-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
349 lines (281 loc) · 17.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import cv2
import time
import progressbar
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
from torch.nn.parallel import DistributedDataParallel
from networks.mvsnet import MVSNet
from datasets import get_loader
from tools import *
from loss import mvs_loss
from datasets.data_io import save_pfm, read_pfm
from filter import gipuma_filter, pcd_filter, dypcd_filter
from filter.tank_test_config import tank_cfg
class Model:
def __init__(self, args):
if args.vis:
self.args = args
return
cudnn.benchmark = True
init_distributed_mode(args)
self.args = args
self.device = torch.device("cpu" if self.args.no_cuda or not torch.cuda.is_available() else "cuda")
self.network = MVSNet(ndepths=args.ndepths, depth_interval_ratio=args.interval_ratio, fea_mode=args.fea_mode,
agg_mode=args.agg_mode, depth_mode=args.depth_mode).to(self.device)
if self.args.distributed and self.args.sync_bn:
self.network = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.network)
if not (self.args.val or self.args.test):
self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.network.parameters()), lr=args.lr,
weight_decay=args.wd)
self.lr_scheduler = get_schedular(self.optimizer, self.args)
self.train_loader, self.train_sampler = get_loader(args, args.datapath, args.trainlist, args.nviews, "train")
if not self.args.test:
self.loss_func = mvs_loss
self.val_loader, self.val_sampler = get_loader(args, args.datapath, args.testlist, 5, "test")
if is_main_process():
self.writer = SummaryWriter(log_dir=args.log_dir, comment="Record network info")
self.network_without_ddp = self.network
if self.args.distributed:
self.network = DistributedDataParallel(self.network, device_ids=[self.args.local_rank])
self.network_without_ddp = self.network.module
if self.args.resume:
checkpoint = torch.load(self.args.resume, map_location="cpu")
if not (self.args.val or self.args.test or self.args.blendedmvs_finetune):
self.args.start_epoch = checkpoint["epoch"] + 1
self.optimizer.load_state_dict(checkpoint["optimizer"])
self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
self.network_without_ddp.load_state_dict(checkpoint["model"])
def main(self):
if self.args.vis:
self.visualization()
return
if self.args.val:
self.validate()
return
if self.args.test:
self.test()
return
self.train()
def train(self):
for epoch in range(self.args.start_epoch, self.args.start_epoch + self.args.epochs):
if self.args.distributed:
self.train_sampler.set_epoch(epoch)
self.train_epoch(epoch)
if is_main_process():
torch.save({
'epoch': epoch,
'model': self.network_without_ddp.state_dict(),
'optimizer': self.optimizer.state_dict(),
"lr_scheduler": self.lr_scheduler.state_dict()},
"{}/model_{:0>6}.ckpt".format(self.args.log_dir, epoch))
if (epoch % self.args.eval_freq == 0) or (epoch == self.args.epochs - 1):
self.validate(epoch)
torch.cuda.empty_cache()
def train_epoch(self, epoch):
self.network.train()
if is_main_process():
pwidgets = [progressbar.Percentage(), " ", progressbar.Counter(format='%(value)02d/%(max_value)d'), " ", progressbar.Bar(), " ",
progressbar.Timer(), ",", progressbar.ETA(), ",", progressbar.Variable('LR', width=1), ",",
progressbar.Variable('Loss', width=1), ",", progressbar.Variable('Th2', width=1), ",",
progressbar.Variable('Th4', width=1), ",", progressbar.Variable('Th8', width=1)]
pbar = progressbar.ProgressBar(widgets=pwidgets, max_value=len(self.train_loader),
prefix="Epoch {}/{}: ".format(epoch, self.args.epochs)).start()
avg_scalars = DictAverageMeter()
for batch, data in enumerate(self.train_loader):
data = tocuda(data)
outputs = self.network(data["imgs"], data["proj_matrices"], data["depth_values"])
loss = self.loss_func(outputs, data["depth"], data["mask"], self.args.depth_mode, dlossw=self.args.dlossw)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.lr_scheduler.step(epoch + batch / len(self.train_loader))
gt_depth = data["depth"]["stage{}".format(len(self.args.ndepths))]
mask = data["mask"]["stage{}".format(len(self.args.ndepths))]
thres2mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 2)
thres4mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 4)
thres8mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 8)
abs_depth_error = AbsDepthError_metrics(outputs["depth"], gt_depth, mask > 0.5)
scalar_outputs = {"loss": loss,
"abs_depth_error": abs_depth_error,
"thres2mm_error": thres2mm,
