forked from google/skylark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
value.go
1080 lines (957 loc) · 30.9 KB
/
value.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package skylark provides a Skylark interpreter.
//
// Skylark values are represented by the Value interface.
// The following built-in Value types are known to the evaluator:
//
// NoneType -- NoneType
// Bool -- bool
// Int -- int
// Float -- float
// String -- string
// *List -- list
// Tuple -- tuple
// *Dict -- dict
// *Set -- set
// *Function -- function (implemented in Skylark)
// *Builtin -- builtin_function_or_method (function or method implemented in Go)
//
// Client applications may define new data types that satisfy at least
// the Value interface. Such types may provide additional operations by
// implementing any of these optional interfaces:
//
// Callable -- value is callable like a function
// Comparable -- value defines its own comparison operations
// Iterable -- value is iterable using 'for' loops
// Sequence -- value is iterable sequence of known length
// Indexable -- value is sequence with efficient random access
// HasBinary -- value defines binary operations such as * and +
// HasAttrs -- value has readable fields or methods x.f
// HasSetField -- value has settable fields x.f
// HasSetIndex -- value supports element update using x[i]=y
//
// Client applications may also define domain-specific functions in Go
// and make them available to Skylark programs. Use NewBuiltin to
// construct a built-in value that wraps a Go function. The
// implementation of the Go function may use UnpackArgs to make sense of
// the positional and keyword arguments provided by the caller.
//
// Skylark's None value is not equal to Go's nil, but nil may be
// assigned to a Skylark Value. Be careful to avoid allowing Go nil
// values to leak into Skylark data structures.
//
// The Compare operation requires two arguments of the same
// type, but this constraint cannot be expressed in Go's type system.
// (This is the classic "binary method problem".)
// So, each Value type's CompareSameType method is a partial function
// that compares a value only against others of the same type.
// Use the package's standalone Compare (or Equal) function to compare
// an arbitrary pair of values.
//
// To parse and evaluate a Skylark source file, use ExecFile. The Eval
// function evaluates a single expression. All evaluator functions
// require a Thread parameter which defines the "thread-local storage"
// of a Skylark thread and may be used to plumb application state
// through Sklyark code and into callbacks. When evaluation fails it
// returns an EvalError from which the application may obtain a
// backtrace of active Skylark calls.
//
package skylark
// This file defines the data types of Skylark and their basic operations.
import (
"bytes"
"fmt"
"math"
"math/big"
"reflect"
"strconv"
"strings"
"unicode/utf8"
"github.com/google/skylark/syntax"
)
// Value is a value in the Skylark interpreter.
type Value interface {
// String returns the string representation of the value.
// Skylark string values are quoted as if by Python's repr.
String() string
// Type returns a short string describing the value's type.
Type() string
// Freeze causes the value, and all values transitively
// reachable from it through collections and closures, to be
// marked as frozen. All subsequent mutations to the data
// structure through this API will fail dynamically, making the
// data structure immutable and safe for publishing to other
// Skylark interpreters running concurrently.
Freeze()
// Truth returns the truth value of an object.
Truth() Bool
// Hash returns a function of x such that Equals(x, y) => Hash(x) == Hash(y).
// Hash may fail if the value's type is not hashable, or if the value
// contains a non-hashable value.
Hash() (uint32, error)
}
// A Comparable is a value that defines its own equivalence relation and
// perhaps ordered comparisons.
type Comparable interface {
Value
// CompareSameType compares one value to another of the same Type().
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
// CompareSameType returns an error if an ordered comparison was
// requested for a type that does not support it.
//
// Implementations that recursively compare subcomponents of
// the value should use the CompareDepth function, not Compare, to
// avoid infinite recursion on cyclic structures.
//
// The depth parameter is used to bound comparisons of cyclic
// data structures. Implementations should decrement depth
// before calling CompareDepth and should return an error if depth
// < 1.
//
// Client code should not call this method. Instead, use the
// standalone Compare or Equals functions, which are defined for
// all pairs of operands.
