldCqBMQiYAaCTDMJz18/wRKbqwasy2bamQGFNx5YRXI5Jqf5HBtm2tW9endev69Nprf64aM01T7e0dXrVVZeVVe3sH4RUAAACmhN8eAQAApsmyLKVSSQ0PD2l4eFjDw0M1Q6dSO51ONe7izIBbtVSx7lLFlHnVfaWQKUzIBACbCcMwpECTjECTFPto1ZhtF6X8iOzsoFdtZefdICs/Mu5zWpalvr5e9fX1SvrTmNdzKq+6NG9elzo7u9TZ2elNG8iaVwAAABiNgAoAAKCCbdtKJpMaGakMnYZHhVDlMGrGp9IzTDdIKq3NVN0e2+dWORm+mb0uAMAmyzB8UrBVRrB1zJhtFaT88KjKqyGnXUiM+5yVlVfSq2PGW1paKoKrLs2bVw6vYrEYX44AAACYgwioAADAnJFOpzU0NKihoUENDg6M2g96Y8ViceYuwheWfO50TL6IDF9E8oer2pWhkww/H9oBABrGMP1SqF1GqH3MmG3lpdywE1jlKwOs4fWGV5I0NDSkoaEhvf32m2PGwuGw5s3rVEfHPHV0OPt58zo1b948dXTMUzBI9RUAAMDmiIAKAABs8izL0sjIiAYG1mlgoF8DA6PDJ2efzWbr/+JmyF3/Iyr5ol7wJH/EDZrKYZRT2WTW/xoAAGgAwwxI4Q4Z4Y4xY+XKK7faqqo9/ppXkpTJZPTBB+/rgw/erzne3Nysjo5OL8Sq3Le2tsrn46MNAACATRG/xQEAgI2abdtKp9MaGOhXf38pgCpv/f3rNDg4UN+qJzMg+aMyfFFn73f3vojkr+jzRZxvmgMAMMett/LKtpw1r3LDsvNDzppXuSG3PSzZhfU+tzPF7rBWrXp77OsahlpaWtXR0aH29nlqa2tXe3uHe9yhtrYOhcPhur1PAAAA1A+fqAAAgFll27aGh4e1bl2vu3bFOvX391WFUZlMpj4vZvgkf0yGPyYF3L13HHeDqJjzDXEAAFAXhmFKwRYZwRZJH60as21bKmZk54ed6QPzw1Vt5RNaX/WVbdsaHBzQ4OCA3n77rZrnxGIxL6wqhVdtbR1qa2tTW1u7mptbZJpUOAMAADQaARUAAJhRtm0rkRjxFk4fvfX3r1M+n9/wF/KFJH9cRqBJhj9eI4CKSWaI9ZwAANiIGIbhTpUbkSLzx4w71VcJN6wadquwhp2KrPywVEhN+BrJZFLJZFLvv/9ezXHTNNXc3KK2tna1trapra1NLS3O3jluV0tLq/x+PkIBAACoJ367AgAAGyyXy2ndul719vaqr6/H3feqv98JoXK53Ia9gOF3KpwC8XIIFYhLfncfiFP1BADAZsipvmqWEWyuOW5bRamQkJ0fcUOrkaq2CgnJHr8CS3LWsixVYa1Pc3OzWlvb1NrqBFYtLS1qaWlVc3OLd9zU1Ew1FgAAwCQRUAEAgAnZtq1kMqm+vlIA1aO+vl5vP9EHOhMyQ1KgSUawWUagSQo0ywg4QZT8cckXpvIJAACMYZi+iukDx7JtWyqkZBcqQqt8wg2yElIhKRXTk3qt0lpY77337vjXYxhqampWS0uLmptLIVZl2wm0mpqaFQwGp/WeAQAANhcEVAAAQFJ5Laje3m719narp6fHbTuhVDo9uQ9vajIDbujUJCPQ7HwTutQONMnwher3RgAAAFyGYTjT/gZiUmRBzXNsqyAVkrILSSe8KiSkfNLdJ5z+QnJSr+f8PjWk4eEhSbWnFCwJhUJqamqu2JpG7cvtWCxOZRYAANjsEFABADCHlNaD6unpVk9Pt3p7e9y9085kMtN8ZqOiAqrZ+SZzoMVtN7H2EwAA2GgZpn+9VViSZNtFpxIrn3SmFCwk3cqs6r2Kk/9dKpvNKpt1pkWe8BoNQ/F4k5qamhSLNSkejykWa1IsFlM8Hlcs5myldjwel2XFCLUAAMBGjYAKAIDNUDKZ8EKonp61XhDV09OjTGaalVCG++FNwF0HIuB8kOO0m2QYvvq+CQAAgI2EYfic33cCTes9zwuyvOAq5VZnVe5TUiEtaf1rY1U/r62RkWGNjAxP+jGmaSoejysSqQyxYopGY4pGo+4Wq9pHIk7b7+fjIgAAMPP4jQMAgE1ULpdTb2+PurvXqqdnrXp6ut12t5LJxPSe1Aw63x4OtjrhU6DF/UZxs+SLUgUFAACwHpMPsmzJykqFtOxiumKfkopp2QWnXRqTlZ3ytViW5a2b1d09tccGg8Ga4VUkElEkElE4HFUkEnb3EYXDkap9KBSiegsAAEyIgAoAgI1YsVhUf/869fSsVXd3txdE9fR0q79/3fSe1Ay41U9uCBVsLU9r44sQQgEAAMwwwzAkX1jyhWWobcLzncqsjFRMyS5mpGJGdsHZq5h2+7IV7Yxk5ad9fblcTrlcToODA9N6vGEYCoXCFYFWROFwWKFQeNQ+NE5/9bjPx8dXAABsjvgvPAAAs6w0ZUup+qlUEdXd3a2+vh4Vi8WpP2lpOr6aIRSVUAAAAJsSpzIrJgVimuxvceVQK1MOrYoZ2VbWDbOysotZpzprVFuyN+h6bdtWJpNWJpPWwPQyrip+v1+hUEjBoLOFQkGFQmGv7exD3n70uU67cl/eAoEgvxsDADBLCKgAAGiQTCaj3t7uqiCq1J7eulCGFGh2QqhQa3lavmCr5I/zhzYAAMAcNp1QSypNP5iXrEw5uCrmJCsju5iTLGerbKuYk+21s5JdqOt7KRQKKhQKSiaTdX3eknJgFVIgEKwZYlXvA+65gTHnlMedvnJ/gEowAABG4b+MAADUUaFQUF9frzsNX3k6vu7utRoaGpzek/qjMoJtFWtDtboVUc3OBw8AAABAnTjTDwadLaAphVsltm15wZWsivDKykvFvHucd7ec7Iq2rPyY4w2t6JpIaUpDaZrruE6SaZoVwVWgRvgVGDUeqgq8qkOx9QVkQfl8/J0AANj4EVABADBFlmVpYKBf3d1r3YooJ4zq7e1RX1+v863TqTIDMoJtFdPytZWn5fMF6/4eAAAAgJliGKa3xpY0vZCrxLZtyS46QZWddwOsghtgFSr63GMrL9mFipAr7z3etgpOdZf3uIIz1iCWZSmTySiTycz4a/l8Pi/gcqY8HDvVYSjkVIxVjodCQQUC5akSnS1cdcy0iACAeiGgAgCgBsuyNDQ0qN7eHvX29lRURPWot7dbhcJ0pi0xnaqnyiqoUBvrQgEAAADjMAzDWV/V9EuKOH11fH7btsqhlRtglYOsvNcnqyDbLlQdV59b2hedcMwL1Yrl8RmuBKtULBaVTqeUTqfq/tyGYYxa8ys8JtAKh8PePhyOeMeRSKSi39mCwZBM06z7dQIANn4EVACAOatUCVUKoZytWz09Perr61E+n5/eE/vjMkKtMgKtUqhiXahAs/NtUgAAAAAbBcMwJSMomeVZC2bia2POLAtWVRBWDrjcMMsqVodh4wZnFaFZVRhWMTaDbNuueyVYKBTygqxIJKJwOKpIJFKxRRUOVx8755WP/X4+5gSATQ13bgDAZq1QKKi/f536+nrHBFF9fb3TrISS5Iu4U/CVAyhvSj6T/7wCAAAAKHNmS/BJPp/kC5X7Z+C1ytMiVkxlaBVk27WmQayuFrO9dnnzpkssjc3AtIjZbFbZbFZDQ9N/jkAgoEgkqmg06u5jikajFVvMGy+Nlc4Lh8PMaAEAs4BP0AAAmzTbtpVMJtTX11u1DQ31u5VQfdNbE0qSfGFn+r1AS7kKqhRIVfxRCQAAAAAbi+ppEcPl/jo9v10Kv0aHWPao42JOsnLucc4dy7mBV84dz9et4iufzyufH9Lw8NRTLsMwFI3GFIvF3H3ca8fjcW8sFqtuh8NhpicEgA1AQAUA2OjlclmtW7fOq4QqbevWOfsNmlrCF3FCqGCLjEBLuQoq2CzDF57w4QAAAAAwlxhGfSvBbNvywitZOdnFvGRlvRDLtrJe2GVbOamYdc/LVgRdOW3IGl+lLz4mk4kpPa4y2HJCrbji8fh62/F4TD4fH8kCgERABQDYCKRSKfX397khVJ/6+50wqnScSEztj4Qx/HEZwWZnDaigWw0VaJWCzVRCAQAAAMAsMgzTCbvcv82mE3Y50xq6VVvFrBtqZSfdnm4VV3Ww1T3px4XDkYrwKqZ4vEnxeNzbx2Kjj+NUagHYLBFQAQBmVLFY0NDQkAYGBjQ42K/+/v6KAMoJozKZ9Ia9iBlwwqdAsxtEuRVQgWYp0MSaUAAAAACwGXOmNQxKZlAKxKccctl2USpmnOCqmHXbmYp2VrY1ts+p3Jq6TCatTCatvr7eSZ3vVGpFFYvF1dTUVBFgOWGW0+ccl8ZZVwvApoBP7AAA05bP5zU0NKjBwQENDPR7IZSzd9rDw8PTXwPKYzp/ZASa3CooN3wKNssItDhrRfGLNwAAAABgGgzDJ/ljkj82pXDLCbayFcFV2m27YVYhUxF2ZdzxrKY6HaFTqZVUMplUT8/kKrX8fr8XWjmVWOVqrOqQq9wfCASmdF0AsKEIqAAAYxQKBQ0PO4vLDg0NaWhosOrYCZ8GNDIyXJ8XNPxOpVOgSUYg7rabvT75o860DwAAAAAAbCScYCvq/M06ycfYtu2sseUFWKNDrfSovlKoNTWFQkFDQ4MaGhqc9GNCoZDi8aZRwVZp7azR0w860xOynhaADcEdBADmCMuylEqlNDIyrERiRENDQxoeHqwIoIa946kuDDshf1SGP+5UQflj5eCptPdFqIACAAAAAGz2DMOQfGFnJpDg5B5j25ZbqZV2QqtCKcBKV4Ramerxaayrlc1mlc1mtW5d36QfEw5HFIvFvFCrtK6Ws4/XHAuFmAUFgIOACgA2UZZlKZ1OaWRkRInEiEZGhiva5b5EYsTdErIsq85XYThTIARikj/uVD/5Y+4+7vbHnG+VAQAAAACAKTMMU/JHJH9k8pVaVt4JrQoVQVYxLRUqgqxRgddUpx6UyutpTSXU8vl8XlgVjTpbuR312rFYXNFo1BuPRKIyTWZXATYnBFQAMMts21Y2m/Hmk06lEl47mUwolUpWjSUSSbdvJgKnEkPyRdzKp5i7jzphU2kfiDP1HgAAAAAAGyHDDEhmwJm5ZBLnO1MP5ipCq0x1lVZV5db019OSpGKx6C0jMFWRSCnAiioSiXr7yvZ4+2AwSOUWsJEhoAKADeQETFml0yml02ml0ymlUillMmmlUuW+8r7yPCd4KhaLjblYM+hMp+evFT6Vj50p9wieAAAAAACYC5ypB0OSLzS99bSqQq2MO+VgxdpaxYw7TWFmWtMPlpQ+V5kO0/QpGo24gVZE4XCkal+rb/Q+FApTxQXUEQEVgDmpWCwom80pl8sqk8kok8kom8147UwmXXVcamezGaXT6THHM1fJNAEz6Mxb7Y86c1j7ozJ84XIIVbGXLyLDZKo9AAAAAACw4arW05rC42yr4AZYWSe48kKurBdi2cXs2H4ru0HXa1lFJRIJJRIbtu52KBRSOBxWKBRWOBxWOBypOg6FwuroaFEkElE+Ly/YKp8TUigUVigUUiBAVRfmNgIqABulYrGofD6nXG7sls9nK9o5L2gqLebptDMV/Zmqc3K5rAqF6X9bZ0YYfveXupAbMFW2K/vCMsxQRZvACQAAAAAAbDoM0y+ZcSkQn1qwZVtSMSdZpdAq54ZYWdlWKdzKldtWVnYxVw637PrMXlP6/Ema+hSFoxmGoWAw6AVW5X2oZl8wGFIoFFQwWGpX9znnOm0qvbApIKACMCHbtmVZReVyeRUKeeVyOXefVz6fUz6fd7dcRZ/T74RIeS9MGt2ufExl6LTRBUgTMfySLyiZIRnuXr6gGyaVjkMyzGD5PLf6yenndgwAAAAAADAewzAlf1jS1Cq2Smyr4K6zlZVt5dy2E3LZVt4NsnJOqGWVt+rjfF3fU2nZCCfwqq9AIFARYpVCreCY4/J+8ueEQkH5fHyWhQ3HvyJgE2LbtgqFghcOVYZF5ZBodGhU6zjvhkBjn6fW8+ZyOWde4c2KIZl+yXAXDTUDbrAUdNpmwGvLDLphUqD6uHSOLyjDoJIJAAAAAABgY+VUbvmd5RGm+Ry2bTkhlZV3wit3r+Ko46rxfDns8o7drU5VXbWUPgNMJjdsSsPxmKavIrQaHWKN7iuPBQLrH68c8/v9TIG4mSOgAqbBsqwx