forked from google/ml-fairness-gym
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcore.py
568 lines (456 loc) · 17.9 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# coding=utf-8
# Copyright 2020 The ML Fairness Gym Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Fairness environment base classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import enum
from typing import Any, Callable, Dict, List, Mapping, Optional, Text, Tuple, TypeVar, Union
from absl import flags
from absl import logging
import attr
import gin
import gym
from gym.utils import seeding
import gym.utils.json_utils
import more_itertools
import networkx as nx
import numpy as np
from recsim.simulator import recsim_gym
import simplejson as json
# Values with associated with this key within dictionaries are given
# special treatment as RandomState internals during JSON serialization /
# deserialization. This works around an issue where RandomState itself fails
# to serialize.
RANDOM_STATE_KEY = '__random_state__'
flags.DEFINE_bool(
'validate_history', False,
'If True, metrics check the validity of the history when measuring. '
'Can be turned off to save computation.')
class NotInitializedError(Exception):
"""Object is not fully initialized."""
pass
class InvalidObservationError(Exception):
"""Observation is not valid."""
pass
class InvalidRewardError(Exception):
"""Reward is not valid."""
pass
class BadFeatureFnError(Exception):
"""Featurization is not valid."""
pass
class InvalidHistoryError(Exception):
"""History is not valid."""
pass
class EpisodeDoneError(Exception):
"""Called act on a done episode."""
pass
class NotReproducibleError(Exception):
"""Simulation was run in a non-reproducible way."""
pass
def validate_reward(reward):
"""Raises InvalidRewardError if reward is not None or a scalar."""
if reward is None:
return True
try:
float(reward)
except TypeError:
raise InvalidRewardError
class GymEncoder(json.JSONEncoder):
"""Encoder to handle common gym and numpy objects."""
def default(self, obj):
# First check if the object has a to_jsonable() method which converts it to
# a representation that can be json encoded.
try:
return obj.to_jsonable()
except AttributeError:
pass
if callable(obj):
return {'callable': obj.__name__}
if isinstance(obj, (bool, np.bool_)):
return int(obj)
if isinstance(obj, enum.Enum):
return {'__enum__': str(obj)}
if isinstance(obj, recsim_gym.RecSimGymEnv):
# TODO(): We cannot serialize a full RecSimGymEnv but for now
# we can note its existence.
return 'RecSimGym'
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32,
np.int64, np.uint8, np.uint16, np.uint32, np.uint64)):
return int(obj)
if isinstance(obj, (bool, np.bool_)):
return str(obj)
if isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
return float(obj)
if isinstance(obj, nx.Graph):
return nx.readwrite.json_graph.node_link_data(obj)
if isinstance(obj, np.random.RandomState):
state = obj.get_state()
return {
RANDOM_STATE_KEY:
(state[0], state[1].tolist(), state[2], state[3], state[4])
}
if isinstance(obj, Params) or isinstance(obj, State):
return obj.asdict()
return json.JSONEncoder.default(self, obj)
def to_json(dictionary, sort_keys=True, **kw):
return json.dumps(dictionary, cls=GymEncoder, sort_keys=sort_keys, **kw)
@attr.s(cmp=False)
class State(object):
"""Simple mutable storage class for state variables."""
asdict = attr.asdict
def to_json(self):
return to_json(self)
def __eq__(self, other):
return self.to_json() == other.to_json()
def __ne__(self, other):
return self.to_json() != other.to_json()
# TODO(): Find a better type for actions than Any.
ActionType = Any # pylint: disable=invalid-name
@attr.s
class HistoryItem(object):
"""Data class for state, action pairs that make up a history."""
state = attr.ib() # type: State
action = attr.ib() # type: ActionType
def to_jsonable(self):
return attr.astuple(self)
# Allow HistoryItems to act like tuples for unpacking.
def __iter__(self):
return iter(attr.astuple(self, recurse=False))
HistoryType = List[HistoryItem]
@gin.configurable
@attr.s
class Params(object):
"""Simple mutable storage class for parameter variables."""
asdict = attr.asdict
ParamsType = TypeVar('ParamsType', bound=Params)
class RewardFn(object):
"""Base reward function.
A reward function describes how to extract a scalar reward from state or
changes in state.
Subclasses should override the __call__ function.
"""
# TODO(): Find a better type for observations than Any.
def __call__(self, observation):
raise NotImplementedError
DEFAULT_GROUP = np.ones(1)
NO_GROUP = np.zeros(1)
DEFAULT_GROUP_SPACE = gym.spaces.MultiBinary(1)
class StateUpdater(object):
"""An object used to update state."""
def update(self, state, action):
raise NotImplementedError
class NoUpdate(StateUpdater):
"""Applies no update."""
def update(self, state, action):
"""Does nothing."""
del state, action # Unused.
class FairnessEnv(gym.Env):
"""ML-fairness-gym Environment.