CompareSameType(op syntax.Token, y Value, depth int) (bool, error)
}
var (
_ Comparable = None
_ Comparable = Int{}
_ Comparable = False
_ Comparable = Float(0)
_ Comparable = String("")
_ Comparable = (*Dict)(nil)
_ Comparable = (*List)(nil)
_ Comparable = Tuple(nil)
_ Comparable = (*Set)(nil)
)
// A Callable value f may be the operand of a function call, f(x).
type Callable interface {
Value
Name() string
Call(thread *Thread, args Tuple, kwargs []Tuple) (Value, error)
}
var (
_ Callable = (*Builtin)(nil)
_ Callable = (*Function)(nil)
)
// An Iterable abstracts a sequence of values.
// An iterable value may be iterated over by a 'for' loop or used where
// any other Skylark iterable is allowed. Unlike a Sequence, the length
// of an Iterable is not necessarily known in advance of iteration.
type Iterable interface {
Value
Iterate() Iterator // must be followed by call to Iterator.Done
}
// A Sequence is a sequence of values of known length.
type Sequence interface {
Iterable
Len() int
}
var (
_ Sequence = (*Dict)(nil)
_ Sequence = (*Set)(nil)
)
// An Indexable is a sequence of known length that supports efficient random access.
// It is not necessarily iterable.
type Indexable interface {
Value
Index(i int) Value // requires 0 <= i < Len()
Len() int
}
// A HasSetIndex is an Indexable value whose elements may be assigned (x[i] = y).
//
// The implementation should not add Len to a negative index as the
// evaluator does this before the call.
type HasSetIndex interface {
Indexable
SetIndex(index int, v Value) error
}
var (
_ HasSetIndex = (*List)(nil)
_ Indexable = Tuple(nil)
_ Indexable = String("")
)
// An Iterator provides a sequence of values to the caller.
//
// The caller must call Done when the iterator is no longer needed.
// Operations that modify a sequence will fail if it has active iterators.
//
// Example usage:
//
// iter := iterable.Iterator()
// defer iter.Done()
// var x Value
// for iter.Next(&x) {
// ...
// }
//
type Iterator interface {
// If the iterator is exhausted, Next returns false.
// Otherwise it sets *p to the current element of the sequence,
// advances the iterator, and returns true.
Next(p *Value) bool
Done()
}
// An Mapping is a mapping from keys to values, such as a dictionary.
type Mapping interface {
Value
// Get returns the value corresponding to the specified key,
// or !found if the mapping does not contain the key.
Get(Value) (v Value, found bool, err error)
}
var _ Mapping = (*Dict)(nil)
// A HasBinary value may be used as either operand of these binary operators:
// + - * / % in not in | &
// The Side argument indicates whether the receiver is the left or right operand.
//
// An implementation may decline to handle an operation by returning (nil, nil).
// For this reason, clients should always call the standalone Binary(op, x, y)
// function rather than calling the method directly.
type HasBinary interface {
Value
Binary(op syntax.Token, y Value, side Side) (Value, error)
}
type Side bool
const (
Left Side = false
Right Side = true
)
// A HasAttrs value has fields or methods that may be read by a dot expression (y = x.f).
// Attribute names may be listed using the built-in 'dir' function.
//
// For implementation convenience, a result of (nil, nil) from Attr is
// interpreted as a "no such field or method" error. Implementations are
// free to return a more precise error.
type HasAttrs interface {
Value
Attr(name string) (Value, error) // returns (nil, nil) if attribute not present
AttrNames() []string // callers must not modify the result.
}
var (
_ HasAttrs = String("")
_ HasAttrs = new(List)
_ HasAttrs = new(Dict)
_ HasAttrs = new(Set)
)
// A HasSetField value has fields that may be written by a dot expression (x.f = y).
type HasSetField interface {
HasAttrs
SetField(name string, val Value) error
}
// NoneType is the type of None. Its only legal value is None.
