-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathCoqListFacts.v
243 lines (186 loc) · 6.77 KB
/
CoqListFacts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
(* This file is distributed under the terms of the MIT License, also
known as the X11 Licence. A copy of this license is in the README
file that accompanied the original distribution of this file.
Based on code written by:
Brian Aydemir *)
(** Assorted facts about lists. *)
Require Import Coq.Lists.List.
Require Import Coq.Lists.SetoidList.
Require Import Metalib.CoqUniquenessTac.
Open Scope list_scope.
(* ********************************************************************** *)
(** * List structure *)
Lemma cons_eq_app : forall (A : Type) (z : A) (xs ys zs : list A),
z :: zs = xs ++ ys ->
(exists qs, xs = z :: qs /\ zs = qs ++ ys) \/
(xs = nil /\ ys = z :: zs).
Proof.
destruct xs; intros ? ? H; simpl in *.
auto.
injection H. intros. subst. eauto.
Qed.
Lemma app_eq_cons : forall (A : Type) (z : A) (xs ys zs : list A),
xs ++ ys = z :: zs ->
(exists qs, xs = z :: qs /\ zs = qs ++ ys) \/
(xs = nil /\ ys = z :: zs).
Proof. auto using cons_eq_app. Qed.
Lemma nil_eq_app : forall (A : Type) (xs ys : list A),
nil = xs ++ ys ->
xs = nil /\ ys = nil.
Proof. auto using List.app_eq_nil. Qed.
Lemma app_cons_not_nil : forall (A : Type) (y : A) (xs ys : list A),
xs ++ y :: ys <> nil.
Proof.
intros ? ? ? ? H. symmetry in H. revert H. apply List.app_cons_not_nil.
Qed.
(* ********************************************************************** *)
(** * List membership *)
Lemma In_map : forall (A B : Type) (xs : list A) (x : A) (f : A -> B),
In x xs ->
In (f x) (map f xs).
Proof.
induction xs; intros ? ? H; simpl in *.
auto.
destruct H; subst; auto.
Qed.
(* ********************************************************************** *)
(** * List non-membership *)
Lemma not_In_cons : forall (A : Type) (ys : list A) (x y : A),
x <> y ->
~ In x ys ->
~ In x (y :: ys).
Proof. unfold not. inversion 3; auto. Qed.
Lemma not_In_app : forall (A : Type) (xs ys : list A) (x : A),
~ In x xs ->
~ In x ys ->
~ In x (xs ++ ys).
Proof. intros ? xs ys x ? ? H. apply in_app_or in H. intuition. Qed.
Lemma elim_not_In_cons : forall (A : Type) (y : A) (ys : list A) (x : A),
~ In x (y :: ys) ->
x <> y /\ ~ In x ys.
Proof. simpl. intuition. Qed.
Lemma elim_not_In_app : forall (A : Type) (xs ys : list A) (x : A),
~ In x (xs ++ ys) ->
~ In x xs /\ ~ In x ys.
Proof. split; auto using in_or_app. Qed.
(* ********************************************************************** *)
(** * List inclusion *)
Lemma incl_nil : forall (A : Type) (xs : list A),
incl nil xs.
Proof. unfold incl. inversion 1. Qed.
Lemma In_incl : forall (A : Type) (x : A) (ys zs : list A),
In x ys ->
incl ys zs ->
In x zs.
Proof. unfold incl. auto. Qed.
Lemma elim_incl_cons : forall (A : Type) (x : A) (xs zs : list A),
incl (x :: xs) zs ->
In x zs /\ incl xs zs.
Proof. unfold incl. auto with datatypes. Qed.
Lemma elim_incl_app : forall (A : Type) (xs ys zs : list A),
incl (xs ++ ys) zs ->
incl xs zs /\ incl ys zs.
Proof. unfold incl. auto with datatypes. Qed.
(* ********************************************************************** *)
(** * Setoid facts *)
(** [InA] and [In] are related when the relation is [eq]. The lemma
[In_InA], the converse of [InA_In], is in Coq's standard
library. *)
Lemma InA_In : forall (A : Type) (x : A) (xs : list A),
InA (@eq _) x xs -> In x xs.
Proof.
induction xs; intros H.
inversion H.
inversion H; subst; simpl in *; auto.
