-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_figures.r
791 lines (622 loc) · 37.8 KB
/
plot_figures.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
# Plot figures for paper
#####################
## Useful functions
#####################
require(maps)
require(mapdata) # for hires world map
require(maptools)
require(rgdal)
require(rgeos)
require(raster)
require(data.table)
require(beanplot)
require(RColorBrewer)
require(lme4)
require(ggsci) # colors for Fig. 4
se <- function(x,na.rm=FALSE){ # standard error
if(!na.rm){
return(sd(x, na.rm=FALSE)/sqrt(length(x)))
}
if(na.rm){
return(sd(x, na.rm=TRUE)/sqrt(sum(!is.na(x))))
}
}
# Function to plot color bar
# from https://stackoverflow.com/questions/9314658/colorbar-from-custom-colorramppalette
color.bar <- function(lut, min, max=-min, nticks=11, ticks=seq(min, max, len=nticks), title='') {
scale = (length(lut)-1)/(max-min)
plot(c(0,10), c(min,max), type='n', bty='n', xaxt='n', xlab='', yaxt='n', ylab='', main=title)
axis(4, ticks, las=1)
for (i in 1:(length(lut)-1)) {
y = (i-1)/scale + min
rect(0,y,10,y+1/scale, col=lut[i], border=NA)
}
}
##############################
# Useful quantities (for paper text)
##############################
# number of species and projections
presmap1 <- fread(cmd = 'gunzip -c temp/presmap_Atl_rcp26_2007-2020.csv.gz', drop = 1)
presmap2 <- fread(cmd = 'gunzip -c temp/presmap_Pac_rcp26_2007-2020.csv.gz', drop = 1)
biomap1 <- fread(cmd = 'gunzip -c temp/biomassmap_Atl_rcp26_2007-2020.csv.gz', drop = 1)
biomap2 <- fread(cmd = 'gunzip -c temp/biomassmap_Pac_rcp26_2007-2020.csv.gz', drop = 1)
nspp <- presmap1[, length(unique(spp))] + presmap2[, length(unique(spp))] + biomap1[, length(unique(spp))] + biomap2[, length(unique(spp))]
nspp # number of species
8*2*4*nspp # number of projections (8 GCMs, 2 RCPs, 4 time periods for each species)
rm(presmap1, presmap2, biomap1, biomap2)
# number of mpas in each network
networks <- fread('gunzip -c temp/wdpaturnbyMPAbymod.csv.gz', drop = 1) # MPA network descriptions
networks[, length(unique(WDPA_PID)), by = network]
#########################
## Fig 1 Study regions maps
#########################
# turnover statistics
turn <- fread('output/turnover_by_CMSPgrid.csv', drop = 1)
# region definitions
regiongrid <- fread(cmd = 'gunzip -c output/region_grid.csv.gz', drop = 1)
regiongrid[longrid > 0, longrid := longrid - 360] # convert to -360 to 0 for merging with turn
regiongrid[longrid < 0, longrid2 := longrid + 360] # convert to 0 to 360 for plotting a continent-scale map
# merge regions and turnover
turn <- merge(turn, regiongrid, by = c('latgrid', 'longrid'), all.x = TRUE)
# set regions and params for each
regs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf')
cexs <- c(ebs = 0.3, goa = 0.3, bc = 0.5, wc = 0.35, gmex = 0.33, seus = 0.4, neus = 0.3, maritime = 0.25, newf = 0.13)
regsnice = c('Eastern Bering Sea', 'Gulf of Alaska', 'British Columbia', 'West Coast U.S.', 'Gulf of Mexico', 'Southeast U.S.', 'Northeast U.S.', 'Maritimes', 'Newfoundland')
regsniceabbrev = c('(EBS)', '(GoA)', '(BC)', '(WC)', '(GMex)', '(SEUS)', '(NEUS)', '(Mar)', '(Newf)')
ylabs = c('Latitude (°N)', '', '', '', 'Latitude (°N)', '', '', 'Latitude (°N)', '')
xlabs = c('', '', '', 'Longitude (°E)', '', '', 'Longitude (°E)', 'Longitude (°E)', 'Longitude (°E)')
ylims = list(ebs = c(51,62.5), goa = c(54, 61), bc = c(48, 54), wc = c(32.2, 48.5), gmex = c(24,30.5), seus = c(25, 35.5), neus = c(35, 45), maritime = c(41, 52), newf = c(42, 62))
xlims = list(ebs = c(-179.5,-155), goa = c(-156, -133), bc = c(-136, -122), wc = c(-126.5, -117), gmex = c(-97.5,-81), seus = c(-82, -74), neus = c(-76.5, -66), maritime = c(-69, -53), newf = c(-68, -43))
pos <- c(ebs = 'right', goa = 'left', bc = 'left', wc = 'left', gmex = 'left', seus = 'right', neus = 'right', maritime = 'right', newf = 'left')
bcol <- 'dark grey' # background color
yfrac <- c(0.1, 0.1, 0.1, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1) # fraction of plot from the bottom that the temperature ranges are written
mfgs <- list(ebs = c(1,2), goa = c(1,3), bc = c(2,1), wc = c(1,4), gmex = c(2,2), seus = c(2,3), neus = c(3,1), maritime = c(3,2), newf = c(3,3)) # plot coordinates for each region
cols <- brewer.pal(9, 'GnBu')
colfun <- colorRamp(colors = cols)
colpal <- colorRampPalette(colors = cols)
