This repository has been archived by the owner on Feb 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathai_single_response.py
383 lines (333 loc) · 11.9 KB
/
ai_single_response.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
ai_single_response.py - a script to generate a response to a prompt from a pretrained GPT model
example:
*\gpt2_chatbot> python ai_single_response.py --model "GPT2_conversational_355M_WoW10k" --prompt "hey, what's up?" --time
query_gpt_model is used throughout the code, and is the "fundamental" building block of the bot and how everything works. I would recommend testing this function with a few different models.
"""
import argparse
import pprint as pp
import sys
import time
import warnings
from datetime import datetime
from pathlib import Path
import logging
logging.basicConfig(
filename=f"LOGFILE-{Path(__file__).stem}.log",
filemode="a",
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
level=logging.INFO,
)
from utils import DisableLogger, print_spacer, remove_trailing_punctuation
with DisableLogger():
from cleantext import clean
warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")
from aitextgen import aitextgen
def extract_response(full_resp: list, plist: list, verbose: bool = False):
"""
extract_response - helper fn for ai_single_response.py. By default aitextgen returns the prompt and the response, we just want the response
Args:
full_resp (list): the full response from aitextgen
plist (list): the prompt list
verbose (bool, optional): Defaults to False.
Returns:
response (str): the response, without the prompt
"""
bot_response = []
for line in full_resp:
if line.lower() in plist and len(bot_response) < len(plist):
first_loc = plist.index(line)
del plist[first_loc]
continue
bot_response.append(line)
full_resp = [clean(ele, lower=False) for ele in bot_response]
if verbose:
print("the isolated responses are:\n")
pp.pprint(full_resp)
print_spacer()
print("the input prompt was:\n")
pp.pprint(plist)
print_spacer()
return full_resp # list of only the model generated responses
def get_bot_response(
name_resp: str, model_resp: list, name_spk: str, verbose: bool = False
):
"""
get_bot_response - gets the bot response to a prompt, checking to ensure that additional statements by the "speaker" are not included in the response.
Args:
name_resp (str): the name of the responder
model_resp (list): the model response
name_spk (str): the name of the speaker
verbose (bool, optional): Defaults to False.
Returns:
bot_response (str): the bot response, isolated down to just text without the "name tokens" or further messages from the speaker.
"""
fn_resp = []
name_counter = 0
break_safe = False
for resline in model_resp:
if name_resp.lower() in resline.lower():
name_counter += 1
break_safe = True
continue
if ":" in resline and name_resp.lower() not in resline.lower():
break
if name_spk.lower() in resline.lower() and not break_safe:
break
else:
fn_resp.append(resline)
if verbose:
print("the full response is:\n")
print("\n".join(fn_resp))
return fn_resp
def query_gpt_model(
folder_path: str or Path,
prompt_msg: str,
conversation_history: list = None,
speaker: str = None,
responder: str = None,
resp_length: int = 48,
kparam: int = 20,
temp: float = 0.4,
top_p: float = 0.9,
aitextgen_obj=None,
verbose: bool = False,
use_gpu: bool = False,
):
"""
query_gpt_model - queries the GPT model and returns the first response by <responder>
Args:
folder_path (str or Path): the path to the model folder
prompt_msg (str): the prompt message
conversation_history (list, optional): the conversation history. Defaults to None.
speaker (str, optional): the name of the speaker. Defaults to None.
responder (str, optional): the name of the responder. Defaults to None.
resp_length (int, optional): the length of the response in tokens. Defaults to 48.
kparam (int, optional): the k parameter for the top_k. Defaults to 40.
temp (float, optional): the temperature for the softmax. Defaults to 0.7.
top_p (float, optional): the top_p parameter for nucleus sampling. Defaults to 0.9.
aitextgen_obj (_type_, optional): a pre-loaded aitextgen object. Defaults to None.
verbose (bool, optional): Defaults to False.
use_gpu (bool, optional): Defaults to False.
Returns:
model_resp (dict): the model response, as a dict with the following keys: out_text (str) the generated text and full_conv (dict) the conversation history
"""
try:
ai = (
aitextgen_obj
if aitextgen_obj
else aitextgen(
model_folder=folder_path,
to_gpu=use_gpu,
)
)
except Exception as e:
print(f"Unable to initialize aitextgen model: {e}")
print(
f"Check model folder: {folder_path}, run the download_models.py script to download the model files"
)
sys.exit(1)
mpath = Path(folder_path)
mpath_base = (
mpath.stem
) # only want the base name of the model folder for check below
# these models used person alpha and person beta in training
mod_ids = ["natqa", "dd", "trivqa", "wow", "conversational"]
if any(substring in str(mpath_base).lower() for substring in mod_ids):
speaker = "person alpha" if speaker is None else speaker
responder = "person beta" if responder is None else responder
else:
if verbose:
print("speaker and responder not set - using default")
speaker = "person" if speaker is None else speaker
responder = "george robot" if responder is None else responder
prompt_list = (
conversation_history if conversation_history is not None else []
) # track conversation
prompt_list.append(speaker.lower() + ":" + "\n")
prompt_list.append(prompt_msg.lower() + "\n")
prompt_list.append("\n")
prompt_list.append(responder.lower() + ":" + "\n")
this_prompt = "".join(prompt_list)
pr_len = len(this_prompt)
if verbose:
print("overall prompt:\n")
pp.pprint(prompt_list)
# call the model
print("\n... generating...")
