-
Notifications
You must be signed in to change notification settings - Fork 5
/
app.py
366 lines (303 loc) · 17.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from os import write
import time
import pandas as pd
import base64
from typing import Sequence
import streamlit as st
from sklearn.metrics import classification_report
# from models import create_nest_sentences, load_summary_model, summarizer_gen, load_model, classifier_zero
import models as md
from utils import examples_load, example_long_text_load
import json
ex_text, ex_license, ex_labels, ex_glabels = examples_load()
ex_long_text = example_long_text_load()
# if __name__ == '__main__':
###################################
######## App Description ##########
###################################
st.markdown("### Long Text Summarization & Multi-Label Classification")
st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large CNN](https://huggingface.co/facebook/bart-large-cnn) for the summarization task and [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli) for the multi-labels matching. The keywords are independently generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT) and not used in any downstream tasks.")
st.write("__Inputs__: User enters their own custom text(s) and labels.")
st.write("__Outputs__: A summary of the text, likelihood match score for each label and a downloadable csv of the results. \
Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.")
###################################
######## Example Input ##########
###################################
example_button = st.button(label='See Example')
if example_button:
example_text = ex_long_text #ex_text
display_text = 'Excerpt from Frankenstein:' + example_text + '"\n\n' + "[This is an excerpt from Project Gutenberg's Frankenstein. " + ex_license + "]"
input_labels = ex_labels
input_glabels = ex_glabels
title_name = 'Frankenstein, Chapter 3'
else:
display_text = ''
input_labels = ''
input_glabels = ''
title_name = 'Submitted Text'
with st.form(key='my_form'):
###################################
######## Form: Step 1 ##########
###################################
st.markdown("##### Step 1: Upload Text")
text_input = st.text_area("Input any text you want to summarize & classify here (keep in mind very long text will take a while to process):", display_text)
text_csv_expander = st.expander(label=f'Want to upload multiple texts at once? Expand to upload your text files below.', expanded=False)
with text_csv_expander:
st.markdown('##### Choose one of the options below:')
st.write("__Option A:__")
uploaded_text_files = st.file_uploader(label="Upload file(s) that end with the .txt suffix",
accept_multiple_files=True, key = 'text_uploader',
type='txt')
st.write("__Option B:__")
uploaded_csv_text_files = st.file_uploader(label='Upload a CSV file with two columns: "title" and "text"',
accept_multiple_files=False, key = 'csv_text_uploader',
type='csv')
if text_input == display_text and display_text != '':
text_input = example_text
gen_keywords = st.radio(
"Generate keywords from text? (independent from the input labels below)",
('Yes', 'No')
)
gen_summary = st.radio(
"Generate summary from text? (recommended for label matching below, but will take longer)",
('Yes', 'No')
)
###################################
######## Form: Step 2 ##########
###################################
st.write('\n')
st.markdown("##### Step 2: Enter Labels")
labels = st.text_input('Enter possible topic labels, which can be either keywords and/or general themes (comma-separated):',input_labels, max_chars=2000)
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
labels_csv_expander = st.expander(label=f'Prefer to upload a list of labels instead? Click here to upload your CSV file.',expanded=False)
with labels_csv_expander:
uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label",
key='labels_uploader')
###################################
######## Form: Step 3 ##########
###################################
st.write('\n')
st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)")
glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000)
glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0]))
glabels_csv_expander = st.expander(label=f'Have a file with labels for the text? Click here to upload your CSV file.', expanded=False)
with glabels_csv_expander:
st.markdown('##### Choose one of the options below:')
st.write("__Option A:__")
uploaded_onetext_glabels_file = st.file_uploader("Single Text: Choose a CSV file with one column and no header, where each cell is a separate label",
key = 'onetext_glabels_uploader')
st.write("__Option B:__")
uploaded_multitext_glabels_file = st.file_uploader('Multiple Text: Choose a CSV file with two columns "title" and "label", with the cells in the title column matching the name of the files uploaded in step #1.',
key = 'multitext_glabels_uploader')
# threshold_value = st.slider(
# 'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)',
# 0.0, 1.0, (0.5))
submit_button = st.form_submit_button(label='Submit')
st.write("_For improvments/suggestions, please file an issue here: https://github.com/pleonova/multi-label-summary-text_")
###################################
####### Model Load Time #########
###################################
with st.spinner('Loading pretrained models...'):
start = time.time()
summarizer = md.load_summary_model()
s_time = round(time.time() - start,4)
start = time.time()
classifier = md.load_model()
c_time = round(time.time() - start,4)
start = time.time()
kw_model = md.load_keyword_model()
k_time = round(time.time() - start,4)
st.spinner(f'Time taken to load various models: {k_time}s for KeyBERT model & {s_time}s for BART summarizer mnli model & {c_time}s for BART classifier mnli model.')