An ML-fairness-gym environment is an environment that additionally reports to
an oracle that can determine the potential outcomes for each action that the
agent takes.
The main API methods that users of this class need to know are:
Inherited from gym.Env (see gym/core.py for more documentation):
step
reset
render
close
seed
# TODO(): Add methods to save/restore state.
Extends gym.Env:
set_scalar_reward: Allows an agent to specify how the environment should
translate state or changes in state to a scalar reward.
Observations returned immediately after reset (initial observations) may not
be in the observation space. They can be used to establish some prior.
Subsequent observations are checked at each step to ensure they are contained.
When implementing a FairnessEnv, override `_step_impl` instead of overriding
the `step` method.
"""
observable_state_vars = {} # type: Mapping[Text, gym.Space]
# Should inherit from gym.Space
action_space = None # type: Optional[gym.Space]
# group_membership_var should be the name of an observable state variable.
group_membership_var = None # type: Optional[Text]
assert (not group_membership_var or
(group_membership_var in observable_state_vars))
def __init__(self,
params = None,
initialize_observation_space = True):
self.history = [] # type: HistoryType
self.state = None # type: Optional[State]
self.reward_fn = None # type: Optional[RewardFn]
if initialize_observation_space:
self.observation_space = gym.spaces.Dict(self.observable_state_vars)
# Copy params so if environment mutates params it is contained to this
# environment instance.
self.initial_params = copy.deepcopy(params)
def get_group_identifier(observation):
return observation.get(self.group_membership_var, DEFAULT_GROUP)
self.group_identifier_fn = get_group_identifier # type: Callable
def step(
self,
action):
"""Run one timestep of the environment's dynamics.
This is part of the openAI gym interface and should not be overridden.
When writing a new ML fairness gym environment, users should override the
`_step_impl` method.
Args:
action: An action provided by the agent. A member of `action_space`.
Returns:
observation: Agent's observation of the current environment. A member
of `observation_space`.
reward: Scalar reward returned after previous action. This should be the
output of a `RewardFn` provided by the agent.
done: Whether the episode has ended, in which case further step() calls
will return undefined results.
info: A dictionary with auxiliary diagnostic information.
Raises:
NotInitializedError: If called before first reset().
gym.error.InvalidAction: If `action` is not in `self.action_space`.
"""
if self.state is None:
raise NotInitializedError(
'State is None. State must be initialized before taking a step.'
'If using core.FairnessEnv, subclass and implement necessary methods.'
)
if not self.action_space.contains(action):
raise gym.error.InvalidAction('Invalid action: %s' % action)
self._update_history(self.state, action)
self.state = self._step_impl(self.state, action)
observation = self._get_observable_state()
logging.debug('Observation: %s.', observation)
logging.debug('Observation space: %s.', self.observation_space)
assert self.observation_space.contains(
observation
), 'Observation %s is not contained in self.observation_space' % observation
# TODO(): Remove this completely.
# For compatibility, compute a reward_fn if one is given.
reward = self.reward_fn(observation) if self.reward_fn is not None else 0
return observation, reward, self._is_done(), {}
def seed(self, seed = None):
"""Sets the seed for this env's random number generator."""
rng, seed = seeding.np_random(seed)
self.state.rng = rng
return [seed]
def reset(self):
"""Resets the state of the environment and returns an initial observation.
Returns:
observation: The observable features for the first interaction.
"""
self._reset_history()
return self._get_observable_state()
# TODO(): Remove this.
def set_scalar_reward(self, reward_fn):
"""Sets the environment's reward_fn.
`reward_fn` describes how to extract a scalar reward from the environment's
state or changes in state.
The agent interacting with the environment is expected to call this function
if it intends to use the environment's reward response.
Args:
reward_fn: A `RewardFn` object.
"""
self.reward_fn = reward_fn
def serialize_history(self):
"""Serialize history to JSON.
Returns:
A string containing a serialized JSON representation of the environment's
history.
"""
# Sanitize history by handling non-json-serializable state.
sanitized_history = [(json.loads(history_item.state.to_json()),
history_item.action) for history_item in self.history]
return json.dumps(
{
'environment': repr(self.__class__),
'history': sanitized_history
},
cls=GymEncoder,
sort_keys=True)
####################################################################
# Methods to be overridden by each fairness environment. #
####################################################################
def _step_impl(self, state, action):
"""Run one timestep of the environment's dynamics.
This should be implemented when creating a new enviornment.
Args:
state: A `State` object.
action: An action provided by the agent. A member of `action_space`.
Returns:
An updated `State` object.
"""
raise NotImplementedError
def _get_observable_state(self):
"""Extracts observable state from `self.state`.
Returns:
A dictionary mapping variable name to a numpy array with that variable's
value.
