-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
110 lines (80 loc) · 3.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import streamlit as st
from dotenv import load_dotenv
from pypdf import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
def get_pdf_text(pdf_docs):
text = ""
for pdf_doc in pdf_docs:
pdf_reader = PdfReader(pdf_doc)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_text_chunks(raw_text):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
chunks = text_splitter.split_text(raw_text)
return chunks
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_user_input(user_question):
if st.session_state.conversation is None:
st.error("Please upload file(s) and Process them before asking questions.")
return
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
# Reverse the chat history
reversed_messages = st.session_state.chat_history[::-1]
for i, message in enumerate(reversed_messages):
if i % 2 == 0:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title='Chat with Documents', page_icon=':books:')
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
if "input_disabled_state" not in st.session_state:
st.session_state.input_disabled_state = True
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:",
disabled=st.session_state.input_disabled_state)
if user_question:
handle_user_input(user_question)
with st.sidebar:
st.subheader("Your Documents")
pdf_docs = st.file_uploader("Upload Your PDF Documents", accept_multiple_files=True)
if not pdf_docs:
st.error("Please upload PDF documents to continue")
if st.button("Process"):
with st.spinner("Processing"):
# Get PDF Text
raw_text = get_pdf_text(pdf_docs)
# Get the text chunks
text_chunks = get_text_chunks(raw_text)
# Create the vector store with embeddings
vectorstore = get_vectorstore(text_chunks)
# Conversation Chain
st.session_state.conversation = get_conversation_chain(vectorstore)
st.session_state.input_disabled_state = False
if __name__ == '__main__':
main()