diff --git a/docs/latest/.buildinfo b/docs/latest/.buildinfo index add08091d..b7cf3b829 100644 --- a/docs/latest/.buildinfo +++ b/docs/latest/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file records the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 7f1b053b2be3a71405d22662a0be11cb +config: b0c8626a9d843abb5e7dc96e2abbc94f tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/latest/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip b/docs/latest/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip index 38b098bcd..5c17e4cf5 100644 Binary files a/docs/latest/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip and b/docs/latest/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip differ diff --git a/docs/latest/_downloads/6a98626692e1880e5e2663974edc45be/plot_02_overview_skore_ui.zip b/docs/latest/_downloads/6a98626692e1880e5e2663974edc45be/plot_02_overview_skore_ui.zip index a5130ba41..48258fdd4 100644 Binary files a/docs/latest/_downloads/6a98626692e1880e5e2663974edc45be/plot_02_overview_skore_ui.zip and b/docs/latest/_downloads/6a98626692e1880e5e2663974edc45be/plot_02_overview_skore_ui.zip differ diff --git a/docs/latest/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip b/docs/latest/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip index a3f837c9a..d4733aa2c 100644 Binary files a/docs/latest/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip and b/docs/latest/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip differ diff --git a/docs/latest/_downloads/97b4b84f5410e1134b3cbe5e4682d2a1/plot_01_getting_started.zip b/docs/latest/_downloads/97b4b84f5410e1134b3cbe5e4682d2a1/plot_01_getting_started.zip index dacb4d46c..5b9abf794 100644 Binary files a/docs/latest/_downloads/97b4b84f5410e1134b3cbe5e4682d2a1/plot_01_getting_started.zip and b/docs/latest/_downloads/97b4b84f5410e1134b3cbe5e4682d2a1/plot_01_getting_started.zip differ diff --git a/docs/latest/_downloads/dafe7022153ade7f6466ced5b7bc6a6d/plot_03_cross_validate.zip b/docs/latest/_downloads/dafe7022153ade7f6466ced5b7bc6a6d/plot_03_cross_validate.zip index a17d7ad5e..2939d6d48 100644 Binary files a/docs/latest/_downloads/dafe7022153ade7f6466ced5b7bc6a6d/plot_03_cross_validate.zip and b/docs/latest/_downloads/dafe7022153ade7f6466ced5b7bc6a6d/plot_03_cross_validate.zip differ diff --git a/docs/latest/_sources/auto_examples/plot_01_getting_started.rst.txt b/docs/latest/_sources/auto_examples/plot_01_getting_started.rst.txt index f0133758a..8595bbd53 100644 --- a/docs/latest/_sources/auto_examples/plot_01_getting_started.rst.txt +++ b/docs/latest/_sources/auto_examples/plot_01_getting_started.rst.txt @@ -792,7 +792,7 @@ project, such as grid search or cross-validation results. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 6.514 seconds) + **Total running time of the script:** (0 minutes 7.030 seconds) .. _sphx_glr_download_auto_examples_plot_01_getting_started.py: diff --git a/docs/latest/_sources/auto_examples/plot_02_overview_skore_ui.rst.txt b/docs/latest/_sources/auto_examples/plot_02_overview_skore_ui.rst.txt index a793f38fb..fc62b6fe2 100644 --- a/docs/latest/_sources/auto_examples/plot_02_overview_skore_ui.rst.txt +++ b/docs/latest/_sources/auto_examples/plot_02_overview_skore_ui.rst.txt @@ -459,9 +459,9 @@ Numpy array: .. code-block:: none - array([[ 1.07940211, -0.17079627, 0.32707525], - [ 0.72808672, -0.3453953 , 0.58475624], - [-1.72280206, -0.3701965 , 0.31195055]]) + array([[ 1.63853041, -1.28706686, -0.37875963], + [-1.05853815, 2.3366351 , -1.48016548], + [ 0.76746085, -0.03573865, -0.10589976]]) @@ -513,43 +513,43 @@ Pandas data frame:
put()
) some useful items in it.