// (We represent it as a number, not struct{}, so that None may be constant.)
type NoneType byte
const None = NoneType(0)
func (NoneType) String() string { return "None" }
func (NoneType) Type() string { return "NoneType" }
func (NoneType) Freeze() {} // immutable
func (NoneType) Truth() Bool { return False }
func (NoneType) Hash() (uint32, error) { return 0, nil }
func (NoneType) CompareSameType(op syntax.Token, y Value, depth int) (bool, error) {
return threeway(op, 0), nil
}
// Bool is the type of a Skylark bool.
type Bool bool
const (
False Bool = false
True Bool = true
)
func (b Bool) String() string {
if b {
return "True"
} else {
return "False"
}
}
func (b Bool) Type() string { return "bool" }
func (b Bool) Freeze() {} // immutable
func (b Bool) Truth() Bool { return b }
func (b Bool) Hash() (uint32, error) { return uint32(b2i(bool(b))), nil }
func (x Bool) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(Bool)
return threeway(op, b2i(bool(x))-b2i(bool(y))), nil
}
// Float is the type of a Skylark float.
type Float float64
func (f Float) String() string { return strconv.FormatFloat(float64(f), 'g', 6, 64) }
func (f Float) Type() string { return "float" }
func (f Float) Freeze() {} // immutable
func (f Float) Truth() Bool { return f != 0.0 }
func (f Float) Hash() (uint32, error) {
// Equal float and int values must yield the same hash.
// TODO(adonovan): opt: if f is non-integral, and thus not equal
// to any Int, we can avoid the Int conversion and use a cheaper hash.
if isFinite(float64(f)) {
return finiteFloatToInt(f).Hash()
}
return 1618033, nil // NaN, +/-Inf
}
func floor(f Float) Float { return Float(math.Floor(float64(f))) }
// isFinite reports whether f represents a finite rational value.
// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
func isFinite(f float64) bool {
return math.Abs(f) <= math.MaxFloat64
}
func (x Float) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(Float)
switch op {
case syntax.EQL:
return x == y, nil
case syntax.NEQ:
return x != y, nil
case syntax.LE:
return x <= y, nil
case syntax.LT:
return x < y, nil
case syntax.GE:
return x >= y, nil
case syntax.GT:
return x > y, nil
}
panic(op)
}
func (f Float) rational() *big.Rat { return new(big.Rat).SetFloat64(float64(f)) }
// AsFloat returns the float64 value closest to x.
// The f result is undefined if x is not a float or int.
func AsFloat(x Value) (f float64, ok bool) {
switch x := x.(type) {
case Float:
return float64(x), true
case Int:
return float64(x.Float()), true
}
return 0, false
}
func (x Float) Mod(y Float) Float { return Float(math.Mod(float64(x), float64(y))) }
// String is the type of a Skylark string.
//
// A String is an immutable sequence of bytes. Strings are iterable;
// iteration over a string yields each of its 1-byte substrings in order.
type String string
func (s String) String() string { return strconv.Quote(string(s)) }
func (s String) Type() string { return "string" }
func (s String) Freeze() {} // immutable
func (s String) Truth() Bool { return len(s) > 0 }
func (s String) Hash() (uint32, error) { return hashString(string(s)), nil }
func (s String) Len() int { return len(s) } // bytes
func (s String) Index(i int) Value { return s[i : i+1] }
func (s String) Attr(name string) (Value, error) { return builtinAttr(s, name, stringMethods) }
func (s String) AttrNames() []string { return builtinAttrNames(stringMethods) }
func (x String) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(String)
return threeway(op, strings.Compare(string(x), string(y))), nil
}
func AsString(x Value) (string, bool) { v, ok := x.(String); return string(v), ok }
// A stringIterable is an iterable whose iterator yields a sequence of
// either Unicode code points or bytes,
// either numerically or as successive substrings.