Qed.
Lemma InA_iff_In : forall (A : Type) (x : A) (xs : list A),
InA (@eq _) x xs <-> In x xs.
Proof.
split; auto using InA_In.
apply SetoidList.In_InA. apply eq_equivalence.
Qed.
(** Whether a list is sorted is a decidable proposition. *)
Section DecidableSorting.
Variable A : Type.
Variable leA : relation A.
Hypothesis leA_dec : forall x y, {leA x y} + {~ leA x y}.
Theorem lelistA_dec : forall a xs,
{lelistA leA a xs} + {~ lelistA leA a xs}.
Proof with auto.
destruct xs as [ | x xs ]...
destruct (leA_dec a x)...
right. intros J. inversion J...
Defined.
Theorem sort_dec : forall xs,
{sort leA xs} + {~ sort leA xs}.
Proof with auto.
induction xs as [ | x xs [Yes | No] ]...
destruct (lelistA_dec x xs)...
right. intros K. inversion K...
right. intros K. inversion K...
Defined.
End DecidableSorting.
(** Two sorted lists with the same elements are equal to each other.*)
Section SortedListEquality.
Variable A : Type.
Variable ltA : relation A.
Hypothesis ltA_trans : forall x y z, ltA x y -> ltA y z -> ltA x z.
Hypothesis ltA_not_eqA : forall x y, ltA x y -> x <> y.
Hypothesis ltA_eqA : forall x y z, ltA x y -> y = z -> ltA x z.
Hypothesis eqA_ltA : forall x y z, x = y -> ltA y z -> ltA x z.
Hint Resolve ltA_trans : core.
Hint Immediate ltA_eqA eqA_ltA : core.
Notation Inf := (lelistA ltA).
Notation Sort := (sort ltA).
Lemma eqlist_eq : forall (xs ys : list A),
eqlistA (@eq _) xs ys ->
xs = ys.
Proof. induction xs; destruct ys; inversion 1; f_equal; auto. Qed.
Lemma Sort_InA_eq : forall xs ys,
Sort xs ->
Sort ys ->
(forall a, InA (@eq _) a xs <-> InA (@eq _) a ys) ->
xs = ys.
Proof.
intros xs ys ? ? ?.
cut (eqlistA (@eq _) xs ys).
auto using eqlist_eq.
apply SetoidList.SortA_equivlistA_eqlistA with (ltA := ltA); eauto.
apply eq_equivalence. firstorder.
reduce. subst. split; auto.
Qed.
Lemma Sort_In_eq : forall xs ys,
Sort xs ->
Sort ys ->
(forall a, In a xs <-> In a ys) ->
xs = ys.
Proof with auto using In_InA, InA_In.
intros ? ? ? ? H.
apply Sort_InA_eq...
intros a; specialize (H a).
split; intros; apply In_InA; intuition...
Qed.
End SortedListEquality.
(* ********************************************************************** *)
(** * Uniqueness of proofs *)
(** Uniqueness of proofs for predicates on lists often comes up when
discussing extensional equality on finite sets, as implemented by
the FSets library. *)
Section Uniqueness_Of_SetoidList_Proofs.
Variable A : Type.
Variable R : A -> A -> Prop.
Hypothesis R_unique : forall (x y : A) (p q : R x y), p = q.
Hypothesis list_eq_dec : forall (xs ys : list A), {xs = ys} + {xs <> ys}.
Scheme lelistA_ind' := Induction for lelistA Sort Prop.
Scheme sort_ind' := Induction for sort Sort Prop.
Scheme eqlistA_ind' := Induction for eqlistA Sort Prop.
Theorem lelistA_unique :
forall (x : A) (xs : list A) (p q : lelistA R x xs), p = q.
Proof. induction p using lelistA_ind'; uniqueness 1. Qed.
Theorem sort_unique :
forall (xs : list A) (p q : sort R xs), p = q.
Proof. induction p using sort_ind'; uniqueness 1. apply lelistA_unique. Qed.
Theorem eqlistA_unique :
forall (xs ys : list A) (p q : eqlistA R xs ys), p = q.
Proof. induction p using eqlistA_ind'; uniqueness 2. Qed.
End Uniqueness_Of_SetoidList_Proofs.