#### plot map
# quartz(width=8.7/2.54,height=6/2.54)
#png(width=8.7/2.54, height=6/2.54, units = 'in', res = 300, file='figures/Fig1_study_regions.png')
jpeg(width = 8.7/2.54, height = 6/2.54, file = 'figures/Fig1_study_regions.jpg', units = 'in', res = 1200, quality = 100)
par(mai=c(0.15, 0.08, 0.15, 0.1), omi=c(0.15, 0.2, 0, 0), tck=-0.06, mgp=c(1.2,0.4,0), las=1, cex.main=0.5, cex.axis=0.5)
layout(mat=matrix(c(1,2,3,5,4,6,7,5,8,9,10,11), byrow=TRUE, nrow=3))
# Add continent-scale map
turn[!is.na(beta_sor), plot(1, 1, xlab='', ylab='', main='', xaxt='n', xlim = c(178,310), ylim = c(24, 62))]
axis(1, mgp=c(1.2, 0.02, 0), at=c(200,250,300), labels=c(-160, -110, -60))
map('world2Hires', add=TRUE, xlim=c(170,320), col=bcol, lwd=0.2, resolution=0, fill=FALSE, wrap=TRUE) # annoying that turning fill=TRUE also draws big horizontal lines across the map
turn[!is.na(beta_sor), points(longrid2, latgrid, col=rgb(colfun(beta_sor), maxColorValue = 255), pch=15, cex=0.1)]
# Add each region
for(i in 1:length(regs)){
cat(paste0(regs[i], ' '))
inds <- turn[, region==regs[i] & !is.na(beta_sor)]
turn[inds, plot(longrid, latgrid, col = rgb(colfun(beta_sor), maxColorValue = 255), pch = 15, cex = cexs[i], xlab = '', ylab = '', xlim = xlims[[i]], ylim = ylims[[i]],
main = paste(regsnice[i], '\n', regsniceabbrev[i], sep=''), xaxt='n')]
axis(1, mgp=c(1.2, 0.02, 0))
map('worldHires',add=TRUE, col=bcol, fill=TRUE, border=FALSE, resolution=0)
}
mtext('Longitude (°E)', side = 1, outer = TRUE, cex = 0.5)
mtext('Latitude (°N)', side = 2, outer = TRUE, cex = 0.5, las = 0, line = 0.7)
# Add a color bar
par(mgp=c(2,0.5,0), mai=c(0.1, 0.3, 0.1, 0.4), tcl=-0.1)
color.bar(colpal(100), min = 0, max = 1, nticks = 5, title = 'Turnover')
dev.off()
####################################################################
# Fig 2 Compare the planning approaches against each climate projection
####################################################################
goalsmetbymod1 <- fread('output/goalsmetbymod_hist_all.csv', drop = 1)
goalsmetbymod2 <- fread('output/goalsmetbymod_2per_all.csv', drop = 1)
goalsmetbymod1 <- goalsmetbymod1[modeltype == 'testing', ] # remove the planning projections
goalsmetbymod2 <- goalsmetbymod2[modeltype == 'testing', ] # remove the planning projections
setkey(goalsmetbymod1, 'region', 'rcp', 'model', 'year_range')
setkey(goalsmetbymod2, 'region', 'rcp', 'model', 'year_range')
goalsmetbymod1[, type := 'hist']
goalsmetbymod2[, type := '2per']
goalsmetbymod <- rbind(goalsmetbymod1, goalsmetbymod2)
goalsmetbymod[, type := factor(type, levels = c('hist', '2per'))] # set order
myregs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf')
regnames = c('Eastern Bering Sea', 'Gulf of Alaska', 'British Columbia', 'West Coast U.S.', 'Gulf of Mexico', 'Southeast U.S.', 'Northeast U.S.', 'Maritimes', 'Newfoundland')
mods <- sort(unique(goalsmetbymod1$model))
rcps <- sort(unique(goalsmetbymod1$rcp))
# Statistics
# goals met, mid-century or end-of-century (for text)
goalsmetbymod[year_range == '2041-2060', .(mean = mean(pmetstrict), sd = sd(pmetstrict)), by = c('type')] # mean and se across models and goals
goalsmetbymod[year_range == '2081-2100' & rcp == '26', .(mean = mean(pmetstrict), sd = sd(pmetstrict)), by = c('type')] # mean and se across models and goals
goalsmetbymod[year_range == '2081-2100' & rcp == '85', .(mean = mean(pmetstrict), sd = sd(pmetstrict)), by = c('type')] # mean and se across models and goals
# p(80% goals met), end-of-century (for text)
goalsmetbymod[year_range == '2081-2100', .(prop = 1 - sum(pmetstrict > 0.7)/.N), by = c('type')]
# goals met by region
goalsmetbymod[year_range == '2081-2100', .(mean = mean(pmet), meanstrict = mean(pmetstrict)), by= c('region', 'type')] # mean (across rcps and GCMs)
goalsmetbymod[year_range == '2081-2100', .(mean=mean(pmet), meanstrict = mean(pmetstrict)),
by= c('region', 'model')][, .(mean = mean(mean), se = se(mean), meanstrict = mean(meanstrict),
sestrict = se(meanstrict)), by = 'region'] # mean and se across models within regions
# statistical test (for text)
mod <- glmer(cbind(nmet, nmet/pmet - nmet) ~ type + (1|region/rcp/model/year_range), data=goalsmetbymod, family='binomial')
summary(mod)
nrow(goalsmetbymod)
cc <- confint(mod, parm="beta_") # CIs. slow (30 sec)
ctab <- cbind(est = fixef(mod), cc) # add estimates
rtab <- exp(ctab) # to get odds ratios
