forked from quic/ai-hub-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
56 lines (46 loc) · 2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# ---------------------------------------------------------------------
# Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# ---------------------------------------------------------------------
from qai_hub_models.models.openpose.app import OpenPoseApp
from qai_hub_models.models.openpose.model import MODEL_ASSET_VERSION, MODEL_ID, OpenPose
from qai_hub_models.utils.args import (
demo_model_from_cli_args,
get_model_cli_parser,
get_on_device_demo_parser,
validate_on_device_demo_args,
)
from qai_hub_models.utils.asset_loaders import CachedWebModelAsset, load_image
from qai_hub_models.utils.display import display_or_save_image
from qai_hub_models.utils.image_processing import pil_resize_pad, pil_undo_resize_pad
IMAGE_ADDRESS = CachedWebModelAsset.from_asset_store(
MODEL_ID, MODEL_ASSET_VERSION, "openpose_demo.png"
)
# Run OpenPose end-to-end on a sample image.
# The demo will display the input image with circles drawn over the estimated joint positions.
def main(is_test: bool = False):
# Demo parameters
parser = get_model_cli_parser(OpenPose)
parser = get_on_device_demo_parser(parser, add_output_dir=True)
parser.add_argument(
"--image",
type=str,
default=IMAGE_ADDRESS,
help="image file path or URL.",
)
args = parser.parse_args([] if is_test else None)
model = demo_model_from_cli_args(OpenPose, MODEL_ID, args)
validate_on_device_demo_args(args, MODEL_ID)
# Load image
app = OpenPoseApp(model)
(_, _, height, width) = OpenPose.get_input_spec()["image"][0]
orig_image = load_image(args.image)
image, scale, padding = pil_resize_pad(orig_image, (height, width))
# Run inference
pred_image = app.estimate_pose(image)
# Resize / unpad annotated image
pred_image = pil_undo_resize_pad(pred_image, orig_image.size, scale, padding)
if not is_test:
display_or_save_image(pred_image, args.output_dir)
if __name__ == "__main__":
main()