type stringIterable struct {
s String
split bool
codepoints bool
}
var _ Iterable = (*stringIterable)(nil)
func (si stringIterable) String() string {
if si.split {
return si.s.String() + ".split_" + si.Type() + "()"
} else {
return si.s.String() + "." + si.Type() + "()"
}
}
func (si stringIterable) Type() string {
if si.codepoints {
return "codepoints"
} else {
return "bytes"
}
}
func (si stringIterable) Freeze() {} // immutable
func (si stringIterable) Truth() Bool { return True }
func (si stringIterable) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable: %s", si.Type()) }
func (si stringIterable) Iterate() Iterator { return &stringIterator{si, 0} }
type stringIterator struct {
si stringIterable
i int
}
func (it *stringIterator) Next(p *Value) bool {
s := it.si.s[it.i:]
if s == "" {
return false
}
if it.si.codepoints {
r, sz := utf8.DecodeRuneInString(string(s))
if it.si.split {
*p = s[:sz]
} else {
*p = MakeInt(int(r))
}
it.i += sz
} else {
b := int(s[0])
if it.si.split {
*p = s[:1]
} else {
*p = MakeInt(b)
}
it.i += 1
}
return true
}
func (*stringIterator) Done() {}
// A Function is a function defined by a Skylark def statement.
type Function struct {
name string // "lambda" for anonymous functions
position syntax.Position // position of def or lambda token
syntax *syntax.Function
globals StringDict
defaults Tuple
freevars Tuple
}
func (fn *Function) Name() string { return fn.name }
func (fn *Function) Hash() (uint32, error) { return hashString(fn.name), nil }
func (fn *Function) Freeze() { fn.defaults.Freeze(); fn.freevars.Freeze() }
func (fn *Function) String() string { return toString(fn) }
func (fn *Function) Type() string { return "function" }
func (fn *Function) Truth() Bool { return true }
func (fn *Function) Syntax() *syntax.Function { return fn.syntax }
// A Builtin is a function implemented in Go.
type Builtin struct {
name string
fn func(thread *Thread, fn *Builtin, args Tuple, kwargs []Tuple) (Value, error)
recv Value // for bound methods (e.g. "".startswith)
}
func (b *Builtin) Name() string { return b.name }
func (b *Builtin) Freeze() {
if b.recv != nil {
b.recv.Freeze()
}
}
func (b *Builtin) Hash() (uint32, error) {
h := hashString(b.name)
if b.recv != nil {
h ^= 5521
}
return h, nil
}
func (b *Builtin) Receiver() Value { return b.recv }
func (b *Builtin) String() string { return toString(b) }
func (b *Builtin) Type() string { return "builtin_function_or_method" }
func (b *Builtin) Call(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) {
return b.fn(thread, b, args, kwargs)
}
func (b *Builtin) Truth() Bool { return true }
// NewBuiltin returns a new 'builtin_function_or_method' value with the specified name
// and implementation. It compares unequal with all other values.
func NewBuiltin(name string, fn func(thread *Thread, fn *Builtin, args Tuple, kwargs []Tuple) (Value, error)) *Builtin {
return &Builtin{name: name, fn: fn}
}
// BindReceiver returns a new Builtin value representing a method
// closure, that is, a built-in function bound to a receiver value.
//
// In the example below, the value of f is the string.index
// built-in method bound to the receiver value "abc":
//
// f = "abc".index; f("a"); f("b")
//
// In the common case, the receiver is bound only during the call,
// but this still results in the creation of a temporary method closure:
//
// "abc".index("a")
//
func (b *Builtin) BindReceiver(recv Value) *Builtin {
return &Builtin{name: b.name, fn: b.fn, recv: recv}
}
// A *Dict represents a Skylark dictionary.