print(rtab, digits = 3) # print the odds ratios and CIs
# Plot %goals met (hist and 2per solution)
summ <- goalsmetbymod[, .(mid = mean(mid), mean = mean(pmetstrict), lb = mean(pmetstrict) - sd(pmetstrict), ub = mean(pmetstrict) + sd(pmetstrict)), by = c('year_range', 'region', 'type')] # mean and 95%ci across models and goals, for plotting
colmat <- t(col2rgb(brewer.pal(6, 'PuOr'))) # dark red for histonly average, middle for lines, light red for CI. purple for 2per
cols <- rgb(red=colmat[,1], green=colmat[,2], blue=colmat[,3], alpha=c(255, 90, 200, 200, 90, 255), maxColorValue=255)
yaxts <- c('s', 'n', 'n', 's', 'n', 'n', 's', 'n', 'n')
xaxts <- c('n', 'n', 'n', 'n', 'n', 'n', 's', 's', 's')
outfile <- 'figures/Fig2_prioritizr_goalsmetbymod.pdf'; presentonly <- FALSE
# outfile <- 'figures/prioritizr_goalsmetbymod_presentonly.pdf'; presentonly <- TRUE
outfile
ylims <- c(0, 1)
# quartz(width=8.7/2.54, height=8.7/2.54)
#png(width=8.7/2.54, height=8.7/2.54, units = 'in', res = 300, file=outfile)
pdf(width=8.7/2.54, height=8.7/2.54, file=outfile)
par(mfrow=c(3,3), mai=c(0.05, 0.05, 0.2, 0.05), omi=c(0.4,0.4,0,0), cex.main=0.8, cex.axis=0.6, tcl=-0.15, mgp=c(1.6,0.4,0), las = 1)
for (i in 1:length(myregs)) { # for each region
plot(0, 0, xlab='', ylab='', ylim=ylims, xlim=c(2030,2090), main=regnames[i], yaxt='n', xaxt='n')
if(yaxts[i]=='s'){
axis(2, mgp=c(2,0.4,0))
} else {
axis(2, labels=FALSE)
}
if(xaxts[i]=='s'){
axis(1, mgp=c(2,0.1,0))
} else {
axis(1, labels=FALSE)
}
# plot histonly lines
for(k in 1:length(mods)) {
for(j in 1:length(rcps)) {
goalsmetbymod1[model == mods[k] & rcp == rcps[j] & region==myregs[i] & year_range != '2007-2020',
points(mid, pmetstrict, type='l', pch=16, lwd = 0.5, col=cols[2])]
}
}
# plot 2per lines
if(!presentonly){
for(k in 1:length(mods)){
for(j in 1:length(rcps)){
goalsmetbymod2[model == mods[k] & rcp == rcps[j] & region==myregs[i] & year_range != '2007-2020',
points(mid, pmetstrict, type='l', pch=16, lwd = 0.5, col=cols[5])]
}
}
}
# plot polygons
summ[region==myregs[i] & mid > 2014 & type == 'hist', polygon(c(mid, rev(mid)), c(lb, rev(ub)), col = cols[3], border = NA)]
if(!presentonly) summ[region==myregs[i] & mid > 2014 & type == '2per', polygon(c(mid, rev(mid)), c(lb, rev(ub)), col = cols[4], border = NA)]
# plot means
summ[region==myregs[i] & mid > 2014 & type == 'hist', lines(mid, mean, col = cols[1], lwd = 2)]
if(!presentonly) summ[region==myregs[i] & mid > 2014 & type == '2per', lines(mid, mean, col = cols[6], lwd = 2)]
}
mtext(side=1, text='Year', line=1.6, outer=TRUE)
mtext(side=2, text='Fraction goals met', line=1.8, outer=TRUE, las = 0)
dev.off()
###################################
## Fig 3 Compare area needed for each plan
###################################
# Read in plans
folder <- 'output/prioritizr_runs'
runnames <- list.files(path = folder, pattern = 'solution')
consplans <- vector('list', length(runnames))
for(i in 1:length(consplans)){
consplans[[i]] <- fread(paste0(folder, '/', runnames[i]), drop = 1)
consplans[[i]]$region <- gsub('solution_|2per_|hist_|.csv', '', runnames[i])
consplans[[i]]$type <- gsub('solution_|_ebs|_goa|_bc|_wc|_gmex|_seus|_neus|_maritime|_newf|.csv', '', runnames[i])
}
consplans <- rbindlist(consplans)
regs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf') # set the order
# How many planning units?
nrow(consplans)
consplans[, .N, by = region] # per region
# add a zone indicator to consplans
consplans[ , zone := as.numeric(NA)]
consplans[solution_1_conservation == 1 , zone := 1]
consplans[solution_1_fishery == 1 , zone := 2]
consplans[solution_1_energy == 1 , zone := 3]
consplans[solution_1_conservation == 0 & solution_1_fishery == 0 & solution_1_energy == 0 , zone := 4]
# Calculate fraction grid cells that change zone
consplansw <- dcast(consplans, latgrid + longrid + region ~ type, value.var = 'zone')
consplansw[, change := hist != `2per`]
consplansw[, .(nchange = sum(change), ntot = .N, pchange = sum(change)/.N), by = region] # average in each region
consplansw[, .(nchange = sum(change), ntot = .N, pchange = sum(change)/.N),
by = region][, .(avepchange = mean(nchange/ntot), sd = sd(nchange/ntot))] # average proportion across regions
# Make matrix of proportion in each zone in each region, for barplot
mathist <- matrix(NA, nrow = 4, ncol=length(regs))
colnames(mathist) <- regs