# st.success(None)
if submit_button or example_button:
###################################
######## Load Text Data #######
###################################
if len(text_input) == 0 and len(uploaded_text_files) == 0 and uploaded_csv_text_files is None:
st.error("Enter some text to generate a summary")
else:
if len(text_input) != 0:
text_df = pd.DataFrame.from_dict({'title': [title_name], 'text': [text_input]})
# OPTION A
elif len(uploaded_text_files) != 0:
st.markdown("### Text Inputs")
st.write('Files concatenated into a dataframe:')
file_names = []
raw_texts = []
for uploaded_file in uploaded_text_files:
text = str(uploaded_file.read(), "utf-8")
raw_texts.append(text)
title_file_name = uploaded_file.name.replace('.txt','')
file_names.append(title_file_name)
text_df = pd.DataFrame({'title': file_names,
'text': raw_texts})
st.dataframe(text_df.head())
st.download_button(
label="Download data as CSV",
data=text_df.to_csv().encode('utf-8'),
file_name='title_text.csv',
mime='title_text/csv',
)
# OPTION B
elif uploaded_csv_text_files is not None:
text_df = pd.read_csv(uploaded_csv_text_files)
# Which input was used? If text area was used, ignore the 'title'
if len(text_input) != 0:
title_element = []
else:
title_element = ['title']
###################################
######## Text Chunks ##########
###################################
with st.spinner('Breaking up text into more reasonable chunks (transformers cannot exceed a 1024 token max)...'):
# For each body of text, create text chunks of a certain token size required for the transformer
text_chunks_lib = dict()
for i in range(0, len(text_df)):
nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024)
# For each chunk of sentences (within the token max)
text_chunks = []
for n in range(0, len(nested_sentences)):
tc = " ".join(map(str, nested_sentences[n]))
text_chunks.append(tc)
title_entry = text_df['title'][i]
text_chunks_lib[title_entry] = text_chunks
################################
######## Keywords ##########
################################
if gen_keywords == 'Yes':
st.markdown("### Top Keywords")
with st.spinner("Generating keywords from text..."):
kw_dict = dict()
text_chunk_counter = 0
for key in text_chunks_lib:
keywords_list = []
for text_chunk in text_chunks_lib[key]:
text_chunk_counter += 1
keywords_list += md.keyword_gen(kw_model, text_chunk)
kw_dict[key] = dict(keywords_list)
# Display as a dataframe
kw_df0 = pd.DataFrame.from_dict(kw_dict).reset_index()
kw_df0.rename(columns={'index': 'keyword'}, inplace=True)
kw_df = pd.melt(kw_df0, id_vars=['keyword'], var_name='title', value_name='score').dropna()
kw_column_list = ['keyword', 'score']
kw_df = kw_df[kw_df['score'] > 0.25][title_element + kw_column_list].sort_values(title_element + ['score'], ascending=False).reset_index().drop(columns='index')
st.dataframe(kw_df)
st.download_button(
label="Download data as CSV",
data=kw_df.to_csv().encode('utf-8'),
file_name='title_keywords.csv',
mime='title_keywords/csv',
)
###################################
########## Summarize ##########
###################################
if gen_summary == 'Yes':
st.markdown("### Summary")
with st.spinner(f'Generating summaries for {len(text_df)} texts consisting of a total of {text_chunk_counter} chunks (this may take a minute)...'):
sum_dict = dict()
for i, key in enumerate(text_chunks_lib):
with st.expander(label=f'({i+1}/{len(text_df)}) Expand to see intermediate summary generation details for: {key}', expanded=False):
# for key in text_chunks_lib:
summary = []
for num_chunk, text_chunk in enumerate(text_chunks_lib[key]):
chunk_summary = md.summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens=400, minimum_tokens=100)
summary.append(chunk_summary)
st.markdown(f"###### Original Text Chunk {num_chunk+1}/{len(text_chunks)}" )
st.markdown(text_chunk)
st.markdown(f"###### Partial Summary {num_chunk+1}/{len(text_chunks)}")
st.markdown(chunk_summary)
# Combine all the summaries into a list and compress into one document, again
final_summary = "\n\n".join(list(summary))
sum_dict[key] = [final_summary]
sum_df = pd.DataFrame.from_dict(sum_dict).T.reset_index()
sum_df.columns = ['title', 'summary_text']
# TO DO: Make sure summary_text does not exceed the token length
st.dataframe(sum_df)
st.download_button(
label="Download data as CSV",
data=sum_df.to_csv().encode('utf-8'),
file_name='title_summary.csv',
mime='title_summary/csv',
)
###################################
########## Classifier #########
###################################
if ((len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None)
or (len(labels) == 0 and uploaded_labels_file is None)):
st.error('Enter some text and at least one possible topic to see label predictions.')
