-
Notifications
You must be signed in to change notification settings - Fork 9
/
demo.py
359 lines (281 loc) · 13.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ['GRADIO_TEMP_DIR'] = 'gradio_temp'
import gradio as gr
import torch
import argparse
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
import os
import time
from datasets import load_from_disk,load_dataset
import torch
import json
from tqdm import tqdm
import re
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.colors as Colormap
from matplotlib.colors import LogNorm
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import torch
import seaborn as sns
from matplotlib.colors import LogNorm
from io import BytesIO
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import torch
import seaborn as sns
from matplotlib.colors import LogNorm
from io import BytesIO
from PIL import Image
def visualize_attention(multihead_attention,title="Layer 5",sample_style="All layers"):
averaged_attention = torch.mean(multihead_attention, axis=1)[0].float()
averaged_attention = torch.nn.functional.avg_pool2d(
averaged_attention.unsqueeze(0).unsqueeze(0), 20, stride=20).squeeze(0).squeeze(0)
cmap = plt.cm.get_cmap("viridis")
plt.figure(figsize=(5, 5),dpi=400)
log_norm = LogNorm(vmin=0.0007, vmax=averaged_attention.max())
ax = sns.heatmap(averaged_attention,
cmap=cmap,
norm=log_norm)
x_ticks = [str(i*20) for i in range(0,averaged_attention.shape[0])]
y_ticks = [str(i*20) for i in range(0,averaged_attention.shape[0])]
ax.set_xticks([i for i in range(0,averaged_attention.shape[0])])
ax.set_yticks([i for i in range(0,averaged_attention.shape[0])])
ax.set_xticklabels(x_ticks)
ax.set_yticklabels(y_ticks)
# label ticks
for label in ax.get_xticklabels():
tick_location = int(label.get_text())
if 0 <= tick_location <= 40:
# set the color of the tick labels
label.set_color('blue')
label.set_fontweight('bold')
elif 40 < tick_location <= 600:
label.set_color('red')
for label in ax.get_yticklabels():
tick_location = int(label.get_text())
if 0 <= tick_location <= 40:
# set the color of the tick labels
label.set_color('blue')
label.set_fontweight('bold')
elif 40 < tick_location <= 600:
label.set_color('red')
plt.xticks(fontsize=5)
plt.yticks(fontsize=5)
plt.yticks(rotation=0)
plt.xticks(rotation=90)
plt.title(title, fontsize=20)
buf = BytesIO()
plt.savefig(buf,format='png', bbox_inches='tight')
buf.seek(0)
image = Image.open(buf).copy()
if sample_style == "All layers":
image = image.resize((768, 768))
else:
image = image.resize((1024, 1024))
buf.close()
plt.close()
return image
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def concatenate_images(images_list, number_rows=5, number_cols=7):
assert len(images_list) == number_rows * number_cols
# Assuming all images are the same size
img_width, img_height = images_list[0].size
# Creating a blank canvas for the final image
final_img = Image.new('RGB', (img_width * number_cols, img_height * number_rows))
# Loop over the images and paste them onto the canvas
for idx, img in enumerate(images_list):
row = idx // number_cols # row index
col = idx % number_cols # column index
# paste the image at the correct position on the canvas
final_img.paste(img, (img_width * col, img_height * row))
return final_img
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument('--model-path', type=str, required=False, default="./llava-v1.5-7b")
pargs = parser.parse_args()
examples = [
["figs/example.jpg", "Describe all the objects in the image."],
["figs/example2.jpg","Describe the image in detail."],
["figs/example3.jpg","Describe the animal in image in detail."],
]
class InferenceArgs:
model_path = pargs.model_path
model_base = None
image_file = None
device = "cuda:0"
conv_mode = None
temperature = 0.2
max_new_tokens = 512
load_8bit = False
load_4bit = False
debug = False
image_aspect_ratio = 'pad'
args = InferenceArgs()
disable_torch_init()
print('Loading model...')