rownames(mathist) <- c('conservation', 'fishery', 'energy', 'free')
mat2per <- mathist
mathistraw <- mathist
mat2perraw <- mathist
for(i in 1:length(regs)){
for(j in 1:4){
mathist[j,i] <- consplansw[region == regs[i], sum(hist == j)/.N]
mat2per[j,i] <- consplansw[region == regs[i], sum(`2per` == j)/.N]
mathistraw[j,i] <- consplansw[region == regs[i], sum(hist == j)]
mat2perraw[j,i] <- consplansw[region == regs[i], sum(`2per` == j)]
}
}
colSums(mathist)
colSums(mat2per)
colSums(mathistraw)
colSums(mat2perraw)
l <- list(mathist=mathist, mat2per=mat2per)
mat <- do.call(cbind, l)[,order(sequence(sapply(l, ncol)))]
# change in zones: 2per - hist
mat2perraw - mathistraw # number
round(mat2per - mathist,3) # fraction
range(mat2per[4,] - mathist[4,]) # fractional decrease in free space (e.g., increase in plan area)
mean(mat2per[4,] - mathist[4,]) # mean fractional decrease in free space (e.g., increase in plan area)
sd(mat2per[4,] - mathist[4,])/sqrt(9) # SE fractional decrease in free space (e.g., increase in plan area)
# modify to trick barplot into letting me use 8 colors instead of 4
# see http://r.789695.n4.nabble.com/barplot-colors-td4662538.html
matmod <- cbind(c(mat[,1], rep(0,nrow(mat))), c(rep(0,nrow(mat)), mat[,2]))
for(i in seq(3,ncol(mat),by=2)){
matmod <- cbind(matmod, c(mat[,i], rep(0,nrow(mat))), c(rep(0,nrow(mat)), mat[,i+1]))
}
# plot
regnames = c('EBS', 'GoA', 'BC', 'WC', 'GMex', 'SEUS', 'NEUS', 'Mar', 'Newf')
cols <- brewer.pal(8, 'RdYlBu')
cols <- cols[c(1:4, 8:5)]
# quartz(width=8.7/2.54, height=5/2.54)
pdf(width=8.7/2.54, height=10/2.54, file='figures/Fig3_planareas.pdf')
#png(width=8.7/2.54, height=10/2.54, units = 'in', res = 300, file='figures/Fig3_planareas.png')
par(mfrow = c(2, 1), mai=c(0.2, 0.75, 0.1, 0.1), mgp=c(1.8, 0.4, 0), tcl=-0.2, las=1, cex.axis=0.8)
barplot(height=matmod, space=rep(c(1,0), ncol(mathist)), xaxt='n', col=cols, ylab='Proportion', xlim=c(1.5,40))
axis(1, at=seq(2,26,by=3), labels=NA, cex.axis=0.8, las=2, mgp=c(1.8, 0.5, 0))
mtext(side = 3, text = 'a)', adj = -0.3, line = -0.5, las = 1, cex = 1)
legend(x=28.5, y=1, fill=cols[8:5], legend=c('Free', 'Energy', 'Fishing', 'Conservation'), cex=0.5, bty='n')
legend(x=27, y=1, fill=cols[4:1], legend=rep("",4), cex=0.5, bty='n')
par(mai=c(0.8, 0.75, 0.05, 0.1), mgp = c(1.8, 0.4, 0))
consplansw[, .(pchange = sum(change)/.N),
by = region][, barplot(height = pchange, space = 2, xaxt = 'n', yaxt = 'n', col = 'black',
ylab = 'Proportion\nchanged', xlim = c(2,40), ylim = c(0, 0.35))]
axis(1, at = seq(2.5,26.5,by=3), labels=regnames, cex.axis=0.8, las=2, mgp=c(1.8, 0.5, 0))
axis(2, at = seq(0, 0.3, by = 0.1))
mtext(side = 3, text = 'b)', adj = -0.3, line = -0.5, las = 1, cex = 1)
dev.off()
# make a table instead
round(mathist[c('conservation', 'fishery', 'energy', 'free'), c('ebs', 'ai', 'goa', 'wc', 'gmex', 'neus', 'scot', 'sgulf', 'newf')],2)
round(mat2per[c('conservation', 'fishery', 'energy', 'free'), c('ebs', 'ai', 'goa', 'wc', 'gmex', 'neus', 'scot', 'sgulf', 'newf')],2)
round(rowMeans(mathist[c('conservation', 'fishery', 'energy', 'free'), c('ebs', 'ai', 'goa', 'wc', 'gmex', 'neus', 'scot', 'sgulf', 'newf')]),2)
round(rowMeans(mat2per[c('conservation', 'fishery', 'energy', 'free'), c('ebs', 'ai', 'goa', 'wc', 'gmex', 'neus', 'scot', 'sgulf', 'newf')]),2)
################################################
# Fig. 4 Plot the prioritizr efficiency frontier
################################################
# read in prioritizr solutions
frontierall <- fread('temp/frontierall_2019-12-31_075440.csv', drop = 1)
frontierall <- frontierall[budget == 0.75, ]
setkey(frontierall, region, budget, presweight)
# definition of planning features by region
sppfiles <- list.files(path = 'output/prioritizr_runs/', pattern = 'spp_*', full.names = TRUE)
spps <- fread(sppfiles[1], drop = 1)
spps[, region := gsub('/|output|prioritizr_runs|spp_|\\.csv', '', sppfiles[1])]
for(i in 2:length(sppfiles)){
temp <- fread(sppfiles[i], drop = 1)
temp[, region := gsub('/|output|prioritizr_runs|spp_|\\.csv', '', sppfiles[i])]
spps <- rbind(spps, temp)
}
rm(temp)
ngoals <- spps[name != 'energy', .(ngoals = .N), by = region]
setkey(ngoals, region)
# set up region order and add ngoals
frontierall[, region := factor(region, levels = c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf'))] # set order
frontierall <- merge(frontierall, ngoals, by = 'region')