"thres4mm_error": thres4mm,
"thres8mm_error": thres8mm}
image_outputs = {"depth_est": outputs["depth"] * mask,
"depth_est_nomask": outputs["depth"],
"depth_gt": gt_depth,
"ref_img": data["imgs"][:, 0],
"mask": mask,
"errormap": (outputs["depth"] - gt_depth).abs() * mask,
}
if self.args.distributed:
scalar_outputs = reduce_scalar_outputs(scalar_outputs)
scalar_outputs, image_outputs = tensor2float(scalar_outputs), tensor2numpy(image_outputs)
if is_main_process():
avg_scalars.update(scalar_outputs)
if batch >= len(self.train_loader) - 1:
save_scalars(self.writer, 'train_avg', avg_scalars.avg_data, epoch)
if (epoch * len(self.train_loader) + batch) % self.args.summary_freq == 0:
save_scalars(self.writer, 'train', scalar_outputs, epoch * len(self.train_loader) + batch)
save_images(self.writer, 'train', image_outputs, epoch * len(self.train_loader) + batch)
pbar.update(batch, LR=self.optimizer.param_groups[0]['lr'],
Loss="{:.3f}|{:.3f}".format(scalar_outputs["loss"], avg_scalars.avg_data["loss"]),
Th2="{:.3f}|{:.3f}".format(scalar_outputs["thres2mm_error"], avg_scalars.avg_data["thres2mm_error"]),
Th4="{:.3f}|{:.3f}".format(scalar_outputs["thres4mm_error"], avg_scalars.avg_data["thres4mm_error"]),
Th8="{:.3f}|{:.3f}".format(scalar_outputs["thres8mm_error"], avg_scalars.avg_data["thres8mm_error"]))
if is_main_process():
pbar.finish()
@torch.no_grad()
def validate(self, epoch=0):
self.network.eval()
if is_main_process():
pwidgets = [progressbar.Percentage(), " ", progressbar.Counter(format='%(value)02d/%(max_value)d'), " ", progressbar.Bar(), " ",
progressbar.Timer(), ",", progressbar.ETA(), ",", progressbar.Variable('Loss', width=1), ",",
progressbar.Variable('Th2', width=1), ",", progressbar.Variable('Th4', width=1), ",",
progressbar.Variable('Th8', width=1)]
pbar = progressbar.ProgressBar(widgets=pwidgets, max_value=len(self.val_loader), prefix="Val:").start()
avg_scalars = DictAverageMeter()
for batch, data in enumerate(self.val_loader):
data = tocuda(data)
outputs = self.network(data["imgs"], data["proj_matrices"], data["depth_values"])
loss = self.loss_func(outputs, data["depth"], data["mask"], self.args.depth_mode, dlossw=self.args.dlossw)
gt_depth = data["depth"]["stage{}".format(len(self.args.ndepths))]
mask = data["mask"]["stage{}".format(len(self.args.ndepths))]
thres2mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 2)
thres4mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 4)
thres8mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 8)
abs_depth_error = AbsDepthError_metrics(outputs["depth"], gt_depth, mask > 0.5)
scalar_outputs = {"loss": loss,
"abs_depth_error": abs_depth_error,
"thres2mm_error": thres2mm,
"thres4mm_error": thres4mm,
"thres8mm_error": thres8mm}
image_outputs = {"depth_est": outputs["depth"] * mask,
"depth_est_nomask": outputs["depth"],
"depth_gt": gt_depth,
"ref_img": data["imgs"][:, 0],
"mask": mask,
"errormap": (outputs["depth"] - gt_depth).abs() * mask,
}
if self.args.distributed:
scalar_outputs = reduce_scalar_outputs(scalar_outputs)
scalar_outputs, image_outputs = tensor2float(scalar_outputs), tensor2numpy(image_outputs)
if is_main_process():
avg_scalars.update(scalar_outputs)
if batch >= len(self.val_loader) - 1:
save_scalars(self.writer, 'test_avg', avg_scalars.avg_data, epoch)
if (epoch * len(self.val_loader) + batch) % self.args.summary_freq == 0:
save_scalars(self.writer, 'test', scalar_outputs, epoch * len(self.val_loader) + batch)
save_images(self.writer, 'test', image_outputs, epoch * len(self.val_loader) + batch)
pbar.update(batch,
Loss="{:.3f}|{:.3f}".format(scalar_outputs["loss"], avg_scalars.avg_data["loss"]),
Th2="{:.3f}|{:.3f}".format(scalar_outputs["thres2mm_error"], avg_scalars.avg_data["thres2mm_error"]),
Th4="{:.3f}|{:.3f}".format(scalar_outputs["thres4mm_error"], avg_scalars.avg_data["thres4mm_error"]),
Th8="{:.3f}|{:.3f}".format(scalar_outputs["thres8mm_error"], avg_scalars.avg_data["thres8mm_error"]))
if is_main_process():
pbar.finish()
@torch.no_grad()
def test(self):
self.network.eval()
if self.args.testpath_single_scene:
self.args.datapath = os.path.dirname(self.args.testpath_single_scene)
if self.args.testlist != "all":
with open(self.args.testlist) as f:
content = f.readlines()
testlist = [line.rstrip() for line in content]
else:
# for tanks & temples or eth3d or colmap
testlist = [e for e in os.listdir(self.args.datapath) if os.path.isdir(os.path.join(self.args.datapath, e))] \
if not self.args.testpath_single_scene else [os.path.basename(self.args.testpath_single_scene)]