type Dict struct {
ht hashtable
}
func (d *Dict) Clear() error { return d.ht.clear() }
func (d *Dict) Delete(k Value) (v Value, found bool, err error) { return d.ht.delete(k) }
func (d *Dict) Get(k Value) (v Value, found bool, err error) { return d.ht.lookup(k) }
func (d *Dict) Items() []Tuple { return d.ht.items() }
func (d *Dict) Keys() []Value { return d.ht.keys() }
func (d *Dict) Len() int { return int(d.ht.len) }
func (d *Dict) Iterate() Iterator { return d.ht.iterate() }
func (d *Dict) Set(k, v Value) error { return d.ht.insert(k, v) }
func (d *Dict) String() string { return toString(d) }
func (d *Dict) Type() string { return "dict" }
func (d *Dict) Freeze() { d.ht.freeze() }
func (d *Dict) Truth() Bool { return d.Len() > 0 }
func (d *Dict) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: dict") }
func (d *Dict) Attr(name string) (Value, error) { return builtinAttr(d, name, dictMethods) }
func (d *Dict) AttrNames() []string { return builtinAttrNames(dictMethods) }
func (x *Dict) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(*Dict)
switch op {
case syntax.EQL:
ok, err := dictsEqual(x, y, depth)
return ok, err
case syntax.NEQ:
ok, err := dictsEqual(x, y, depth)
return !ok, err
default:
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
}
func dictsEqual(x, y *Dict, depth int) (bool, error) {
if x.Len() != y.Len() {
return false, nil
}
for _, xitem := range x.Items() {
key, xval := xitem[0], xitem[1]
if yval, found, _ := y.Get(key); !found {
return false, nil
} else if eq, err := EqualDepth(xval, yval, depth-1); err != nil {
return false, err
} else if !eq {
return false, nil
}
}
return true, nil
}
// A *List represents a Skylark list value.
type List struct {
elems []Value
frozen bool
itercount uint32 // number of active iterators (ignored if frozen)
}
// NewList returns a list containing the specified elements.
// Callers should not subsequently modify elems.
func NewList(elems []Value) *List { return &List{elems: elems} }
func (l *List) Freeze() {
if !l.frozen {
l.frozen = true
for _, elem := range l.elems {
elem.Freeze()
}
}
}
// checkMutable reports an error if the list should not be mutated.
// verb+" list" should describe the operation.
// Structural mutations are not permitted during iteration.
func (l *List) checkMutable(verb string, structural bool) error {
if l.frozen {
return fmt.Errorf("cannot %s frozen list", verb)
}
if structural && l.itercount > 0 {
return fmt.Errorf("cannot %s list during iteration", verb)
}
return nil
}
func (l *List) String() string { return toString(l) }
func (l *List) Type() string { return "list" }
func (l *List) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: list") }
func (l *List) Truth() Bool { return l.Len() > 0 }
func (l *List) Len() int { return len(l.elems) }
func (l *List) Index(i int) Value { return l.elems[i] }
func (l *List) Attr(name string) (Value, error) { return builtinAttr(l, name, listMethods) }
func (l *List) AttrNames() []string { return builtinAttrNames(listMethods) }
func (l *List) Iterate() Iterator {
if !l.frozen {
l.itercount++
}
return &listIterator{l: l}
}
func (x *List) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(*List)
// It's tempting to check x == y as an optimization here,
// but wrong because a list containing NaN is not equal to itself.
return sliceCompare(op, x.elems, y.elems, depth)
}
func sliceCompare(op syntax.Token, x, y []Value, depth int) (bool, error) {
// Fast path: check length.
if len(x) != len(y) && (op == syntax.EQL || op == syntax.NEQ) {
return op == syntax.NEQ, nil
}
// Find first element that is not equal in both lists.
for i := 0; i < len(x) && i < len(y); i++ {
if eq, err := EqualDepth(x[i], y[i], depth-1); err != nil {
return false, err
} else if !eq {
switch op {
case syntax.EQL:
return false, nil
case syntax.NEQ:
return true, nil
default:
return CompareDepth(op, x[i], y[i], depth-1)
}
}
}
return threeway(op, len(x)-len(y)), nil
}
type listIterator struct {
l *List
i int
}
func (it *listIterator) Next(p *Value) bool {
if it.i < it.l.Len() {
*p = it.l.elems[it.i]
it.i++
return true
}
return false
}
func (it *listIterator) Done() {
if !it.l.frozen {
it.l.itercount--
}
}
func (l *List) SetIndex(i int, v Value) error {
if err := l.checkMutable("assign to element of", false); err != nil {
return err
}
l.elems[i] = v
return nil
}
func (l *List) Append(v Value) error {
if err := l.checkMutable("append to", true); err != nil {
return err
}
l.elems = append(l.elems, v)
return nil
}
func (l *List) Clear() error {
if err := l.checkMutable("clear", true); err != nil {
return err
}
for i := range l.elems {
l.elems[i] = nil // aid GC
}
l.elems = l.elems[:0]
return nil
}
// A Tuple represents a Skylark tuple value.