# how many not optimal?
frontierall[, .(notopt = sum(status != 'OPTIMAL'), total = .N), by = region]
# set up goals as a % of total
frontierall[, ':='(presperc = presgoals/ngoals, futperc = futgoals/ngoals)]
# quick plot as a check
#require(ggplot2)
#ggplot(frontierall, aes(x = presperc, y = futperc, group = budget, color = budget)) +
# geom_path(size = 0.4) +
# geom_point(size = 0.3) +
# facet_wrap(~ region, nrow = 3, scales = 'free')
# Drop non-frontier points (automated)
# If two points share the same futperc, it chooses the one with the higher presperc (or vice versa)
frontierall[, todrop := 0]
for(i in 1:nrow(frontierall)){
thisreg <- frontierall[i, region]
thispresperc <- frontierall[i, presperc]
k1 <- frontierall[, presperc == thispresperc & region == thisreg]
if(length(unique(frontierall[k1, futperc])) > 1){
mx <- frontierall[k1, max(futperc)]
frontierall[presperc == thispresperc & futperc != mx & region == thisreg & presweight != 0 & presweight != 100, todrop := 1]
}
thisfutperc <- frontierall[i, futperc]
k2 <- frontierall[, futperc == thisfutperc & region == thisreg]
if(length(unique(frontierall[k2, presperc])) > 1){
mx <- frontierall[k2, max(presperc)]
frontierall[futperc == thisfutperc & presperc != mx & region == thisreg & presweight != 0 & presweight != 100, todrop := 1]
}
}
ggplot(frontierall[todrop == 0,], aes(x = presperc, y = futperc, group = budget, color = budget)) +
geom_path(size = 0.4) +
geom_point(size = 0.3) +
facet_wrap(~ region, nrow = 3, scales = 'free')
# Plot %goals met for each weighting and region
#colmat <- t(col2rgb(brewer.pal(9, 'Set1')))
#cols <- rgb(red=colmat[,1], green=colmat[,2], blue=colmat[,3], alpha=c(255,255,255,255), maxColorValue=255)
cols <- pal_lancet(alpha = 1)(9)
yaxts <- c('s', 'n', 'n', 's', 'n', 'n', 's', 'n', 'n')
xaxts <- c('n', 'n', 'n', 'n', 'n', 'n', 's', 's', 's')
myregs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf')
regnames = c('Eastern Bering Sea', 'Gulf of Alaska', 'British Columbia', 'West Coast U.S.', 'Gulf of Mexico', 'Southeast U.S.', 'Northeast U.S.', 'Maritimes', 'Newfoundland')
buds <- 0.75 # the budgets to plot
#png('figures/Fig4_prioritizr_frontiers.png', height = 4, width = 6, units = 'in', res = 300)
pdf('figures/Fig4_prioritizr_frontiers.pdf', height = 4, width = 6)
layout(matrix(c(1,4,4,4,2,4,4,4,3,4,4,4), byrow = TRUE, ncol = 4))
par(mai=c(0.1, 0.1, 0.1, 0.05), cex.main = 1, cex.axis = 0.8, tcl = -0.3, mgp=c(2,0.5,0))
plot(x = c(0, 1, 1), y = c(1, 1, 0), type = 'l', bty = 'l', lwd = 2, xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', xlim = c(-0.25, 1.25), ylim = c(-0.25, 1.25))
plot(x = c(0, 1), y = c(1, 0), type = 'l', bty = 'l', lwd = 2, xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', xlim = c(-0.25, 1.25), ylim = c(-0.25, 1.25))
x1 <- seq(0, 1, length = 100)
plot(x = x1, y = sqrt(1 - x1^2), type = 'l', bty = 'l', lwd = 2, xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', xlim = c(-0.25, 1.25), ylim = c(-0.25, 1.25))
par(mai=c(0.7, 0.7, 0.2, 0.05))
plot(0, 0, type = 'o', bty = 'l', pch = 16, col = 'white', xlab='Present goals met (proportion)', ylab='Future goals met (proportion)', ylim = c(0.2, 1), xlim = c(0.3, 1), main='')
for (i in 1:length(myregs)) { # for each region
frontierall[region == myregs[i] & budget == buds & todrop == 0, lines(presperc, futperc, type = 'l', pch = 16, col = cols[i])]
}
legend('bottomleft', legend = regnames, col = cols, lty = 1, cex = 0.7, title = 'Regions')
dev.off()
###############################################
## Fig. 5 Management area species gains and losses plot and stats
###############################################
wdpaturnbyMPAbymod <- fread('gunzip -c temp/wdpaturnbyMPAbymod.csv.gz', drop = 1) # individual MPA results
wdpaturnbynetbymod <- fread('gunzip -c temp/wdpaturnbynetbymod.csv.gz') # network results
# Prep
# reshape to long format
wdpaturnbyMPAbymodl <- melt(wdpaturnbyMPAbymod, id.vars = c('WDPA_PID', 'network'),
measure.vars = patterns('ninit|nfinal|nshared|nlost|ngained')) # convert to long
wdpaturnbyMPAbymodl[, c('var', 'rcp', 'model') := tstrsplit(variable, "\\.", fixed = FALSE)][, variable := NULL] # extract rcp and GMC number from the col name
wdpaturnbyMPAbymodl <- dcast(wdpaturnbyMPAbymodl, WDPA_PID + network + rcp + model ~ var) # group ninit -> nshared as separate columns
wdpaturnbynetbymodl <- melt(wdpaturnbynetbymod, id.vars = c('network'),
measure.vars = patterns('ninit|nfinal|nshared|nlost|ngained')) # convert to long
wdpaturnbynetbymodl[, c('var', 'rcp', 'model') := tstrsplit(variable, "\\.", fixed = FALSE)][, variable := NULL] # extract rcp and GMC number from the col name
wdpaturnbynetbymodl <- dcast(wdpaturnbynetbymodl, network + rcp + model ~ var) # group ninit -> nshared as separate columns
# calculate means within models/rcps (across regions)
means <- wdpaturnbyMPAbymodl[, .(flost = mean(nlost/ninit), fgained = mean(ngained/nfinal), beta_sor=mean(2*nshared/(2*nshared + ngained + nlost))),
