-
Notifications
You must be signed in to change notification settings - Fork 0
/
CriticNetwork.py
98 lines (77 loc) · 3.96 KB
/
CriticNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import tensorflow as tf
import numpy as np
import gym
import tflearn
MINIBATCH_SIZE = 64
class CriticNetwork(object):
"""
Input to the network is the state and action, output is Q(s,a).
The action must be obtained from the output of the Actor network.
"""
def __init__(self, sess, state_dim, action_dim, learning_rate, tau, num_prev_params):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.learning_rate = learning_rate
self.tau = tau
# Create the critic network
self.inputs, self.action, self.out = self.create_critic_network()
self.network_params = tf.trainable_variables()[num_prev_params:]
# Target Network
self.target_inputs, self.target_action, self.target_out = self.create_critic_network()
self.target_network_params = tf.trainable_variables()[(len(self.network_params) + num_prev_params):]
# Op for periodically updating target network with online network weights with regularization
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.mul(self.network_params[i], self.tau) + tf.mul(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# Network target (y_i)
self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
# Define loss and optimization Op
self.loss = tflearn.mean_square(self.predicted_q_value, self.out)
self.optimize = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
# Get the gradient of the net w.r.t. the action.
# For each action in the minibatch (i.e., for each x in xs),
# this will sum up the gradients of each critic output in the minibatch
# w.r.t. that action (i.e., sum of dy/dx over all ys). We then divide
# through by the minibatch size to scale the gradients down correctly.
#self.action_grads = tf.gradients(self.out, self.action)
self.action_grads = tf.div(tf.gradients(self.out, self.action), tf.constant(MINIBATCH_SIZE, dtype=tf.float32))
self.variables = tf.trainable_variables()[num_prev_params: ]
def create_critic_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim])
action = tflearn.input_data(shape=[None, self.a_dim])
net = tflearn.fully_connected(inputs, 200, activation='relu')
# Add the action tensor in the 2nd hidden layer
# Use two temp layers to get the corresponding weights and biases
t1 = tflearn.fully_connected(net, 100)
t2 = tflearn.fully_connected(action, 100)
net = tflearn.activation(tf.matmul(net,t1.W) + tf.matmul(action, t2.W) + t2.b, activation='relu')
net1 = tflearn.fully_connected(net, 200)
# linear layer connected to 1 output representing Q(s,a)
# Weights are init to Uniform[-3e-3, 3e-3]
w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
out = tflearn.fully_connected(net1, 1, weights_init=w_init)
return inputs, action, out
def train(self, inputs, action, predicted_q_value):
return self.sess.run([self.out, self.optimize], feed_dict={
self.inputs: inputs,
self.action: action,
self.predicted_q_value: predicted_q_value
})
def predict(self, inputs, action):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs,
self.action: action
})
def predict_target(self, inputs, action):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs,
self.target_action: action
})
def action_gradients(self, inputs, actions):
return self.sess.run(self.action_grads, feed_dict={
self.inputs: inputs,
self.action: actions
})
def update_target_network(self):
self.sess.run(self.update_target_network_params)