type Tuple []Value
func (t Tuple) Len() int { return len(t) }
func (t Tuple) Index(i int) Value { return t[i] }
func (t Tuple) Iterate() Iterator { return &tupleIterator{elems: t} }
func (t Tuple) Freeze() {
for _, elem := range t {
elem.Freeze()
}
}
func (t Tuple) String() string { return toString(t) }
func (t Tuple) Type() string { return "tuple" }
func (t Tuple) Truth() Bool { return len(t) > 0 }
func (x Tuple) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(Tuple)
return sliceCompare(op, x, y, depth)
}
func (t Tuple) Hash() (uint32, error) {
// Use same algorithm as Python.
var x, mult uint32 = 0x345678, 1000003
for _, elem := range t {
y, err := elem.Hash()
if err != nil {
return 0, err
}
x = x ^ y*mult
mult += 82520 + uint32(len(t)+len(t))
}
return x, nil
}
type tupleIterator struct{ elems Tuple }
func (it *tupleIterator) Next(p *Value) bool {
if len(it.elems) > 0 {
*p = it.elems[0]
it.elems = it.elems[1:]
return true
}
return false
}
func (it *tupleIterator) Done() {}
// A Set represents a Skylark set value.
type Set struct {
ht hashtable // values are all None
}
func (s *Set) Delete(k Value) (found bool, err error) { _, found, err = s.ht.delete(k); return }
func (s *Set) Clear() error { return s.ht.clear() }
func (s *Set) Has(k Value) (found bool, err error) { _, found, err = s.ht.lookup(k); return }
func (s *Set) Insert(k Value) error { return s.ht.insert(k, None) }
func (s *Set) Len() int { return int(s.ht.len) }
func (s *Set) Iterate() Iterator { return s.ht.iterate() }
func (s *Set) String() string { return toString(s) }
func (s *Set) Type() string { return "set" }
func (s *Set) elems() []Value { return s.ht.keys() }
func (s *Set) Freeze() { s.ht.freeze() }
func (s *Set) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: set") }
func (s *Set) Truth() Bool { return s.Len() > 0 }
func (s *Set) Attr(name string) (Value, error) { return builtinAttr(s, name, setMethods) }
func (s *Set) AttrNames() []string { return builtinAttrNames(setMethods) }
func (x *Set) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(*Set)
switch op {
case syntax.EQL:
ok, err := setsEqual(x, y, depth)
return ok, err
case syntax.NEQ:
ok, err := setsEqual(x, y, depth)
return !ok, err
default:
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
}
func setsEqual(x, y *Set, depth int) (bool, error) {
if x.Len() != y.Len() {
return false, nil
}
for _, elem := range x.elems() {
if found, _ := y.Has(elem); !found {
return false, nil
}
}
return true, nil
}
func (s *Set) Union(iter Iterator) (Value, error) {
set := new(Set)
for _, elem := range s.elems() {
set.Insert(elem) // can't fail
}
var x Value
for iter.Next(&x) {
if err := set.Insert(x); err != nil {
return nil, err
}
}
return set, nil
}
// toString returns the string form of value v.
// It may be more efficient than v.String() for larger values.
func toString(v Value) string {
var buf bytes.Buffer
path := make([]Value, 0, 4)
writeValue(&buf, v, path)
return buf.String()
}
// path is the list of *List and *Dict values we're currently printing.