else:
if gen_summary == 'Yes':
st.markdown("### Top Label Predictions on Summary vs Full Text")
else:
st.markdown("### Top Label Predictions on Full Text")
if uploaded_labels_file is not None:
labels_df = pd.read_csv(uploaded_labels_file, header=None)
label_list = labels_df.iloc[:, 0]
else:
label_list = labels
with st.spinner('Matching labels...(may take some time)'):
if gen_summary == 'Yes':
labels_sum_col_list = ['title', 'label', 'scores_from_summary']
labels_sum_df = pd.DataFrame(columns=labels_sum_col_list)
labels_full_col_list = ['title', 'label', 'scores_from_full_text']
labels_full_df = pd.DataFrame(columns=labels_full_col_list)
for i in range(0, len(text_df)):
if gen_summary == 'Yes':
s_topics, s_scores = md.classifier_zero(classifier, sequence=sum_df['summary_text'][i], labels=label_list, multi_class=True)
ls_df = pd.DataFrame({'label': s_topics, 'scores_from_summary': s_scores})
ls_df['title'] = text_df['title'][i]
labels_sum_df = pd.concat([labels_sum_df, ls_df[labels_sum_col_list]])
f_topics, f_scores = md.classifier_zero(classifier, sequence=text_df['text'][i], labels=label_list, multi_class=True)
lf_df = pd.DataFrame({'label': f_topics, 'scores_from_full_text': f_scores})
lf_df['title'] = text_df['title'][i]
labels_full_df = pd.concat([labels_full_df, lf_df[labels_full_col_list]])
with st.expander(f'({i+1}/{len(text_df)}) See intermediate label matching results for: {text_df["title"][i]}'):
if gen_summary == 'Yes':
st.dataframe(pd.merge(ls_df, lf_df, on=['title','label']))
else:
st.dataframe(lf_df)
if gen_summary == 'Yes':
label_match_df = pd.merge(labels_sum_df, labels_full_df, on=['title', 'label'])
else:
label_match_df = labels_full_df.copy()
###################################
####### Ground Truth Labels ######
###################################
if len(glabels) > 0:
gdata = pd.DataFrame({'label': glabels})
join_list = ['label']
elif uploaded_onetext_glabels_file is not None:
gdata = pd.read_csv(uploaded_onetext_glabels_file, header=None)
join_list = ['label']
gdata.columns = join_list
elif uploaded_multitext_glabels_file is not None:
gdata = pd.read_csv(uploaded_multitext_glabels_file)
join_list = ['title', 'label']
gdata.columns = join_list
if len(glabels) > 0 or uploaded_onetext_glabels_file is not None or uploaded_multitext_glabels_file is not None:
gdata['correct_match'] = True
label_match_df = pd.merge(label_match_df, gdata, how='left', on=join_list)
label_match_df['correct_match'].fillna(False, inplace=True)
st.dataframe(label_match_df) #.sort_values(['title', 'label'], ascending=[False, False]))
st.download_button(
label="Download data as CSV",
data=label_match_df.to_csv().encode('utf-8'),
file_name='title_label_sum_full.csv',
mime='title_label_sum_full/csv',
)
# if len(glabels) > 0:
# st.markdown("### Evaluation Metrics")
# with st.spinner('Evaluating output against ground truth...'):
#
# section_header_description = ['Summary Label Performance', 'Original Full Text Label Performance']
# data_headers = ['scores_from_summary', 'scores_from_full_text']
# for i in range(0,2):
# st.markdown(f"###### {section_header_description[i]}")
# report = classification_report(y_true = data2[['is_true_label']],
# y_pred = (data2[[data_headers[i]]] >= threshold_value) * 1.0,
# output_dict=True)
# df_report = pd.DataFrame(report).transpose()
# st.markdown(f"Threshold set for: {threshold_value}")
# st.dataframe(df_report)
st.success('All done!')
st.balloons()