"""
return {
var_name: np.array(getattr(self.state, var_name))
for var_name in self.observable_state_vars
}
def _get_reward(self):
"""Extracts a scalar reward from `self.state`."""
return
def _is_done(self):
"""Extracts whether the episode is done from `self.state`."""
return False
#####################
# Metric interface #
#####################
def _get_history(self):
"""This function should only be called by a Metric."""
return self.history
def _get_state(self):
"""This function should only be called by a Metric."""
return copy.deepcopy(self.state)
#################################
# Private convenience functions #
#################################
def _update_history(self, state, action):
"""Adds state and action to the environment's history."""
self.history.append(HistoryItem(state=copy.deepcopy(state), action=action))
def _set_history(self, history):
self.history = history
def _reset_history(self):
"""Resets the environment's history."""
self.history = []
def _set_state(self, state):
"""Sets the environment's state."""
self.state = state
return self
class Metric(object):
"""Base metric class.
A metric processes the history of interactions between an agent and an
environment and evaluates some measure of fairness of those interactions.
The main API methods that users of this class need to know is:
measure: Takes a FairnessEnv as input and outputs an measure report. The
type of the measure report is not specified in the base class, but may
be specified for subclasses.
"""
def __init__(self,
environment,
realign_fn = None):
# A copy of the environment is used so that simulations do not affect
# the history of the environment being measured.
self._environment = copy.deepcopy(environment)
self._environment_setter = self._environment._set_state # pylint: disable=protected-access
self._realign_fn = realign_fn
def _simulate(self, state, action):
"""Simulates the effect of `action` on `state`.
Args:
state: A `State` object.
action: An action that is in the action space of `self.environment`.
Returns:
A new state.
"""
env = self._environment_setter(state)
env.step(action)
simulated_state = env._get_state() # pylint: disable=protected-access
return simulated_state
def _validate_history(self, history):
"""Checks that a history can be replayed using the metric's simulation.
Args:
history: an iterable of (state, action) pairs.
Raises:
ValueError if the metric's simulation and the history do not match.
"""
history = copy.deepcopy(history)
for idx, (step, next_step) in enumerate(more_itertools.pairwise(history)):
simulated_state = self._simulate(step.state, step.action)
if simulated_state != next_step.state:
raise ValueError('Invalid history at step %d %s != %s' %
(idx, step, next_step))
def _extract_history(self, env):
"""Gets and validates a history from an environment."""
history = env._get_history() # pylint: disable=protected-access
if flags.FLAGS.validate_history:
self._validate_history(history)
if self._realign_fn is not None:
return self._realign_fn(history)
return history
def measure(self, env):
"""Measures an agent's history of interactions with an environment."""
raise NotImplementedError
class Agent(object):
"""Base Agent class.
The main API methods that users of this class need to know is:
act: Takes (observation, reward, done) from the environment and returns
an action in the action space of the environment.
"""
def __init__(self, action_space, reward_fn,
observation_space):
"""Initializes an Agent.
Args:
action_space: a `gym.Space` that contains valid actions.
reward_fn: a `RewardFn` object.
observation_space: a `gym.Space` that contains valid observations.
"""
self.action_space = action_space
self.reward_fn = reward_fn
self.observation_space = observation_space
self.rng = np.random.RandomState()
def initial_action(self):
"""Returns an action in action_space that is the initial default action."""
raise NotImplementedError
# TODO(): Find a better type for observations than Any.
def act(self, observation, done):
"""Returns an action in the action_space specified in the constructor.
Do not override this method. When implementing act for a child class,
override the _act_impl method instead.
Args:
observation: An observation in `self.observation_space`.
done: Boolean indicating whether the simulation has terminated.
"""
reward = self.reward_fn(observation)
return self._act_impl(observation, reward, done)
# TODO(): Find a better type for observations than Any.
def _act_impl(self, observation, reward, done):
"""The implementation of the agent's act method.
This should be overridden by any class inheriting from Agent. When calling
this function, the agent has already replaced the environment's reward
value with its own.
Args:
observation: An observation in `self.observation_space`.
reward: A scalar reward function that the agent has computed from
observation.
done: Boolean indicating whether the simulation has terminated.
"""
raise NotImplementedError
# TODO(): Find a better type for observations than Any.
def flatten_features(self, observation):
"""Flattens observation in `observation_space` into a vector for training.
Args:
observation: An observation in `observation_space`.
Returns:
A 1-d numpy array containing the values from the observation.
"""
return np.concatenate([
np.array(feat).reshape((-1,)) for _, feat in sorted(observation.items())
])
def seed(self, value):
rng, seed = seeding.np_random(value)
self.rng = rng
return [seed]
def sample_from(self, space):
"""Sample from a space using the agent's own state."""
space = copy.deepcopy(space)
space.np_random = self.rng
return space.sample()