// (These are the only potentially cyclic structures.)
func writeValue(out *bytes.Buffer, x Value, path []Value) {
switch x := x.(type) {
case NoneType:
out.WriteString("None")
case Int:
out.WriteString(x.String())
case Bool:
if x {
out.WriteString("True")
} else {
out.WriteString("False")
}
case String:
fmt.Fprintf(out, "%q", string(x))
case *List:
out.WriteByte('[')
if pathContains(path, x) {
out.WriteString("...") // list contains itself
} else {
for i, elem := range x.elems {
if i > 0 {
out.WriteString(", ")
}
writeValue(out, elem, append(path, x))
}
}
out.WriteByte(']')
case Tuple:
out.WriteByte('(')
for i, elem := range x {
if i > 0 {
out.WriteString(", ")
}
writeValue(out, elem, path)
}
if len(x) == 1 {
out.WriteByte(',')
}
out.WriteByte(')')
case *Function:
fmt.Fprintf(out, "<function %s>", x.Name())
case *Builtin:
if x.recv != nil {
fmt.Fprintf(out, "<built-in method %s of %s value>", x.Name(), x.recv.Type())
} else {
fmt.Fprintf(out, "<built-in function %s>", x.Name())
}
case *Dict:
out.WriteByte('{')
if pathContains(path, x) {
out.WriteString("...") // dict contains itself
} else {
sep := ""
for _, item := range x.Items() {
k, v := item[0], item[1]
out.WriteString(sep)
writeValue(out, k, path)
out.WriteString(": ")
writeValue(out, v, append(path, x)) // cycle check
sep = ", "
}
}
out.WriteByte('}')
case *Set:
out.WriteString("set([")
for i, elem := range x.elems() {
if i > 0 {
out.WriteString(", ")
}
writeValue(out, elem, path)
}
out.WriteString("])")
default:
out.WriteString(x.String())
}
}
func pathContains(path []Value, x Value) bool {
for _, y := range path {
if x == y {
return true
}
}
return false
}
const maxdepth = 10
// Equal reports whether two Skylark values are equal.
func Equal(x, y Value) (bool, error) {
return EqualDepth(x, y, maxdepth)
}
// EqualDepth reports whether two Skylark values are equal.
//
// Recursive comparisons by implementations of Value.CompareSameType
// should use EqualDepth to prevent infinite recursion.
func EqualDepth(x, y Value, depth int) (bool, error) {
return CompareDepth(syntax.EQL, x, y, depth)
}
// Compare compares two Skylark values.
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
// Compare returns an error if an ordered comparison was
// requested for a type that does not support it.
//
// Recursive comparisons by implementations of Value.CompareSameType
// should use CompareDepth to prevent infinite recursion.
func Compare(op syntax.Token, x, y Value) (bool, error) {
return CompareDepth(op, x, y, maxdepth)
}
// CompareDepth compares two Skylark values.
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
// CompareDepth returns an error if an ordered comparison was
// requested for a pair of values that do not support it.
//
// The depth parameter limits the maximum depth of recursion
// in cyclic data structures.
func CompareDepth(op syntax.Token, x, y Value, depth int) (bool, error) {
if depth < 1 {
return false, fmt.Errorf("comparison exceeded maximum recursion depth")
}
if sameType(x, y) {
if xcomp, ok := x.(Comparable); ok {
return xcomp.CompareSameType(op, y, depth)
}
// use identity comparison
switch op {
case syntax.EQL:
return x == y, nil
case syntax.NEQ:
return x != y, nil
}
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
// different types
// int/float ordered comparisons
switch x := x.(type) {
case Int:
if y, ok := y.(Float); ok {
if y != y {
return false, nil // y is NaN
}
var cmp int
if !math.IsInf(float64(y), 0) {
cmp = x.rational().Cmp(y.rational()) // y is finite
} else if y > 0 {
cmp = -1 // y is +Inf
} else {
cmp = +1 // y is -Inf
}
return threeway(op, cmp), nil
}
case Float:
if y, ok := y.(Int); ok {
if x != x {
return false, nil // x is NaN
}