-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtwitterSearchDemoX.Rmd
246 lines (196 loc) · 8.5 KB
/
twitterSearchDemoX.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
Example Twitter Search Report: #hcsm
========================================================
A graphical report on a search for up to 1500 recent tweets tagged *hcsm*.
If you want to run the script used to generate this report yourself using the latest version of RSTudio, you can find it here: https://github.com/psychemedia/Twitter-Backchannel-Analysis/blob/master/twitterSearchDemoX.Rmd
(It requires a few R libraries you may need to install...)
First, who is being RTd, and how often were they RTd in the sample?
[Disable output with r opts_chunk$set(echo=FALSE, message=FALSE) in single backtick quotes]
Let's start by seeing who's been tweeting most amongst the sampled tweets...
`r opts_chunk$set(echo=FALSE, message=FALSE)`
```{r }
require(stringr)
require(twitteR)
require(googleVis)
#The original example used the twitteR library to pull in a user stream
#rdmTweets <- userTimeline("psychemedia", n=100)
#Instead, I'm going to pull in a search around a hashtag.
fstub='hcsm'
searchTerm=paste('#',fstub,sep='')
rdmTweets <- searchTwitter(searchTerm, n=1500)
tw.df=twListToDF(rdmTweets)
tw.df$from_user=tw.df$screenName
# Note that the Twitter search API only goes back 1500 tweets (I think?)
trim <- function (x) sub('@','',x)
twParse=function(df){
#Parsing @ messages
df$to=sapply(df$text,function(tweet) trim(str_extract(tweet,"^(@[[:alnum:]_]*)")))
#Parsing RT: messages
#The str_match approach is really slow - I'm using it here rather than str_extract purely as a demo
df$rtof=sapply(df$text,function(tweet) trim(str_match(tweet,"^RT (@[[:alnum:]_]*)")[2]))
#Parsing RT: senders
df$rtby=paste(df$rtof,df$from_user)
df$rtby=sapply(df$rtby,function(dfx) if (word(dfx,1)=='NA') NA else word(dfx,2))
return(df)
}
df.data=twParse(tw.df)
twCounts=function(df){
#Counting @'d users
to.count=data.frame(table(df$to))
colnames(to.count)=c('Name','toCount')
#Counting senders
from.count=data.frame(table(df$from_user))
colnames(from.count)=c('Name','fromCount')
#Counting rtof users
rtof.count=data.frame(table(df$rtof))
colnames(rtof.count)=c('Name','rtofCount')
#Counting rtby users
rtby.count=data.frame(table(df$rtby))
colnames(rtby.count)=c('Name','rtbyCount')
#Merging datasets
tmp=merge(rtof.count,to.count,all=TRUE)
tmp=merge(tmp,rtby.count,all=TRUE)
tmp=merge(tmp,from.count,all=TRUE)
tmp$Name=factor(tmp$Name)
return(tmp)
}
df.counts=twCounts(df.data)
#Order factors for display in an ordered bar chart
barsorter=function (dfc){
htable= table(dfc)
hlevels=names(htable)[order(htable)]
return(factor(dfc, levels = hlevels))
}
require(ggplot2)
df.data$frm=barsorter(df.data$from_user)
p=ggplot() + geom_bar(aes(x=na.omit(df.data$frm))) + opts(axis.text.x=theme_text(angle=-90)) + xlab(NULL)
print(p)
```
And who's been RTd most:
```{r}
df.data$hrt=barsorter(df.data$rtof)
p=ggplot() + geom_bar(aes(x=na.omit(df.data$hrt))) + opts(axis.text.x=theme_text(angle=-90)) + xlab(NULL)
print(p)
```
```{r}
require(xtable)
require(plyr)
rtof.table=xtable(head(arrange(df.counts,desc(rtofCount),desc(fromCount)),10),type=html, caption = "Top ten users by 'RT of' and 'from' count",caption.placement = "top")
```
Start off with some simple summary tables of who's been tweeting, RTd, etc.
```{r fig.width=7, fig.height=6, results='asis', tidy=FALSE}
print(rtof.table,'html')
```
```{r fig.width=7, fig.height=6, results='asis', tidy=FALSE}
df.counts=df.counts[,c(1,4,2,3,5)]
x.table=xtable(head(arrange(df.counts,desc(rtbyCount),desc(fromCount)),10), caption = "Top ten users by 'RT by'' count",caption.placement = "top")
print(x.table,'html')
```
```{r fig.width=7, fig.height=6, results='asis', tidy=FALSE}
df.counts=df.counts[,c(1,5,2:4)]
print(xtable(head(arrange(df.counts,desc(fromCount),desc(rtofCount)),10), caption = "Top ten users by 'from'' count",caption.placement = "top"),'html')
```
It's easy to add in Google Chart component sortable tables:
```{r fig.width=7, fig.height=6,results='asis', tidy=FALSE}
gTable <- gvisTable(df.counts, options = list(width = 600, height = 300, page = "enable"))
print(gTable, "chart")
```
Now lets try an accession plot (based on an oriiginal idea by @mediaczar)
```{r fig.width=10, fig.height=10}
tw.dfx=ddply(df.data, .var = "screenName", .fun = function(x) {return(subset(x, created %in% min(created),select=c(screenName,created)))})
## 2) arrange the users in accession order
tw.dfxa=arrange(tw.dfx,-desc(created))
## 3) Use the username accession order to order the screenName factors in the searchlist
df.data$screenName=factor(df.data$screenName, levels = tw.dfxa$screenName)
#ggplot seems to be able to cope with time typed values...
p=ggplot(df.data)+geom_point(aes(x=created,y=screenName))
p=p+opts(axis.text.y=theme_text())+ylab(NULL)+xlab(NULL)
print(p)
```
The accession plot shows the accession of folk using the search term in the tweet sample, and each of their sampled tweets thereafter.
