-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·135 lines (98 loc) · 3.07 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#from __future__ import print_function
import numpy as np
import re
import time
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.neighbors import KernelDensity
from scipy.ndimage import gaussian_filter
def sorted_nicely(l):
""" Sorts the given iterable in the way that is expected.
Required arguments:
l -- The iterable to be sorted.
"""
convert = lambda text: int(text) if text.isdigit() else text
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(l, key = alphanum_key)
def center(X):
n = X.shape[0]
mu = np.expand_dims(np.mean(X,axis=0), axis=0)
mu_matr = np.matmul(np.ones([n,1]),mu)
return X-mu_matr
def normalize(X):
n = X.shape[0]
X = center(X)
d = np.expand_dims(np.sqrt(np.sum(np.square(X), axis=0)), axis=0)
d[d==0] = 1
X = np.divide(X,np.matmul(np.ones([n,1]),d))
return X
def mkGaussian(mu, sigma, theta, w, h):
x1 = np.linspace(0, w, w)
x2 = np.linspace(0, h, h)
X1,X2 = np.meshgrid(x1,x2)
pos = np.empty(X1.shape + (2,))
pos[:, :, 0] = X1
pos[:, :, 1] = X2
theta = np.radians(theta)
c, s = np.cos(theta), np.sin(theta)
R = np.array(((c,-s), (s, c)))
R = np.matrix(R)
sigma_diag = np.matrix(np.square(np.diag(sigma)*0.5))
#sigma_diag = np.matrix(np.square(np.diag(sigma)))
Sigma = R*sigma_diag*R.T
mvn = multivariate_normal(mu,Sigma)
F = mvn.pdf(pos)
return F
def map_in_range(X, target_range):
min_new1 = 0
max_new1 = target_range[0]-1
min_new2 = 0
max_new2 = target_range[1]-1
min_old1 = -1
max_old1 = 1
min_old2 = min_old1
max_old2 = max_old1
x1 = X[:,0]
x2 = X[:,1]
x1_scaled = ((max_new1-min_new1)/(max_old1-min_old1))*(x1-max_old1) + max_new1
x2_scaled = ((max_new2-min_new2)/(max_old2-min_old2))*(x2-max_old2) + max_new2
X_scaled = np.stack([x1_scaled,x2_scaled], axis=1).astype(int)
return X_scaled
def compute_density_image(points, size, method='conv'):
points = np.flip(points,1)
if method == 'KDEsk':
w = size[0]
h = size[1]
sigma=1/0.039
#sigma = 18.4
x1 = np.linspace(0, w, w)
x2 = np.linspace(0, h, h)
X1,X2 = np.meshgrid(x1,x2)
positions = np.vstack([X1.ravel(), X2.ravel()]).T
kde_skl = KernelDensity(bandwidth=sigma)
kde_skl.fit(points)
Z = np.exp(kde_skl.score_samples(positions))
Z = np.reshape(Z, X1.shape).T
#print(Z.shape)
#plt.imshow(Z.T)
#plt.show()
elif method == 'conv':
sigma=1/0.039
H, xedges, yedges = np.histogram2d(points[:,0], points[:,1], bins=(range(size[0]+1), range(size[1]+1)))
Z = gaussian_filter(H, sigma=sigma)
Z = Z/float(np.sum(Z))
return Z
def clean_eyedata(eyedata, w, h, check_out_of_video=False):
eyedata = np.ndarray.astype(eyedata,np.float_)
eyedata = eyedata[:,~np.any(np.isnan(eyedata),axis=0)]
eyedata = eyedata[:,~np.any(eyedata<0,axis=0)]
if check_out_of_video:
eyedata = eyedata[:,~np.any(eyedata[0,:]>w,axis=0)]
eyedata = eyedata[:,~np.any(eyedata[1,:]>h,axis=0)]
eyedata = eyedata.T
return eyedata
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()