by=c('rcp', 'model')]
# calculate network means within climate models/rcps
means.net <- wdpaturnbynetbymodl[, .(flost = mean(nlost/ninit), fgained = mean(ngained/nfinal), beta_sor=mean(2*nshared/(2*nshared + ngained + nlost))),
by=c('rcp', 'model')]
# calculate means within models/rcps for individual MPAs in the networks
means.net.indiv <- wdpaturnbyMPAbymodl[!is.na(network), .(flost = mean(nlost/ninit), fgained = mean(ngained/nfinal), beta_sor=mean(2*nshared/(2*nshared + ngained + nlost))),
by=c('rcp', 'model')]
# combine network and individual MPA results
means.net$type <- 'net'
means.net.indiv$type <- 'ind'
means.net <- rbind(means.net, means.net.indiv)
# Statistics for individual and networks of management zones
# means and SE
means.net[, .(flost = mean(flost), flost.sd = sd(flost), fgained = mean(fgained), fgained.sd = sd(fgained),
beta_sor_diss = mean(1 - beta_sor), beta_sor_diss.sd = sd(1 - beta_sor)),
by = c('type', 'rcp')]
sort(means.net[type == 'ind', beta_sor] - means.net[type == 'net', beta_sor]) # sorted differences: all negative
# test
t.test(means.net[type == 'ind', beta_sor], means.net[type == 'net', beta_sor]) # parametric
wilcox.test(means.net[type == 'ind', beta_sor], means.net[type == 'net', beta_sor]) # non-parametric
# MLPA example
wdpaturnbyMPAbymodl[network == 'mlpa', .(flost = mean(nlost/ninit), fgained = mean(ngained/nfinal), beta_sor = 1 - mean(2*nshared/(2*nshared + ngained + nlost))),
by = .(rcp, model)][, .(flost = mean(flost), fgained = mean(fgained), beta_sor = mean(beta_sor))] # individual MPAs
wdpaturnbynetbymodl[network == 'mlpa', .(flost = mean(nlost/ninit), fgained = mean(ngained/nfinal), beta_sor = 1 - mean(2*nshared/(2*nshared + ngained + nlost)))] # individual MPAs
# Plot of mean MPA change and network change
cols <- list(c('#67a9cf','white','black','#2166ac'), c('#ef8a62', 'white','black','#b2182b')) # colors from Colorbrewer2 7-class RdBu
# quartz(width=8.7/2.54,height=8.7/2.54)
pdf(width=8.7/2.54, height=8.7/2.54, file='figures/Fig5_MPA_turnover.pdf')
#png(width=8.7/2.54, height=8.7/2.54, units = 'in', res = 300, file='figures/Fig5_MPA_turnover.png')
par(mfrow=c(2,2), las=2, mai=c(0.5,0.45,0.1, 0.05), omi=c(0,0,0,0), mgp=c(1.6,0.4,0), tcl=-0.2, cex.axis=0.8)
beanplot(flost ~ type + rcp, data = means.net, what = c(0,1,1,0), side = 'both', col = cols, border = NA, wd = 0.18, handlelog = FALSE,
names = c('RCP 2.6', 'RCP 8.5'), las = 1,
at = c(1, 3), log = "", ylim = c(0, 0.5), xlim = c(0, 4), cut = 0.01, ylab = 'Fraction lost')
mtext(side = 3, text = 'a)', adj = -0.4, line = -0.4, las = 1, cex = 0.9)
beanplot(fgained ~ type + rcp, data = means.net, what = c(0,1,1,0), side = 'both', col = cols, border = NA, wd = 0.18, handlelog = FALSE,
names = c('RCP 2.6', 'RCP 8.5'), las = 1,
at = c(1, 3.2), log = "", ylim = c(0, 0.6), xlim = c(0, 4.5), cut = 0.01, ylab = 'Fraction gained')
mtext(side = 3, text = 'b)', adj = -0.4, line = -0.4, las = 1, cex = 0.9)
beanplot(I(1-beta_sor) ~ type + rcp, data = means.net, what = c(0,1,1,0), side = 'both', col = cols, border = NA, wd = 0.18, handlelog = FALSE,
names = c('RCP 2.6', 'RCP 8.5'), las = 1,
at = c(1, 3), log = "", ylim = c(0, 1), xlim = c(0, 4), cut = 0.01, ylab = 'Dissimilarity') # flost
mtext(side = 3, text = 'c)', adj = -0.4, line = -0.4, las = 1, cex = 0.9)
plot(1, 1, bty = 'n', xaxt = 'n', yaxt = 'n', col = 'white', xlab = '', ylab = '')
legend('center', legend = c('Individual', 'Network'), title = 'Type', col = c(cols[[1]][1], cols[[2]][1]), lty = 1, lwd = 10, bty = 'n')
dev.off()
###################################################
## Fig. S1 Efficiency frontiers for other budgets
###################################################
# read in prioritizr solutions
frontier1 <- fread('temp/frontierall_2019-12-22_071607.csv', drop = 1) # 50% budget
frontier2 <- fread('temp/frontierall_2019-12-31_075440.csv', drop = 1) # 75% and 90% budgets
frontier2 <- frontier2[budget == 0.9, ]
frontierall <- rbind(frontier1, frontier2)
setkey(frontierall, region, budget, presweight)
# definition of planning features by region
sppfiles <- list.files(path = 'output/prioritizr_runs/', pattern = 'spp_*', full.names = TRUE)
spps <- fread(sppfiles[1], drop = 1)
spps[, region := gsub('/|output|prioritizr_runs|spp_|\\.csv', '', sppfiles[1])]
for(i in 2:length(sppfiles)){
temp <- fread(sppfiles[i], drop = 1)
temp[, region := gsub('/|output|prioritizr_runs|spp_|\\.csv', '', sppfiles[i])]
spps <- rbind(spps, temp)
}
rm(temp)
ngoals <- spps[name != 'energy', .(ngoals = .N), by = region]
setkey(ngoals, region)
# set up region order and add ngoals
frontierall[, region := factor(region, levels = c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf'))] # set order
frontierall <- merge(frontierall, ngoals, by = 'region')