We can add value to the chart by colouring tweets to see which were original tweets and which were RTs.
```{r fig.width=10, fig.height=10}
df.data$rtt=sapply(df.data$rtof,function(rt) if (is.na(rt)) 'T' else 'RT')
p=ggplot(df.data)+geom_point(aes(x=created,y=screenName,col=rtt))
p=p+opts(axis.text.y=theme_text())+xlab(NULL)+ylab(NULL)
print(p)
```
We can also limit the chart to only show original tweets:
```{r fig.width=10, fig.height=10}
p=ggplot(subset(df.data,rtt=='T'))+geom_point(aes(x=created,y=screenName,col=rtt),colour='aquamarine3')
p=p+opts(axis.text.y=theme_text())+xlab(NULL)+ylab(NULL)
print(p)
```
Or only show RTs:
```{r fig.width=10, fig.height=10}
p=ggplot(subset(df.data,rtt=='RT'))+geom_point(aes(x=created,y=screenName),colour='red')
p=p+opts(axis.text.y=theme_text())+xlab(NULL)+ylab(NULL)
print(p)
```
```{r fig.width=7, fig.height=7}
#cleanTweet/utkf-8 chars - there must be a better w`y/handler in tm?
df.data$origtext=df.data$text
df.data$text=sapply(df.data$text,function(tweet) str_trim(str_replace(str_sub(str_replace(tweet,'- tweet id [[:digit:]/s]*$',''),end=-35),"^([[:alnum:]_]*:)",'')))
RemoveAtPeople <- function(tweet) {
gsub("@\\w+", "", tweet)
}
tweets <- as.vector(sapply(df.data$text, RemoveAtPeople))
require(tm)
generateCorpus= function(df,my.stopwords=c()){
#Install the textmining library
tw.corpus= Corpus(VectorSource(df))
# remove punctuation
## I wonder if it would make sense to remove @d names first?
tw.corpus = tm_map(tw.corpus, removePunctuation)
#normalise case
tw.corpus = tm_map(tw.corpus, tolower)
# remove stopwords
tw.corpus = tm_map(tw.corpus, removeWords, stopwords('english'))
tw.corpus = tm_map(tw.corpus, removeWords, my.stopwords)
tw.corpus
}
wordcloud.generate=function(corpus,min.freq=3){
require(wordcloud)
doc.m = TermDocumentMatrix(corpus, control = list(minWordLength = 1))
dm = as.matrix(doc.m)
# calculate the frequency of words
v = sort(rowSums(dm), decreasing=TRUE)
d = data.frame(word=names(v), freq=v)
wc=wordcloud(d$word, d$freq, min.freq=min.freq)
wc
}
print(wordcloud.generate(generateCorpus(tweets),7))
```
```{r fig.width=7, fig.height=7}
print(wordcloud.generate(generateCorpus(tweets,tolower(fstub)),7))
```
Let's look to see what tags were used in the sample four times or more:
```{r fig.width=10, fig.height=10}
#hashtag processing via http://stackoverflow.com/a/9360445/454773
hashtagAugment=function(tmp){
#I think we need to defend against cases with zero tagged or untagged tweets?
tags <- str_extract_all(tmp$text, '#[a-zA-Z0-9]+')
index <- rep.int(seq_len(nrow(tmp)), sapply(tags, length))
if (length(index)!=0 || index ){
tagged <- tmp[index, ]
tagged$tag <- unlist(tags)
} else {
tagged=data.frame()
}
has_no_tag <- sapply(tags, function(x) length(x) == 0L)
not_tagged <- tmp[has_no_tag, ]
not_tagged$tag=''
rbind(tagged, not_tagged)
}
df.data.t=hashtagAugment(df.data)
tag.count=data.frame(table(df.data.t$tag))
colnames(tag.count)=c('tag','tagCount')
#p=ggplot(df.data.t,aes(x=na.omit(tag)))+geom_bar(aes(y=(..count..),x=reorder(tag,rep(1,length(tag)),sum))) + xlab(NULL) + opts(axis.text.x=theme_text(angle=-90,size=6))
p=ggplot(subset(tag.count,tagCount>3),aes(x=na.omit(tag)))+geom_bar(aes(y=tagCount,stat="identity",x=reorder(tag,tagCount))) + xlab(NULL) + opts(axis.text.x=theme_text(angle=-90))
print(p)
```
```{r fig.width=7, fig.height=6, results='asis', tidy=FALSE}
print(xtable(head(arrange(tag.count,desc(tagCount)),10), caption = "Top ten tags",caption.placement = "top"),'html')
```{r fig.width=7, fig.height=6,results='asis', tidy=FALSE}
gTable <- gvisTable(tag.count, options = list(width = 600, height = 300, page = "enable"))
print(gTable, "chart")
```