num_stage = len(self.args.ndepths)
# step1. save all the depth maps and the masks in outputs directory
for scene in testlist:
if scene in tank_cfg.scenes:
scene_cfg = getattr(tank_cfg, scene)
self.args.max_h = scene_cfg.max_h
self.args.max_w = scene_cfg.max_w
TestImgLoader, _ = get_loader(self.args, self.args.datapath, [scene], self.args.num_view, mode="test")
for batch_idx, sample in enumerate(TestImgLoader):
sample_cuda = tocuda(sample)
start_time = time.time()
outputs = self.network(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"])
end_time = time.time()
outputs = tensor2numpy(outputs)
del sample_cuda
filenames = sample["filename"]
cams = sample["proj_matrices"]["stage{}".format(num_stage)].numpy()
imgs = sample["imgs"].numpy()
print('Iter {}/{}, Time:{} Res:{}'.format(batch_idx, len(TestImgLoader), end_time - start_time, imgs[0].shape))
# save depth maps and confidence maps
for filename, cam, img, depth_est, depth2, depth1, photometric_confidence, pc2, pc1 \
in zip(filenames, cams, imgs, outputs["depth"],
outputs["stage2"]["depth"],
outputs["stage1"]["depth"],
outputs["photometric_confidence"],
outputs["stage2"]["photometric_confidence"],
outputs["stage1"]["photometric_confidence"]):
depth_filename2 = os.path.join(self.args.outdir, filename.format('depth_est', '_stage2.pfm'))
depth_filename1 = os.path.join(self.args.outdir, filename.format('depth_est', '_stage1.pfm'))
h, w = photometric_confidence.shape
pc2 = cv2.resize(pc2, (w, h), interpolation=cv2.INTER_NEAREST)
pc1 = cv2.resize(pc1, (w, h), interpolation=cv2.INTER_NEAREST)
confidence_filename2 = os.path.join(self.args.outdir, filename.format('confidence', '_stage2.pfm'))
confidence_filename1 = os.path.join(self.args.outdir, filename.format('confidence', '_stage1.pfm'))
img = img[0] # ref view
cam = cam[0] # ref cam
depth_filename = os.path.join(self.args.outdir, filename.format('depth_est', '.pfm'))
confidence_filename = os.path.join(self.args.outdir, filename.format('confidence', '.pfm'))
cam_filename = os.path.join(self.args.outdir, filename.format('cams', '_cam.txt'))
img_filename = os.path.join(self.args.outdir, filename.format('images', '.jpg'))
# ply_filename = os.path.join(self.args.outdir, filename.format('ply_local', '.ply'))
os.makedirs(depth_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(confidence_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(cam_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(img_filename.rsplit('/', 1)[0], exist_ok=True)
# os.makedirs(ply_filename.rsplit('/', 1)[0], exist_ok=True)
# save depth maps
save_pfm(depth_filename, depth_est)
save_pfm(depth_filename2, depth2)
save_pfm(depth_filename1, depth1)
# save confidence maps
save_pfm(confidence_filename, photometric_confidence)
save_pfm(confidence_filename2, pc2)
save_pfm(confidence_filename1, pc1)
# save cams, img
write_cam(cam_filename, cam)
img = np.clip(np.transpose(img, (1, 2, 0)) * 255, 0, 255).astype(np.uint8)
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(img_filename, img_bgr)
# if num_stage == 1:
# downsample_img = cv2.resize(img, (int(img.shape[1] * 0.25), int(img.shape[0] * 0.25)))
# elif num_stage == 2:
# downsample_img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))
# elif num_stage == 3:
# downsample_img = img
#
# if batch_idx % self.args.save_freq == 0:
# generate_pointcloud(downsample_img, depth_est, ply_filename, cam[1, :3, :3])
torch.cuda.empty_cache()
# step2. filter saved depth maps with photometric confidence maps and geometric constraints
if self.args.filter_method == "pcd":
# support multi-processing, the default number of worker is 4
pcd_filter(self.args, testlist, self.args.num_worker)
elif self.args.filter_method == "dypcd":
dypcd_filter(self.args, testlist, self.args.num_worker)
else:
gipuma_filter(testlist, self.args.outdir, self.args.prob_threshold, self.args.disp_threshold, self.args.num_consistent,
self.args.fusibile_exe_path)
@torch.no_grad()
def visualization(self):
import matplotlib as mpl
import matplotlib.cm as cm
from PIL import Image
save_dir = self.args.depth_img_save_dir
depth_path = self.args.depth_path
depth, scale = read_pfm(depth_path)
vmax = np.percentile(depth, 95)
normalizer = mpl.colors.Normalize(vmin=depth.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
colormapped_im = (mapper.to_rgba(depth)[:, :, :3] * 255).astype(np.uint8)
im = Image.fromarray(colormapped_im)
im.save(os.path.join(save_dir, "depth.png"))
print("Successfully visualize!")