4U9luLO+UGj0ueUgqFBVVVR5XHn+5hcUrYcZcCqTTL9k+J3QyPC5wZDfGzMMf7mvFC4Z5WOnz22XAinDx3/gAAAAAAAAMGmGYUo+Z5YcSdMOukqcwKtQFVrZdmXIVRgVcrnHduVjCu5jKvrsmZ+ZyLKKymTSymTSM/YapSkQq0Ot8YOt8nljA69AoNQXGHUclM/HF89nCwEVNkm2bbtrFOW9cKeyiqhQqBUYVY/XqiYqHxdq9JUDpmJx5r7dsPEqVRz5KkIjnxsOuf0V40ZFgOTsK891jqsCptJYqarJMAmQAAAAAAAAsNlyAi93OYhSXx2e17ZtN8RyQys7705xWCgHWJbb54VbBckuBWKV/XnZ9ujHFiTN/JfoZ3IKxEo+n69GyBXUzjvvqiOPPIb1vGYQARUmpbQGUT5fULFYcKeZK2/FYsELiYrFohsQlfYFNxQq1DwutwsVY/kxx+VwqTD3KomqmOVwpyIUqgqKKvtrhEpOgDT2Oar6qx7nYwo7AEBd2LYlq/8l2SOrZGd6JNua7UsCAMw2w5QR7pLRtK3M9o85H9YBAIBpMwyjPIuQIk5fHZ/f+VzWGhNajQ28SiFYYZwQrPx4u2LcC8ga9PdisVhUOp1WOl1dDbZ69SrtuONi7bTTrg25jrmIgKpBnLQ3I8uyVCwWVSwWZVmWLKvoHpfbo89x9kWvr7Q5wVDtMWcrjPOYgvfY0t7pK1aMlcaLXug0dwOhcXjhTnXQY4wOfbwAybeeCqTxAqdSf6nt4481AMAmy7YKKn7wkOzke7N9KQCAjYltyU6vdbbkX+X7yGedL9oBAICNkjPrkU/y+bzpDqX6hmBSxRSI9qjAq6pvdOBVGFUhVn2+XVkFNolqsMHBwTq/K1TiN74GSKVSuvrq7+u9996d7UvZzJheaFMZFnkBUVUgVAqPfFVVQaXHVVcTlUMhw6x1vp/p5wAAmAZr6DXCKcw522yzjfbcc0+99NJLevdd/h4AJmIn35M19Jp8bbvN9qUAAIBZ5k2BqPpOgVipuhrMCcGK3U/JTqyu8yuhFgKqBnjllRc3k3DKlAzTDWzMiuCnorLHC4CqzzFGnVu51R6rrDoaHRI1vpKouO5FWX1/cEpOAQAAgEnYZptt9N3vfld+v1/HH3+8zj33XEIqYBKstStlrV0525cBAACAGUZA1QC5XK5+T+ZNDVfeG2bAaZsBr99bj8gMuOFPwDmvKjgq7w3V7i/vzTk9tZzV/xLhFAAAAKZkzz33lN/v/Mnl9/u15557ElABAAAAgIuAalNjF6Riobqr1mnjPkGtKqiKoGrcgMo3zjm+GmOjKqiqqp4qxkdVU23MAZjZ/jEqqAAAADAlL730ko4//nj5/X4VCgW9/PLLs31JAAAAALDRIKBqgB12WDTbl1DBkmzLCbpqGD/Ymto50+OGZ5XrQZXCq9F9pr868DLHG/OPmSLQGLPWlPsYjb+ulK9jL/k69pqxdw4AwFxQHPgTUzZhTnn33Xd17rnnas8999TLL79M9RQwSeaCJaxBBQAAZk1hzSOyh16f7cuYEwioGmCLLbbUBRdcrDfffEOWZcmyiioWiyoWy23Lstx97f5isaBisfKcogqFgjtW3srPPXasWCzO9o9iAm54VixIylaNjBeK1T0sGye8qg67xusvtcc7vxSOVfS7+425egwAgHoxW3aSPbJKdvK92b4UoGHeffddgilgCozYVjJbdprtywAAAJsIu1SMYbmbXZDt7mXlvT5ZBdnj9hUq+vKyc0Oz/bbmDAKqBlm4cEstXLjlrF6DbdsVwVZBhUI5yBrdVw6/nHatrTyWV6FQdPe1xgvK5/NV486x89hSe6Ngl25Eo7rHO71uL2yOqfRygqtSRZh/bHWYVzVWef7YirHq/srQzO9Oy1i7agwAgHozTL98Hz1SVv9LTlCV6XG+nAIAmNsMU0a4S0bTtjLbP8YX+AAA2AzYti3Jqgh/nGDIrmh7IVFlnxcy5WsET2P7ZM9sUUZpTVnMDH66c4hhGPL7/Rvl/6nK4Vm+IrwqB1mlgGvsvvZYPl+oaOer2vl8rup5S32zW2FmSZYlqXqNq4ZUjtWo9jJMf40KMH/F9Ij+iQOw0vlewFZ5PqEYAMxVhmHK17G31LH3bF8KAAAAAMxZtm1VVBPVCI/ctj0qYKqqRPLCovyoSiT33BlcLKYROju7tMsuu8/2ZWzWNr6kAnNSZXgWDkdm5RosyxoVZJXDrVwu5+4rw67cmHOdvkJFCLb+x5Se2/lGwSyxi85W8QX2GQ/GRodio8MsM1Cjr7w3zEDtPtMvGcGKSjOCMAAAAAAAAGyabLvohkjOZnvtUghUCpDG6StNWTdqWjtZeY2ZQmoTFgwG3S2kQCDoHQcCQYVCTn/puHxuZX9g1LEzPm9ep0yTyu6ZREAFuEzTdG9CoYa+rm3bsqyiF1qVwrDa4df4x+UgrVAjUKsdps1a1dgkQ7ENC8QML+iSGZCMgBtilfsMo2LcDLrjQck36ri0J/QCAAAAAABADeWKpJwbCjl7FZ0+77gybPLWRBodQOU3ixDJ5/NVhURjA6JyKFTeB2uETKGqxwQClecG+LxuE0ZABcwywzDk8/nl8zW+esyyrEkGYJMby+VyFcc55XLl8cqxxrDdXwhylT2jz5gioxxY+SoDrKDkC8lw9zKDMtx9dX/IDcb4jyYAAAAAAMDGwLaK7mdIWamYl21lneNiKVTK1TjOyy7mqgIp2YXZfitTYhiGG/yExg2LSsHQ2JBo/MdUbj4f8QPWj38hwBxmmqZCoZBCocZVjdm2XRVsOcFVXrlc1jt2tqwXao3uK22lsWw2q1wuq2w267VnpjrMdn5ZsbJSYQMCLzMk+YJukBWWfGEnyKrcm5V9btvklg0AAAAAAFBi27YTDBWdz2vsYq6iXQqaqtveeaWwyZ7NdenXzzR9CofDXlhUCpSq98ExfaPHK4OoUMipZPL7WSces49POwE0lGEY3rcoZpIz1WG2ZniVzeaUzWYq+jPKZJytsl15nM1mVCjU6ZswpZBL1aHWhAGX4R8VZoVl+CKSPyz5ojJG7eULyTCYJxcAAAAAAGzcbKsoFTNueJRxgqRiRbuqP+NUOZXCqI1oGrxQKKRwOKJYLKpIJCKfL6BwOKxQKDxqXwqSwqP21X1+Px/fY/PGv3AAmyW/3y+/369oNFa35ywUCm5wla4Ir9JKp0tbSul0WqlUymtX71PKZrPTvwC7IBUSUiHhhVnrD7UMN9AKy/BHq/byR2X4os7e7+6p0AIAAAAAABvAti0naCpm3ECpsp0d1Zd129lZnR7PNE1FIhGFwxFvX9mOREb3l4OmytApGAzJNJ0vCnd2NkmSentHZu19AZsCPo0EgEny+/2Kx+OKx+PTfo5iseiGWimlUmmlUkklkwklk8n1thOJpCxrqiXntlRMS8W07NxAqWd8ZqgisIqVgyt/rKpfZpAScAAAAAAANnO27VY1FUoBU7o6YCqkx4ZRFWuBN0ogEFAkElUkElU06myVx84+MqqvHD4FAnzOAcwWAioAaCCfz6dYLK5YbGohl23bymYzSiaTbmiVUCKR0MjIiBKJYY2MJDQyMqxEYsTdJ5RKJad2cVZWymUnDrMMnxNgBeKSP+7uK49jzlSD/HIHAAAAAMBGwbZtd3q8tOxiuiJ4SlcETOmqvkaGTabpUywWcwOmmNuO1WzHYrGq8CkQCDTsOgHUFwEVAGwCDMPwSsk7OuZN6jHFYsENsUrB1YgbaDkh1tDQkIaHBzU0NKSRkWFZ1iTnbLaLUn5Ydn7YOax5kikFYjL88Yp9vHwcaCLEAgAAAABgGmzbdqbEGxUo2cWMVEiXK50K1RVPk1j9eoMZhqFIJOoGSc4sNKUv6lb2OWFT3AulQqEwnxEAcxABFQBspnw+v1paWtXS0jrhuZZlKZlMaGho0A2uhrwAq9we0tDQoHK5yXyDypLyI7LzI1J6nF+BDZ8TWgWapUCTDHcrteWPyTDMKb5rAAAAAAA2LbZdlAqlqfLcgKlQCpbKIVN5Sr208+XRGWYYhhculZY8iMebagRPccXjTuAUjca8dZgAYCIEVAAAmaappqZmNTU16yMfGf8827aVyWQ0NDSowcF+DQwMaHBwQAMDAxoY6NfgYL8GBweUTE5iekG7KOWGZOeGnMMxJxhugNU0KsBqlhFsdqYTJMACAAAAAGxEbKswZl0mr4ppVEVTo9dtikSiXsjkbKVwqckLoGKxcjsSiRI2AZhRBFQAgElzSvWdRUQXLFg47nm5XFaDg4NuaDXgBllOu7+/X/396yaxRpZdrsJSrQDLdIKrYLNThRVslhFoccKrQLMMX2hD3ioAAAAAYA6z7aK7ZlO2IlQa1bZKQVPWC6BkFxpyfX6/vyJoaqqqcCofN1WETjH5fHwUDGDjwl0JAFB3wWBIXV3z1dU1f9xz0um0+vvXqb+/T/3967RuXbnd379Ow8PDE7yKJeWHZOeHak8h6AvJCLR4FVdOiNUiI9jiVl8xtzUAAAAAbM5s25KKOckqhUiV7axTuVQKmKxsOWgqZiQr37DrLE2l19TUNKqiqWlMVVMpgAoGg/xdC2CTR0AFAJgVkUhEW275EW25Ze05BXO5nAYG+rVuXTm0WreuT+vW9amvr1fDw0Prf4FiVnaxR8r0jA2wDJ8bXLmBVbDVrb5qcaYVZOpAAAAAAJhVtm071UjFnBMeWTmvrWKu6riq7YVP2YaGTCWm6XPXY2pSLBZz12yKVa3bVDm1XiwWYyo9AHMWARUAYKMUDAY1f/4CzZ+/oOZ4Npv1wipn6/Ha69b1KZ9fzx8idlHKDcjODdSeOtCbLrDFq7pywqtmwisAAAAAWA/bKjqVSVZOsvJOeOS2Vaw+tkv9bsBkl9puCFVrsvdGMQxD0WjMC5dK7cq+yuNS6BQOR6hsAoBJIqACAGySQqGQtthiS22xxZZjxizLUiBQVHd3t956610vuOrt7VFvb48SiZH1PLMl5QZl5wZlj1kmyw2vgq3lyit3kz/GHyEAAAAANglOdVJesgrOZudll9pW3h3Lu4FR3uu3K8ZK/eVz3E3WbL89j2EYCocjikajikZj7t5pRyLRqv5IJOqFTk7QFKaqCQBmGAEVAGCzY5qm2ttb1N7ernnzxk4hmE6n1Nvbq97ebvX0dHvBVW9vzwRTB1aEV6OHDL9bbVURWrnH8oUJrwAAAABMyAmOis7UdlbRC5Fsu1ARJhWq++xSqFR0Q6TyObLyFY/NV5+7CQgEAopEIgqHI4pEoopEIjWPnb6oF0A54VOMkAkANnIEVACAOScSiWqrrbbWVlttPWYsk0m74VWPenvL4VVPz1oNDa0nvLILUnad7Oy6seGVGXKCqlCrV31lBNucAMsM1POtAQAAAKgzLzSqDH7sQnUQVDM0qtVf9AKiWo+XXZjtt7vBTNOnSCSsUCiscDiscDiicLjyOOweR6qOS+c54ZMTQPn9fHQJAJsz7vIAAFQIhyP66Ee30kc/utWYsUwm44VVPT3dFdtaJZNj5gMss7KyM91SpntseOWPlyuuQhXhVaCJ9a4AAACACTjhkTVqWrrKaeoqA6J8VcVRzYDJqzLavEKjWgKBoILBoEKhkAKBoEKhoILBkNsXVigUqtjCCgarj8cb9/v9zCABAJgUAioAACYpHA6PG14lEglvysCenrXq7u72jrPZ7PhPWkjILiRkpz4YNWC6UwQ6gVVlgCVflD/4AAAAsMkpVyLlvPWK7Iq2rNyo9YxGHxfc8wsV4VNeGvs1sE2a3+9XIBBQMOgERqV2IBBSMFhqB93x8dulsKkcOoWqnpOp7wAAs42ACgCAOojH44rH49p22+2r+m3b1tDQYFVw1d29Vj09a9XX1yfLGm/ud0vKDcjODcjW6uohM+CucVW53pVbfeULzcC7AwAAwFxnW0XJyjrhUjHnBkVj27KyznEx5wZMpbYTOG2qYVIgEPDCn3JgFBy1D7hh0OhzQ1WPrx4vn1dqExwBAOYKAioAAGaQYRhqbW1Ta2ubFi3aqWqsWCyor6/PmzKwu9sJsJz1rgbHf1IrLzvTK2V6x/5574uUA6uKNa8UaJFh8p99AACAucqpXipIxaxUzMq2shO3ixknlCrmNupp7kzT5001Vzk9XblqKFRRVVSqRKqe3m5s1VE5QKLaCACAmcEnVQAAzBKfz6/58xdo/vwFY8YymbR6enrcqqvymlfd3WuVyaTHf9JiWnY6LaU/HGe9qxY3wGoZFV756vnWAAAAMINs23YrljKyi2mpmHECpUKpnXHCpYq9ihlner1Z5vf7vQApHA4rFAqP2VePhSoCp1BFEFXe+/18vAUAwKaI/4IDALARCocj2mqrrbXVVltX9du2rZGRYS+wKk0b2NPjrHlVKKznm63eeld/HTVgSAE3vAq0VodXwWYZBuEVAADATHICp7xUTLkhU1p2ISV57Yq+UtjU4KnyTNNUJBJROBxRJBJVOByu2Ff3OeeVxiPecSgUJkwCAAAefisAAGATYhiGmptb1Nzcoh12WFQ1ZlmWBgb6KyquytVX/f3rnA8+arKl/Ijs/IhsfTD6FZ3wKtDsBFeBFhnBZhkBN7xizSsAAICavNCpkHTDJndfCqEKqarwqRHVTX6/X9FoTJFIVNFoVNFobNTe2SKR2JixUCgkwzBm/BoBAMDcQUAFAMBmwjRNdXTMU0fHPO2yy25VY4VCQevW9brBVY9XcdXb2zPp8Eqpv9ZY8yo8Jrxy2s2SP8aHGAAAYLNj27ZTwVRIyS4k17ufyXWbQqGQYrG4YrG44vH4mPYWW3QqHo+rUPB5fcFgkN/PAADARoOACgCAOcDv92v+/IWaP3/hmLF8Pq++vl719pamCuzx9gMD/esJr1Re1yDTMza8MnxSoFlGoMkNsdx96dgX5gMSAACwUbFtSyqkZRcSUj7h7pMVx0mpkJBsq+6vHQgE1dzcrKamJsXjzr6pqVlNTc0V/c4Wi8UVCATW+3ydnU2SpN7ekbpfKwAAQD0QUAEAMMcFAgEtXLiFFi7cYsxYPp/XunV96u3tUV9fj3p7e9XX16u+vh719fWuf80ruyjlBmTnBmqvkGD4nWkC3RCrFFyVwiyZTCMDAADqx7Ztp7opPyIVRmTnE860e/mEs1ZnPikVkqrn2k6BQEDNzS1qaWlVS0uLmptb1dzcrObmlqoAqqmpWaEQUycDAIC5hYAKAACMKxAIaMGChVqwYGzllWVZGhoadEOrHjfE6vX2qVRy/U9uF6Rsv+xsf+2PgcyA5I+74VVchj8uIxB3g6y4M2byqwwAAHDYVtENnkbK62vmE+XpivMJSfWpfAqHI17g1NLSMqrd6oVSkUiEL9wAAACMg091AADAtJimqba2drW1tWvRosVjxlOplNat66va+vv71NfXp3XrepXNZtf/Albeq8CSxvkusy8yfnjljznrYJm+DX+zAABg1tlWQcoPy84Py86NuG0neLLzI1IxVZfXiceb1NraptbWNrW1lfbt3nFLS5vC4XBdXgsAAGAuI6ACAAAzIhqNKhrdSh/96FZjxmzbViqVHBNgOds6rVvXq1wuN/GLFNNSMS1bveNPxuMLO0FVKbAKxLxjwx+XAlHJF5FhmBv0fgEAwIZx1n9Kys4NVwRR5bYKGx5AxWJxtbd3qL293Q2d2itCKCd8mmhtJwAAANQHARUAAGg4wzAUi8UVi8W11VbbjBm3bVvJZFIDA/3utk4DA/3q7+/3+gYHB2RZk5imp5iRihnZ2XXOc9e+Ije0ilbsnc3wRyWfu/dHZJh8aAUAwHTZxZyUH5KdG3LDpyFnKr7csJQf0YZMwWcYhlpb29wAauzW1tZO5RMAAMBGhIAKAABsdAzDUDweVzwer1mBJTlrYA0PD6m/f50XWlUGWMPDQxoaGnQWRJ+Q7SyOXkiUjsZnBioCq1KAFakItSIyfBFn+kEzwLoTAIA5xbZtp7q5FD7lnE35YWdfTE/7uUvTC8+b16mOjnnq6Jin9vZ5am9vV3t7h1pb2+TzMbUvAADApoKACgAAbJJM0/TWhxiPZVkaGRnW4OCAhoYGNTg4qKGhAXdfPk4mk5N/YSsvWUOy80OSJgizDJ8TVPnCMvwRN8hyj30RqdTni0j+sGSGCLQAABs927bdqfiGpJzz38RyEDXk/LdympqamtXRMc8LoebN6/TabW3tBFAAAACbEQIqAACw2TJNUy0trWppaV3vefl83g2snCBreHhIw8PDGh4e0sjIsHc8MjKsYrE4+Quwi1Ih4VRnZd2u9V+x5Au5AVZ4VLu8r2r7wzIMPqwDANSXE0KlnC9k5AbdAGrQC6VkF6b1vH6/Xx0dners7NS8eV3q7OxUR0en5s2bp46OToVCoTq/EwAAAGysCKgAAMCcFwgEvG9or49t20qlkuMGWM7xiBIJZ8vnp/oNcsuZ+qiYrgqyJpyk0AxUBFchpxKrKuAKSaZzXO4PSYafii0AmMPK0/HVCKE2oBIqFAqps3O+Ojs71dnZ5QZRztba2ibTNOv8TgAAALApIqACAACYJMMwFIvFFYvFtXDhlus917ZtZbNZL6yqDK7K7YTXl0iMKJPJTO/CrLyz5Ue8MGsyK285UxCODrRCMsxQue1zph502m6/GZZhUrUFAJsKu5hzA6jBiioopy0rN63njEZj6urqcoOoLi+I6urqUjzexBcgAAAAMCECKgAAgBlgGIbC4bDC4fCElVkl+XxeyWRCyWTS3TtbIlF5XN1OpZKyLGt6F2kXpUJKUmpqFVuSZPhrBFrlCq4xgZavIvRiSkIAqDvbKkj5IdnZIdn5QdnZwXIIVUxP6zkjkYg6O+d7QVRXl7N1ds5XPB6v6/UDAABg7iGgAgAA2EgEAgG1traptbVt0o+xLEuZTKYqsEqlkl67Vl+pXShMb/0QSc7aI4WCVEhOM9wKl0MsMzRq+sHytITlYCssmUG+kQ9gTrNtS8oPe1PxyZuSb1DKj0zrOUOhkBc6VQZQVEIBAABgphFQAQAAbMJM01Q0GlU0GlXn5Aq1JDlTEObzOaVSKbcqywmu0umk1+eEWama+2lXbUluuJWQCokphluG5AtWBFej19UKu+2K9bjcKQr5gBXApsK2bef+6IVQgxXtYUlTv//6/X7Nm9eprq4F6uqar/nzF6izc77mz5+v5uYW7pEAAACYFQRUAAAAc5BhGAoGQwoGQ1Oq2JJK62tlxoRWTqhV7iuFXZVj6XRqA8ItWypmpWJWdr6qdwJGdWWWF2CFR7Uj5T5/mKkIAcwYJ4RKyc4PVQRQ5aoo2VOvcDUMQ+3tHZo/f4FXBVVqt7d3yDTN+r8RAAAAYAMQUAEAAGBKnPW1IgqHI2pv75jSY23bViaTGVWVVVm1lRhVwVWu7spkMtO8YlsqZqRiZmoVW2agOrTyhWX4I2NDLb+zly8sw+ADYAAOJ4RKys4NOVPx5ctB1HRDKElqaWn1puJztgXq6urSvHldCgQCdX4XAAAAwMwhoAIAAEDDGIahSCSiSCSijqllWyoWC2MqskprbyWTCbc/oUTCCbpK/dMOtqy8ZOVl54e9rglDLS+8ikhumFVql6u0IpIbahkmv44DmzLbLkr5hHOfyJXXhnIqo4anHULFYvFRIZQTRHV2dikcDtf5XQAAAACzg7+IAQAAsEnw+fxqampWU1PzlB5XLBa8dbZKgVYq5QRZznFCicSIEolS29nb9sSTB459sVKl1qDXtd5n8aq0SoFWxK3SGrt3Ai2mHQQaybZtycrKzg1L+SHZueFyGJUflvIjmsxEo7VEozF1dXWps3O+Oju71NnZ5YVRsVi8vm8EAAAA2AgRUAEAAGCz5vP51dzcoubmlkk/xrIsZTJpJRJOeFUKrpzwakTJZFIjIyNKJkc0MuKEW6lUcuoXN9UqLTPoTjUYdUIrf6SiQqti71ZpsY4WMDHbykv5EdnuVgqf7NyQlB+WrNy0n7tUCVUKoEohVGdnFyEUAAAA5jwCKgAAAGAU0zQVjcbcCof5k3pMsVisqsZKJEbcECvhhljV28hIQpZVnNqFWTnJyk0h0ArVDLGqKrQqpxxkDS1sZmzbloppJ3jKJ9x9RRhVGJGK2Q16jdbWNs2b1+ltlSFUNBqr0zsBAAAANj8EVAAAAEAd+Hy+KVVq2batdDqtkZFhN7Aa9kItJ9Aa9oKt0t6yrKldlJWVcllvysGJ19AKVU05WFo3a2yFlrvWFmtoYRY54VNGKiRlF5JS3tnbhYQXQik/ItlTDIJHCQaDVQHUvHldXrujY54CgUCd3hEAAAAwt/AXJQAAADALDMNQNBpVNBrV/PkLJjzfsiyl06mq0Ko61KpuT2sdrWJWKk4h0DIDTlBVGVr5K9puv+FWaMkXYtpBTIpdzJWDp0JSdj5ZfezuZU8xtK3B5/Opvb1DbW3tam/vGBVGdaqpqVmGYdThXQEAAACoREAFAAAAbAJM01QsFnfXrVk44fmWZVVNLzgyMlwVZFVWZjnrbCWnHmh5a2iNeF2TDbVkhtwKrfLeCbVCklmjn2qtTZptFaRiWiqkZVfui2nZhbRbCVUaS0l2oW6vHYlE3ACqQx0dHWPaTU3NMk2mtwQAAAAajb/yAAAAgM2QaZpqampWU1PzpM6vFWhVhljlMCuhZNLZT3nKQckLtaQRL8yaVCxm+CQz6ARXZlDyBZ01tsygDF+weqxi3Bszg5LhoxJmA9h2USrmnKkjiznZ7l5W1ql4stwKPCtXEThl6h44VYpEImptbVNLS2vFvlXt7R1qb5+n9vZ2RSLRGXltAAAAABuGgAoAAADAlAOt0hpaTvVVwguvSgFWoZDVyMiI+vsHvP5UahpVWt4LFp0KnGJ6TKA1+Wc0JNMvGQFnbwZkmAGnqsuoPPa7fQG3z+8EZIZPMsyKts+ZstCs7qs8zzBmrjLH+Vlakm27U91Zzt7rtySrINsuSFZBsvPOvqqvcp93Kp1KfVZOdjErWTln+scZCplq8fv9NYOnlpZWtbS0ee1QKNSwawIAAABQXwRUAAAAAKascg0taf6Y8c7OJklSb295+j/LspTJZJRKJZRMJpVMJpVKjbdPKJVKueclVCwW63DVtlu9lZeKXs/oM+rMkAzD2cut3vKquNw+Q9Xj3mNKF1UKn+zq9gxc7UwxTZ+amuKKx5vU1NSseLzJbTtbZX9TU5MikSjVbgAAAMBmjoAKAAAAQEOYpumFWvPmTf5xtm0rl8spnU4pnU4rk0krnU57x05fuV2rL5vNqFBoXAVQxdW7YVJ116bIMAxFIlFFIhF3H1U0Ghm3j8AJAAAAwPoQUAEAAADYqBmGoVAopFAopNbWtmk/T7FYVC6XVTabVS6XUzabqWhnlc1mvHbpvGw2q3w+p0Kh4G75ina5r1gsKp8vjxWLzn7aUxpOkmn65POZMk2zou2TaZry+XwKBoMKBIIKBktbqKJdORZSIBCoaleGTpFIRKFQSKY5c1MWAgAAAJhbCKgAAAAAzAk+n88LXBrBtm1ZVlGWZbtBlS3Lcva2bTsz9tlWxb7cJ8k917nuUvDk85XDJ8MwqEoCAAAAsMkioAIAAACAGWAYhnw+v3y+2b4SAAAAANj4MD8DAAAAAAAAAAAAGoqACgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABoKAIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABqKgAoAAAAAAAAAAAANZdi2bU/3wZZlq1Ao1vN6NivBoF+SlMsVZvlKAGDu4R4MALOL+zAAzC7uwwAwe7gHY67x+30yTWPKj9uggAoAAAAAAAAAAACYKqb4AwAAAAAAAAAAQEMRUAEAAAAAAAAAAKChCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaCgCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaioAKAAAAAAAAAAAADUVABQAAAAAAAAAAgIYioAIAAAAAAAAAAEBDEVABAAAAAAAAAACgoQioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGoqACgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqOpk+fLlWrx4sf7nf/6n5viqVav0rW99S0uWLNGee+6po48+Wrfddpssy2rwlQLA5qFYLOq2227TF7/4Re21117aY489dOSRR+q6665TNpsdcz73YQCor2KxqFtuuUWf+9zntPvuu2u//fbTySefrMcff7zm+dyHAWDmDA4O6m/+5m+0ePHimuPcgwGgvv77v/9bixcvHnf7wQ9+UHU+92GgNsO2bXu2L2JT9+KLL+rkk09WKpXS7bffro9//ONV46+99pq+8pWvKJFIaO+991ZHR4eeffZZDQ8P6+ijj9YVV1wxS1cOAJumYrGof/qnf9Ljjz+uaDSqPffcU36/Xy+//LKGh4e155576uc//7kikYgk7sMAMBPOPvts3XvvvYrH49pnn32Uz+f1hz/8Qfl8XmeccYZOP/1071zuwwAws775zW/qwQcflCS9/vrrVWPcgwGg/r773e/q5ptv1kEHHaT29vYx40uXLtXhhx8uifswsD7+2b6ATd2vf/1rnXvuuUqlUjXHbdvW2WefrUQiocsvv1yf//znJUn9/f363//7f2vFihX6zGc+o8MOO6yRlw0Am7Rly5bp8ccf1+LFi/WTn/xE8+fPl+TcW//pn/5JL774oq6//nqdeeaZ3IcBYAY8+OCDuvfee7Xtttvqtttu07x58yRJb775pv7X//pfuvbaa3XkkUdqm2224T4MADPs/vvv98Kp0bgHA8DMePXVVyU5QVXpM4lauA8D68cUf9O0du1anX322frGN74hy7K8P8pHe+qpp/T6669rv/32825AktTe3q5//dd/lSTdeuutDblmANhc3HPPPZKk888/v+oXwfb2dv3bv/2bJOmBBx6QxH0YAGbCfffdJ0k666yzqn4P3nHHHXX00UfLsiw99dRTkrgPA8BM6u7u1sUXX6y99tpLPp9vzDj3YACYGa+99prmzZu33nBK4j4MTISAapquuuoq3Xvvvdptt9101113abvttqt53u9+9ztJTlnnaPvss486Ojr0/PPPK5FIzOj1AsDmpK2tTdttt5322GOPMWPbbLONJKmnp0cS92EAmAlXX321VqxYoU996lNjxpLJpCR5H5RyHwaAmfOd73xH2WxW3/ve92qOcw8GgPp7//33NTw8rF133XXCc7kPA+tHQDVN2223nb73ve9p2bJl4y5CKklvvfWWJGnRokU1x7fddltZlqW33357Rq4TADZHP/rRj/TQQw8pGo2OGfvjH/8oSVqwYIEk7sMAMBOCwaAWLVqkYDBY1f/b3/5Wv/rVrxSNRr0/wrkPA8DMuOOOO/S73/1OZ511lrbeeuua53APBoD6+8tf/iJJ6ujo0MUXX6zPfOYz2n333XXYYYfpuuuuUzab9c7lPgysH2tQTdNpp502qfNK3+Dv7OysOV7q7+vrq8+FAcAcZtu2rr76aknSoYceKon7MADMtEwmo7PPPltvvfWW3n77bW2xxRa6/PLLvan/uA8DQP299957+v73v68DDjhAX/nKV8Y9j3swANRfaf2p5cuXq6WlRfvss4/mz5+vP/3pT7r66qv1u9/9TjfffLPC4TD3YWACVFDNsHQ6LUkKh8M1x0v9qVSqYdcEAJurK6+8Us8995zmzZunf/zHf5TEfRgAZtqaNWv08MMPV33r8/XXX/fa3IcBoL6KxaLOPvtsGYah7373uzIMY9xzuQcDQP2VKqg++9nP6vHHH9cNN9yg2267Tffff7922mknvfjii7rqqqskcR8GJkJANcNM0/kRj/cLo23bVXsAwPT88Ic/1I033qhgMKirrrpK7e3tkrgPA8BMW7BggZ555hk999xzuuqqq5TP53XxxRfrxhtvlMR9GADq7ac//alefPFFnXfeedpiiy3Wey73YACov6uvvloPPPCALr/88qqlBz7ykY/osssuk2EYuuuuu5TP57kPAxMgoJphpZtUJpOpOV6ak7TWOioAgIkVCgVdeOGFuv766xUKhXTttddq33339ca5DwPAzIpGo2pra1NLS4s++9nP6tprr5VhGPrxj3+sbDbLfRgA6ui1117TNddcoyVLlujv/u7vJjyfezAA1F8oFNIOO+wwZj1WSdp55521YMECpVIprV69mvswMAECqhnW1dUlafx5RHt7eyWNPw8pAGB8yWRSX/va13TXXXepublZN910k5YsWVJ1DvdhAGisj33sY9pqq62USCT0/vvvcx8GgDr6wQ9+oHw+r0KhoLPOOqtqsyxLkrzj/v5+7sEAMAtKa7Gm02nuw8AECKhm2I477ihJeuutt8aM2batd955Rz6fT9tvv32jLw0ANmlDQ0M64YQT9Lvf/U4LFy7U7bffXlU5VcJ9GADqy7ZtXX755frmN7+pQqFQ85zSt0kLhQL3YQCoo9IaJU899ZRWrFhRtZWmhyodp1Ip7sEAUGeJREIXXHCBzjjjjHF/F/7ggw8kSfPnz+c+DEyAgGqGffKTn5QkPfroo2PGXnjhBfX392ufffZRPB5v9KUBwCYrl8vptNNO05///GftsMMO+sUvfqFFixbVPJf7MADUl2EYevTRR/Xggw/qqaeeGjP+/vvva9WqVYpGo9p22225DwNAHd166616/fXXa24+n0+SvOOPfOQj3IMBoM5isZh+85vf6OGHH9Yf/vCHMeNPPPGEBgYGtGjRIs2fP5/7MDABAqoZtt9++2nHHXfUU089pf/6r//y+vv7+3XRRRdJkk466aTZujwA2CRdffXVeumll7Rw4ULdeuutWrBgwbjnch8GgPo77rjjJEmXXHKJ1q5d6/V3d3frW9/6lgqFgr785S8rFApxHwaAWcQ9GADqyzAM73fhiy++WN3d3d7Ye++9591b/+///b+SuA8DEzHsUg04NsgJJ5yg5557Trfffrs+/vGPV4298sorOvHEE5VKpbTnnnuqq6tLzz33nIaGhnTcccfp4osvnqWrBoBNz+DgoJYsWaJMJqNdd91V22233bjnXnHFFZK4DwNAveXzeZ1++ulauXKlotGo9t57bxWLRb388stKpVJasmSJrr32Wm+qP+7DADDzdtllFxWLRb3++utV/dyDAaC+MpmMTj75ZD3//POKRqPaZ599JEnPPvuscrmcTjrpJJ177rne+dyHgfERUNXJ+gIqyZln9Oqrr/ZuVFtvvbWOP/54/d3f/Z1Xhg8AmNgTTzyhU089dVLnVv5xzn0YAOqrWCzqjjvu0PLly/X222/LNE0tWrRIxx57rI477jiZZvVkDdyHAWBmjRdQSdyDAaDecrmcbr75Zq1YsUKrV69WMBjULrvsohNOOEGHHnromPO5DwO1EVABAAAAAAAAAACgoViDCgAAAAAAAAAAAA1FQAUAAAAAAAAAAICGIqACAAAAAAAAAABAQxFQAQAAAAAAAAAAoKEIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABoKAIqAAAAAAAAAAAANBQBFQAAAAAAAAAAABqKgAoAAAAAAAAAAAANRUAFAAAAAAAAAACAhiKgAgAAAAAAAAAAQEMRUAEAAADAKIsXL9bixYv1xhtvzPalAAAAAMBmiYAKAAAAAAAAAAAADUVABQAAAAAAAAAAgIYioAIAAAAAAAAAAEBDEVABAAAAAAAAAACgofyzfQEAAAAAMJOWL1+u8847T3//93+v008/XZdffrmeeuopZbNZbbvttjr++OP1pS99SaY59vt7tm3r7rvv1i9+8Qu99dZbCgaD2m233XTqqafqwAMPrPl6jz/+uO688079+c9/1uDgoLq6uvTJT35Sp59+urq6uqrOffbZZ3XLLbfo9ddf19q1a9XU1KRddtlFX/ziF3XEEUfMyM8DAAAAADYGhm3b9mxfBAAAAADMlFJAdfDBB+vVV1/V2rVrtf3228uyLK1atUqSdNhhh+nKK6+U3+98h2/x4sWSpL333lsvvPCC2tratHDhQq1evVqpVEqGYeiqq67S4YcfXvVaF110ke644w5J0oIFC9Te3q5Vq1YpnU6rq6tLy5Yt04IFCyRJK1as0Nlnny3LsrRgwQLNmzdPfX19Wrt2rSTp5JNP1jnnnNOQnxEAAAAANBpT/AEAAACYEx577DFlMhnddtttevDBB/WrX/1KN998s+LxuB5++GHdeeedYx7z0ksv6dxzz9WTTz6pe+65R0888YT2339/2batH/7wh1XnLl++XHfccYei0aiuueYarVy5Uvfcc48ee+wx7b///urp6dF5550nSbIsS5dddpksy9IPfvADrVy5Ur/85S+1cuVKfe9735NhGLr55pv1wQcfNORnAwAAAACNRkAFAAAAYM649NJLte+++3rHBx54oM4//3xJ0o033qjRE0x84Qtf0EknneRVVjU1Nemss86SJL3zzjsaGhryzv3xj38sSfr2t7+tQw891Otvb2/XFVdcIb/fr9///vfq7u7WunXr1NfXp5aWFn32s5+tes1jjjlGxx13nI488kglEok6vnsAAAAA2HgQUAEAAACYE7bccksdcsghY/qPPvpoRSIR9fT06NVXX60aW7p06Zjzt99+e689ODgoSVq9erVWr14tv9+vY445Zsxjurq6dM899+iZZ57R/Pnz1dbWpqamJg0NDen888/Xm2++WXX+v//7v+uKK67QTjvtNI13CgAAAAAbPwIqAAAAAHPCbrvtVrM/GAxq6623liS9++67VWNdXV1jzo/FYl47m81Kkt577z1JTggWjUZrvs6iRYvU2toqSfL7/TrjjDMkOVMDHnXUUfr0pz+t73znO/r1r3+tdDo9hXcGAAAAAJseAioAAAAAc0Jzc/O4Y6XQafSUesFgcFLPXaqkGi+cquWrX/2qbrzxRn3iE5+Q3+/Xhx9+qLvvvlvf+MY3dNBBB+n666+f9HMBAAAAwKbGP9sXAAAAAACNsL6qpFIw1dbWNq3njkQiE75GLUuWLNGSJUs0MjKiZ599Vk8//bR++9vfas2aNfrhD3+oWCymE088cVrXBAAAAAAbMyqoAAAAAMwJb7/9ds3+bDar1atXS6peX2oqttlmG0nSBx98oEwmU/OcCy+8UKeddpqee+455XI5vfHGG/rLX/4iSWpqatLSpUt14YUX6tFHH9UXvvAFSdJ99903resBAAAAgI0dARUAAACAOeEvf/mLXnvttTH99913n7LZrLbbbjttt91203ruHXbYQQsXLlShUND9998/ZnxgYEArVqzQypUr1dTUpN/85jc6+uijdeaZZ8q27apzTdPUAQccIEmyLGta1wMAAAAAGzsCKgAAAABzxr/8y79o1apV3vETTzyh7373u5Kkf/7nf5728xqGodNOO02SdNlll+nJJ5/0xvr7+3XWWWcplUpp//33184776xPf/rTisVievvtt3XppZdWTQ24Zs0a3XTTTZKkT33qU9O+JgAAAADYmLEGFQAAAIA5obOzU/39/TriiCO0aNEiZTIZb2q/k08+WYcffvgGPf+Xv/xlvfrqq1q2bJlOOeUUfeQjH1E8HteqVauUzWa15ZZb6rLLLpMkxWIxXX755fr617+uW265Rb/85S+11VZbKZfL6d1331WhUNCuu+6qU089dUPfNgAAAABslKigAgAAADAndHV1admyZVq6dKn++te/qr+/XwceeKB+9KMf6ZxzzqnLa1xyySW6+uqrdeCBB2p4eFhvv/225s+fr1NOOUX33HOPtthiC+/cpUuX6rbbbtOhhx6qWCymN998U93d3dpll110zjnn6Be/+IXi8XhdrgsAAAAANjaGPXrCcwAAAADYjCxfvlznnXeedt11Vy1fvny2LwcAAAAAICqoAAAAAAAAAAAA0GAEVAAAAAAAAAAAAGgoAioAAAAAAAAAAAA0FAEVAAAAAAAAAAAAGsqwbdue7YsAAAAAAAAAAADA3EEFFQAAAAAAAAAAABqKgAoAAAAAAAAAAAANRUAFAAAAAAAAAACAhiKgAgAAAAAAAAAAQEMRUAEAAAAAAAAAAKChCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaCgCKgAAAAAAAAAAADQUARUAAAAAAAAAAAAaioAKAAAAAAAAAAAADUVABQAAAAAAAAAAgIYioAIAAAAAAAAAAEBDEVABAAAAAAAAAACgof5/8Cld2QdYDggAAAAASUVORK5CYII=",
"text/plain": [
"