# how many not optimal?
frontierall[, .(notopt = sum(status != 'OPTIMAL'), total = .N), by = region]
# set up goals as a % of total
frontierall[, ':='(presperc = presgoals/ngoals, futperc = futgoals/ngoals)]
# quick plot as a check
require(ggplot2)
ggplot(frontierall, aes(x = presperc, y = futperc, group = budget, color = region)) +
geom_path(size = 0.4) +
geom_point(size = 0.3) +
facet_wrap(~ budget, nrow = 3, scales = 'free')
# Drop non-frontier points (automated)
# If two points share the same futperc, it chooses the one with the higher presperc (or vice versa)
frontierall[, todrop := 0]
for(i in 1:nrow(frontierall)){
thisreg <- frontierall[i, region]
thisbud <- frontierall[i, budget]
thispresperc <- frontierall[i, presperc]
k1 <- frontierall[, presperc == thispresperc & region == thisreg & budget == thisbud]
if(length(unique(frontierall[k1, futperc])) > 1){
mx <- frontierall[k1, max(futperc)]
frontierall[presperc == thispresperc & futperc < mx & region == thisreg & presweight != 0 & presweight != 100, todrop := 1]
}
thisfutperc <- frontierall[i, futperc]
k2 <- frontierall[, futperc == thisfutperc & region == thisreg & budget == thisbud]
if(length(unique(frontierall[k2, presperc])) > 1){
mx <- frontierall[k2, max(presperc)]
frontierall[futperc == thisfutperc & presperc < mx & region == thisreg & presweight != 0 & presweight != 100, todrop := 1]
}
}
ggplot(frontierall[todrop == 0, ], aes(x = presperc, y = futperc, group = budget, color = region)) +
geom_path(size = 0.4) +
geom_point(size = 0.3) +
facet_wrap(~ budget, nrow = 3, scales = 'free')
# Plot %goals met for each weighting and region
#colmat <- t(col2rgb(brewer.pal(9, 'Set1')))
#cols <- rgb(red=colmat[,1], green=colmat[,2], blue=colmat[,3], alpha=c(255,255,255,255), maxColorValue=255)
cols <- pal_lancet(alpha = 1)(9)
yaxts <- c('s', 'n', 'n', 's', 'n', 'n', 's', 'n', 'n')
xaxts <- c('n', 'n', 'n', 'n', 'n', 'n', 's', 's', 's')
myregs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf')
regnames = c('Eastern Bering Sea', 'Gulf of Alaska', 'British Columbia', 'West Coast U.S.', 'Gulf of Mexico', 'Southeast U.S.', 'Northeast U.S.', 'Maritimes', 'Newfoundland')
buds <- 0.5 # the budgets to plot
png('figures/FigS1_prioritizr_frontiers.png', height = 8, width = 6, units = 'in', res = 300)
par(mfrow = c(2,1), mai=c(0.7, 0.7, 0.2, 0.05), cex.main = 1, cex.axis = 0.8, tcl = -0.3, mgp=c(2,0.5,0), las = 1)
plot(0, 0, type = 'o', pch = 16, col = 'white', bty = 'l', xlab='Present goals met (proportion)', ylab='Future goals met (proportion)', ylim = c(0.2, 1), xlim = c(0.3, 1), main='')
for (i in 1:length(myregs)) { # for each region
frontierall[region == myregs[i] & budget == 0.5 & todrop == 0, lines(presperc, futperc, type = 'l', pch = 16, col = cols[i])]
}
legend('bottomleft', legend = regnames, col = cols, lty = 1, cex = 0.7, title = 'Regions')
plot(0, 0, type = 'o', pch = 16, col = 'white', bty = 'l', xlab='Present goals met (proportion)', ylab='Future goals met (proportion)', ylim = c(0.2, 1), xlim = c(0.3, 1), main='')
for (i in 1:length(myregs)) { # for each region
frontierall[region == myregs[i] & budget == 0.9 & todrop == 0, lines(presperc, futperc, type = 'l', pch = 16, col = cols[i])]
}
dev.off()
#################################################
## Fig. S2: Simulated management area networks
#################################################
randMPAs <- fread('output/randMPAs_byBT.csv', drop = 1) # read in the simulations
stats <- fread('output/MPA_network_stats.csv', drop = 1)
regs <- sort(unique(randMPAs$region))
# plot netwrkturn as color dots (initial plot)
colrmp <- colorRamp(brewer.pal(11, name='Spectral'))
par(mfrow=c(3,3))
for(i in 1:length(regs)){
inds <- randMPAs$region==regs[i]
plot(randMPAs$size[inds], randMPAs$temprng[inds], pch=16, col=rgb(colrmp(randMPAs$netwrkturn[inds]), maxColorValue=256), main=regs[i])
}
# plot netwrkturn as averages within grid squares
colrmp <- colorRamp(rev(brewer.pal(11, name='Spectral')))
colpal <- colorRampPalette(rev(brewer.pal(11, name='Spectral')))
xlabs <- c('', '', '', '', '', '', 'Proportion of area in network', 'Proportion of area in network', 'Proportion of area in network')
ylabs <- c('Proportion of thermal\nrange in network', '', '', 'Proportion of thermal\nrange in network', '', '', 'Proportion of thermal\nrange in network', '', '')
regs <- c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf') # set plot order
regsnice = c('Eastern Bering Sea', 'Gulf of Alaska', 'British Columbia', 'West Coast U.S.', 'Gulf of Mexico', 'Southeast U.S.', 'Northeast U.S.', 'Maritimes', 'Newfoundland')
szs <- seq(min(randMPAs$size, na.rm=TRUE), max(randMPAs$size, na.rm=TRUE), length.out=10)
rngs <- seq(min(randMPAs$temprng, na.rm=TRUE), max(randMPAs$temprng, na.rm=TRUE), length.out=10)
szstep <- diff(szs)[1]
tempstep <- diff(rngs)[1]
gridave <- expand.grid(region = regs, size = szs, temprng = rngs, ave = NA)
for(i in 1:nrow(gridave)){
inds <- randMPAs[, region == gridave$region[i] & abs(temprng - gridave$temprng[i]) < tempstep/2 & abs(size - gridave$size[i]) < szstep]