this_result = ai.generate(
n=1,
top_k=kparam,
batch_size=128,
# the prompt input counts for text length constraints
max_length=resp_length + pr_len,
min_length=16 + pr_len,
prompt=this_prompt,
temperature=temp,
top_p=top_p,
do_sample=True,
return_as_list=True,
use_cache=True,
)
if verbose:
print("\n... generated:\n")
pp.pprint(this_result) # for debugging
# process the full result to get the ~bot response~ piece
this_result = str(this_result[0]).split("\n")
input_prompt = this_prompt.split("\n")
diff_list = extract_response(
this_result, input_prompt, verbose=verbose
) # isolate the responses from the prompts
# extract the bot response from the model generated text
bot_dialogue = get_bot_response(
name_resp=responder, model_resp=diff_list, name_spk=speaker, verbose=verbose
)
bot_resp = ", ".join(bot_dialogue)
bot_resp = remove_trailing_punctuation(
bot_resp.strip()
) # remove trailing punctuation to seem more natural
if verbose:
print("\n... bot response:\n")
pp.pprint(bot_resp)
prompt_list.append(bot_resp + "\n")
prompt_list.append("\n")
conv_history = {}
for i, line in enumerate(prompt_list):
if i not in conv_history.keys():
conv_history[i] = line
if verbose:
print("\n... conversation history:\n")
pp.pprint(conv_history)
print("\nfinished!")
# return the bot response and the full conversation
return {"out_text": bot_resp, "full_conv": conv_history}
# Set up the parsing of command-line arguments
def get_parser():
"""
get_parser [a helper function for the argparse module]
Returns: argparse.ArgumentParser
"""
parser = argparse.ArgumentParser(
description="submit a message and have a pretrained GPT model respond"
)
parser.add_argument(
"-p",
"--prompt",
required=True, # MUST HAVE A PROMPT
type=str,
help="the message the bot is supposed to respond to. Prompt is said by speaker, answered by responder.",
)
parser.add_argument(
"-m",
"--model",
required=False,
type=str,
default="distilgpt2-tiny-conversational",
help="folder - with respect to git directory of your repo that has the model files in it (pytorch.bin + "
"config.json). You can also pass the huggingface model name (e.g. distilgpt2)",
)
parser.add_argument(
"-s",
"--speaker",
required=False,
default=None,
help="Who the prompt is from (to the bot). Primarily relevant to bots trained on multi-individual chat data",
)
parser.add_argument(
"-r",
"--responder",
required=False,
default="person beta",
help="who the responder is. Primarily relevant to bots trained on multi-individual chat data",
)
parser.add_argument(
"--topk",
required=False,
type=int,
default=20,
help="how many responses to sample (positive integer). lower = more random responses",
)
parser.add_argument(
"--temp",
required=False,
type=float,
default=0.4,
help="specify temperature hyperparam (0-1). roughly considered as 'model creativity'",
)
parser.add_argument(
"--topp",
required=False,
type=float,
default=0.9,
help="nucleus sampling frac (0-1). aka: what fraction of possible options are considered?",
)
parser.add_argument(
"--resp_length",
required=False,
type=int,
default=50,
help="max length of the response (positive integer)",
)
parser.add_argument(
"-v",
"--verbose",
default=False,
action="store_true",
help="pass this argument if you want all the printouts",
)
parser.add_argument(
"-rt",
"--time",
default=False,
action="store_true",
help="pass this argument if you want to know runtime",
)
parser.add_argument(
"--use_gpu",
required=False,
action="store_true",
help="use gpu if available",
)
return parser
if __name__ == "__main__":
# parse the command line arguments
args = get_parser().parse_args()
query = args.prompt
model_dir = str(args.model)
model_loc = Path.cwd() / model_dir if "/" not in model_dir else model_dir
spkr = args.speaker
rspndr = args.responder
k_results = args.topk
my_temp = args.temp
my_top_p = args.topp
resp_length = args.resp_length
assert resp_length > 0, "response length must be positive"
want_verbose = args.verbose
want_rt = args.time
use_gpu = args.use_gpu
st = time.perf_counter()
resp = query_gpt_model(
folder_path=model_loc,
prompt_msg=query,
speaker=spkr,
responder=rspndr,
kparam=k_results,
temp=my_temp,
top_p=my_top_p,
resp_length=resp_length,
verbose=want_verbose,
use_gpu=use_gpu,
)
output = resp["out_text"]
pp.pprint(output, indent=4)
rt = round(time.perf_counter() - st, 1)
if want_rt:
print("took {runtime} seconds to generate. \n".format(runtime=rt))
if want_verbose:
print("finished - ", datetime.now())
p_list = resp["full_conv"]
print("A transcript of your chat is as follows: \n")
p_list = [item.strip() for item in p_list]
pp.pprint(p_list)