Let us load the project and add an integer to it for example:
-from skore import load
+from skore import load
-my_project = load("my_project.skore")
-my_project.put("my_int", 3)
+my_project = load("my_project.skore")
+my_project.put("my_int", 3)
@@ -1035,9 +1035,9 @@ Example of machine learning usage: hyperparameter sweep
Finally, we store some relevant information to our skore project, so that we
can visualize them later in the skore UI for example:
-my_project.put("my_gs_cv", gs_cv)
-my_project.put("my_df", df)
-my_project.put("my_fig", fig)
+my_project.put("my_gs_cv", gs_cv)
+my_project.put("my_df", df)
+my_project.put("my_fig", fig)
@@ -1053,11 +1053,11 @@ Cross-validation with skoreput()
)
a cross_validation
item with a plotly chart in your project.
-from skore import cross_validate
+from skore import cross_validate
-cv_results = cross_validate(Ridge(), X, y, cv=5, project=my_project)
+cv_results = cross_validate(Ridge(), X, y, cv=5, project=my_project)
-fig_plotly = my_project.get_item("cross_validation").plot
+fig_plotly = my_project.get_item("cross_validation").plot
@@ -1090,7 +1090,7 @@ Manipulating the skore UI
-
Total running time of the script: (0 minutes 6.514 seconds)
+Total running time of the script: (0 minutes 7.030 seconds)
@@ -492,46 +492,46 @@ Creating and loading a skore projectCompletedProcess(args=['python3', '-m', 'skore', 'create', 'my_project_ui'], returncode=0)
-from skore import load
+from skore import load
-my_project_ui = load("my_project_ui.skore")
+my_project_ui = load("my_project_ui.skore")
Storing integers#
Now, let us store our first object using put()
, for example an integer:
-my_project_ui.put("my_int", 3)
+my_project_ui.put("my_int", 3)
Here, the name of the object is my_int
and the integer value is 3.
You can read it from the project by using get()
:
-my_project_ui.get("my_int")
+my_project_ui.get("my_int")
3
Careful; like in a traditional Python dictionary, the put
method will overwrite past data if you use a key which already exists!
-my_project_ui.put("my_int", 30_000)
+my_project_ui.put("my_int", 30_000)
Let us check the updated value:
-my_project_ui.get("my_int")
+my_project_ui.get("my_int")
30000
By using the delete_item()
method, you can also delete an object so that your skore UI does not become cluttered:
-my_project_ui.put("my_int_2", 10)
+my_project_ui.put("my_int_2", 10)
-my_project_ui.delete_item("my_int_2")
+my_project_ui.delete_item("my_int_2")
You can display all the keys in your project:
-my_project_ui.list_item_keys()
+
['my_int']
@@ -541,17 +541,17 @@ Storing integers
Storing strings and texts#
We just stored a integer, now let us store some text using strings!
-my_project_ui.put("my_string", "Hello world!")
+my_project_ui.put("my_string", "Hello world!")
-my_project_ui.get("my_string")
+my_project_ui.get("my_string")
'Hello world!'
get()
infers the type of the inserted object by default. For example, strings are assumed to be in Markdown format. Hence, you can customize the display of your text:
-my_project_ui.put(
+my_project_ui.put(
"my_string_2",
(
"""Hello world!, **bold**, *italic*, `code`
@@ -566,7 +566,7 @@ Storing strings and textsmy_project_ui.put_item(
+my_project_ui.put_item(
"my_string_3",
MediaItem.factory(
"<p><h1>Title</h1> <b>bold</b>, <i>italic</i>, etc.</p>",
@@ -580,7 +580,7 @@ Storing strings and textsput_item()
instead of put()
.
Note that the media type is only used for the UI, and not in this notebook at hand:
-my_project_ui.get("my_string_3")
+my_project_ui.get("my_string_3")
b'<p><h1>Title</h1> <b>bold</b>, <i>italic</i>, etc.</p>'
@@ -589,7 +589,7 @@ Storing strings and textsx = 2
y = [1, 2, 3, 4]
-my_project_ui.put(
+my_project_ui.put(
"my_string_4", f"The value of `x` is {x} and the value of `y` is {y}."