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
model.config.use_fast_v = False
model.model.reset_fastv()
total_layers = model.config.num_hidden_layers
image_input = gr.Image(type="pil",label="Image",)
# attention_Layer = gr.Radio(
# choices=["Every 16 Layers","Beam search","Beam search", "All Layers"],
# value="All Layers",
# label="Text Decoding Method",
# interactive=True,
# )
attention_Layer = gr.inputs.Dropdown(choices=["All layers", "", "Sample 5 layers", "Sample 10 layers"], default="Sample 3 layers", label="Layer Attention Visualization")
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
, columns=[5], rows=[7], object_fit="contain", height="auto")
prompt_textbox = gr.Textbox(label="Prompt", placeholder="Describe the image in detail.", lines=2)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
def temp_inference(prompts,images,append_output=None):
outputs = []
outputs_attention = []
if append_output is None:
append_output_str=""
else:
append_output_str=append_output
for prompt,image in tqdm(zip(prompts,images),total=len(prompts)):
image_tensor = process_images([image], image_processor, args)
conv = conv_templates[args.conv_mode].copy()
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
inp = prompt
if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp # False
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt() + append_output_str
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
start = time.time()
output_ids = model.generate(
input_ids,
images=image_tensor,
attention_mask=None,
do_sample=False,
max_new_tokens=256,
use_cache=True,
stopping_criteria=[stopping_criteria],
output_attentions=True,
output_scores=True,
return_dict_in_generate=True,
)
time_cost = time.time() - start
output = tokenizer.decode(output_ids['sequences'][0, input_ids.shape[1]:],skip_spectial_tokens=True).strip().replace("</s>","")
outputs.append(output)
outputs_attention.append(output_ids['attentions'])
if len(outputs) > 1:
print(output)
if append_output is None:
return outputs,outputs_attention,time_cost
return outputs,outputs_attention
def select_numbers(n, x):
return [(i*(n-1))//(x-1) for i in range(x)]
def inference(image_input, prompt, num_of_layers="All layers"):
prompts = [prompt]
images = [image_input]
model_output_ori,outputs_attention,time_cost = temp_inference(prompts,images)
# time cost in seconds
model_output,outputs_attention = temp_inference(prompts,images,append_output=model_output_ori[0])
print(model_output_ori)
images_list = []
for i in outputs_attention:
if num_of_layers == "All layers":
show_layers = list(range(0,total_layers))
elif num_of_layers == "Sample 3 layers":
show_layers = select_numbers(total_layers,3)
elif num_of_layers == "Sample 5 layers":
show_layers = select_numbers(total_layers,5)
elif num_of_layers == "Sample 10 layers":
show_layers = select_numbers(total_layers,10)
else:
show_layers = list(range(0,total_layers))
for j in show_layers:
images_list.append(visualize_attention(i[0][j].cpu(),title="Layer "+str(j+1), sample_style=num_of_layers))
# final_images = concatenate_images(images_list, number_rows=5, number_cols=7)
# return final_images,images_list
output = model_output_ori if isinstance(model_output_ori, str) else model_output_ori[0]
total_time_cost = "Total Time Cost:{:.2f}s".format(time_cost)
return images_list,output,total_time_cost
import base64
from io import BytesIO
def pil_to_base64(pil_image):
pil_image = Image.open(pil_image)
buffered = BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
fastv_tradeoff = pil_to_base64('figs/fastv_tradeoff.png')
attn_map = pil_to_base64('figs/attn_map.png')
description= f'''# FastV Demo
Welcome to the demonstration for [FastV](https://arxiv.org/abs/2403.06764), an innovative plug-and-play inference accelerator specifically designed for Large Vision-Language Models.
FastV enables a **45% reduction in theoretical FLOPs** without compromising on performance by pruning redundant visual tokens in deep layers.
<center><img src="data:image/png;base64,{fastv_tradeoff}" alt="FastV tradeoff image" style="width: 40%;"/></center>
This demo unveils the attention maps of the llava-1.5-7B model to illustrate the inefficient attention phenomena prevalent in Large Vision-Language Models (LVLMs).
The **System Prompt tokens are highlighted in blue**, followed by **Image tokens marked in red**. The remaining tokens are the text tokens marked in black.
## Guidelines:
1. **Upload an image**, **enter a prompt** and **select the number of layers** to visualize the attention maps.
2. The model output with FastV, time cost, and the attention maps for the sampled layers will be displayed.
* **Note**: Due to the Network constraints, the attention map generation may take up to 30 seconds.*
# Dive in, explore and enjoy the capabilities of FastV!
For more details, visit the [FastV GitHub page](https://github.com/pkunlp-icler/FastV).
'''
# <img src="data:image/png;base64,{attn_map}" alt="Attention Map image" style="width: 33%;"/>
demo = gr.Interface(
fn=inference,
inputs=[image_input,prompt_textbox,attention_Layer],
description=description,
outputs=[gallery,"text","text"],
examples=examples,
allow_flagging="never",
)
demo.launch(share=True,server_name="0.0.0.0", server_port=7862)