gridave$ave[i] <- mean(randMPAs$netwrkturn[inds])
}
png(units='in', res=300, width=7, height=6, file='figures/FigS2_randMPAs.png')
par(mgp=c(2,0.5,0), mai=c(0.2, 0.3, 0.3, 0.1), omi=c(0.25, 0.3, 0, 0), xpd=NA, tcl=-0.3, las=1)
layout(matrix(1:18, nrow = 3, byrow = TRUE), widths = c(6, 3, 6, 3, 6, 3), heights = c(1, 1, 1))
for(i in 1:length(regs)){
# construct matrix for plotting dissimilarity and scale to 0-1
inds <- gridave$region == regs[i] & !is.na(gridave$ave)
thisdat <- gridave[inds,]
minz <- min(floor(thisdat$ave*10)/10)
maxz <- max(ceiling(thisdat$ave*10)/10)
thisdat$newz <- thisdat$ave - minz
thisdat$newz <- thisdat$newz/(maxz - minz)
mat <- as.data.frame(dcast(as.data.table(thisdat), temprng ~ size, value.var='newz'))
row.names(mat) <- mat$temprng
mat <- t(as.matrix(mat[,2:ncol(mat)])) # transpose because of the way image handles matrices
# plot
par(mgp=c(2,0.5,0), mai=c(0.2, 0.3, 0.3, 0.05), tcl=-0.3)
image(z=mat, x=sort(unique(thisdat$size)), y=sort(unique(thisdat$temprng)), col=colpal(100),
main=regsnice[i], xlab=xlabs[i], ylab=ylabs[i])
# plot NA as grey
matna <- mat
matna[is.na(mat)] <- 1
matna[!is.na(mat)] <- NA
image(z=matna, x=sort(unique(thisdat$size)), y=sort(unique(thisdat$temprng)), col='grey', add=TRUE)
# add dot for empirical network
inds2 <- as.character(stats$region) == regs[i]
if(sum(inds2) > 0){
points(stats$fracsize[inds2], stats$fractemp[inds2], pch=10, cex=2, col='white')
}
# add color bar in next plot space
par(mgp=c(2,0.5,0), mai=c(0.1, 0.05, 0.3, 0.5), tcl=-0.1)
color.bar(colpal(100), min = minz, max = maxz, nticks = 5)
# color.bar(colpal(100), min = 0, max = 0.4, nticks = 5)
}
dev.off()
#################################################################################
## Fig. S3: Compare trawl observations vs. SDM predictions in management areas
#################################################################################
wdpa_by_spp_obs_reg <- fread('gunzip -c temp/wdpa_trawlsppobs_byreg.csv.gz', drop = 1) # trawl survey observations of species in MPAs
mpatrawl <- fread('output/MPAvstrawl_NPV_PPV.csv', drop = 1) # NPV and PPV calculations
cols = brewer.pal(4, 'Paired')
png(units='in', res=300, width=8, height=4, file='figures/FigS3_MPA_trawl.png')
par(mfrow = c(1,2), mai = c(1, 1, 0.3, 0.3))
wdpa_by_spp_obs_reg[, hist(nhaul, breaks = seq(0, 450, by = 4), col = 'grey', xlab = 'Number of hauls per management area', main = '', ylab = '')]
mtext(side = 2, 'Frequency', line = 2.8, las = 0)
mtext(side = 3, 'a)', line = -0.5, at = -120, cex = 1.5)
plot(1000, 1000, xlim = c(1, 100), ylim = c(0, 1), log = 'x', xlab = 'Minimum hauls per management area', ylab = 'Predictive value', las = 1, bty = 'n')
thresh[, polygon(c(min, rev(min)), c(npv+npvse, rev(npv-npvse)), col = cols[1], border = NA)]
thresh[, polygon(c(min, rev(min)), c(ppv+ppvse, rev(ppv-ppvse)), col = cols[3], border = NA)]
thresh[, lines(min, npv, type = 'l', col = cols[2])]
thresh[, lines(min, ppv, type ='l', col = cols[4])]
mtext(side = 3, 'b)', line = -0.5, at = 0.25, cex = 1.5)
dev.off()
# overall values (for text)
thresh[min == 1, ]
##############################################################
## Table S1 problem definitions for planning in each region
## Also stats for text (# planning units total)
##############################################################
# Read in plans and species
folder <- 'output/prioritizr_runs'
runnames1 <- list.files(path = folder, pattern = 'solution')
consplans <- vector('list', length(runnames1))
for(i in 1:length(consplans)){
consplans[[i]] <- fread(paste0(folder, '/', runnames1[i]), drop = 1)
consplans[[i]]$region <- gsub('solution_|2per_|hist_|.csv', '', runnames[i])
consplans[[i]]$type <- gsub('solution_|_ebs|_goa|_bc|_wc|_gmex|_seus|_neus|_maritime|_newf|.csv', '', runnames[i])
}
consplans <- rbindlist(consplans)
runnames2 <- list.files(path = folder, pattern = 'spp')
spps <- vector('list', length(runnames2))
for(i in 1:length(spps)){
spps[[i]] <- fread(paste0(folder, '/', runnames2[i]), drop = 1)
spps[[i]]$region <- gsub('spp_|.csv', '', runnames2[i])
}
spps <- rbindlist(spps)
spps[, type := 'conservation']
spps[grepl('fishery', name), type := 'fishery']
spps[grepl('energy', name), type := 'energy']
# How many planning units and in each region?
nrow(consplans)
area <- consplans[type == 'hist', .(area = .N), by = .(region)] # per region
area
# How many goals of each type in each region?
spps[, .N, by = .(region, type)]
cons <- spps[type == 'conservation', .(conservation = .N), by = .(region)]
fish <- spps[type == 'fishery', .(fishery = .N), by = .(region)]
spps[type == 'energy', .N, by = .(region)]
# combine into table
tables1 <- merge(area, cons, by = 'region')
tables1 <- merge(tables1, fish, by = 'region')
# order W to E
ord <- data.table(region = c('ebs', 'goa', 'bc', 'wc', 'gmex', 'seus', 'neus', 'maritime', 'newf'), order = 1:9)
tables1 <- merge(tables1, ord)
setorder(tables1, order)
# write out
write.csv(tables1[, .(region, area, conservation, fishery)], 'tables/tableS1.csv', row.names = FALSE)