)
@@ -599,7 +599,7 @@ Storing strings and texts#
Python list:
my_list = [1, 2, 3, 4]
-my_project_ui.put("my_list", my_list)
+my_project_ui.put("my_list", my_list)
my_list
@@ -611,7 +611,7 @@ Storing many kinds of data"company": "probabl",
"year": 2023,
}
-my_project_ui.put("my_dict", my_dict)
+my_project_ui.put("my_dict", my_dict)
my_dict
@@ -620,18 +620,18 @@ Storing many kinds of datamy_arr = np.random.randn(3, 3)
-my_project_ui.put("my_arr", my_arr)
+my_project_ui.put("my_arr", my_arr)
my_arr
-array([[ 1.07940211, -0.17079627, 0.32707525],
- [ 0.72808672, -0.3453953 , 0.58475624],
- [-1.72280206, -0.3701965 , 0.31195055]])
+array([[ 1.63853041, -1.28706686, -0.37875963],
+ [-1.05853815, 2.3366351 , -1.48016548],
+ [ 0.76746085, -0.03573865, -0.10589976]])
Pandas data frame:
my_df = pd.DataFrame(np.random.randn(10, 5))
-my_project_ui.put("my_df", my_df)
+my_project_ui.put("my_df", my_df)
my_df.head()
@@ -664,43 +664,43 @@ Storing many kinds of dataax.legend()
plt.show()
-my_project_ui.put("my_figure", fig)
+my_project_ui.put("my_figure", fig)
Altair chart:
@@ -741,7 +741,7 @@ Storing data visualizations.properties(title="My title")
)
-my_project_ui.put("my_altair_chart", my_altair_chart)
+my_project_ui.put("my_altair_chart", my_altair_chart)
@@ -764,7 +764,7 @@ Storing data visualizationssize=df.petal_length
)
-my_project_ui.put("my_plotly_fig", fig)
+my_project_ui.put("my_plotly_fig", fig)
Animated Plotly figure:
@@ -784,7 +784,7 @@ Storing data visualizationsrange_y=[25, 90],
)
-my_project_ui.put("my_anim_plotly_fig", my_anim_plotly_fig)
+my_project_ui.put("my_anim_plotly_fig", my_anim_plotly_fig)
PIL image:
@@ -792,7 +792,7 @@ Storing data visualizationswith io.BytesIO() as output:
my_pil_image.save(output, format="png")
-my_project_ui.put("my_pil_image", my_pil_image)
+my_project_ui.put("my_pil_image", my_pil_image)
@@ -801,7 +801,7 @@ Storing scikit-learn models and pipelinesProbabl, the spin-off of scikit-learn, skore treats scikit-learn models and pipelines as first-class citizens.
First of all, you can store a scikit-learn model:
@@ -1217,7 +1217,7 @@ Storing scikit-learn models and pipelinesmy_pipeline = Pipeline(
[("standard_scaler", StandardScaler()), ("lasso", Lasso(alpha=2))]
)
-my_project_ui.put("my_pipeline", my_pipeline)
+my_project_ui.put("my_pipeline", my_pipeline)
my_pipeline
@@ -1637,7 +1637,7 @@ Storing scikit-learn models and pipelinesy = diabetes.target[:150]
my_pipeline.fit(X, y)
-my_project_ui.put("my_fitted_pipeline", my_pipeline)
+my_project_ui.put("my_fitted_pipeline", my_pipeline)
my_pipeline
@@ -2051,7 +2051,7 @@ Storing scikit-learn models and pipelinesStandardScaler()
Lasso(alpha=2)
-
Total running time of the script: (0 minutes 1.417 seconds)
+
Total running time of the script: (0 minutes 1.439 seconds)
@@ -487,7 +487,7 @@ Creating and loading the skore projectCompletedProcess(args=['python3', '-m', 'skore', 'create', 'my_project_cv'], returncode=0)
-my_project_gs = load("my_project_cv.skore")
+my_project_gs = load("my_project_cv.skore")
@@ -556,15 +556,15 @@ Cross-validation in skore
Classification task#
Let us continue with the same use case.
-cv_results = skore.cross_validate(clf, X, y, cv=5, project=my_project_gs)
+cv_results = skore.cross_validate(clf, X, y, cv=5, project=my_project_gs)
-fig_plotly_clf = my_project_gs.get_item("cross_validation").plot
+fig_plotly_clf = my_project_gs.get_item("cross_validation").plot
fig_plotly_clf
Skore’s cross_validate
advantages are the following:
@@ -604,18 +604,18 @@ Regression tasky = diabetes.target[:150]
lasso = linear_model.Lasso()
-cv_results = skore.cross_validate(lasso, X, y, cv=5, project=my_project_gs)
+cv_results = skore.cross_validate(lasso, X, y, cv=5, project=my_project_gs)
-fig_plotly_reg = my_project_gs.get_item("cross_validation").plot
+fig_plotly_reg = my_project_gs.get_item("cross_validation").plot
fig_plotly_reg
-
Total running time of the script: (0 minutes 1.125 seconds)
+
Total running time of the script: (0 minutes 1.117 seconds)