-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGetASEStats.py
350 lines (290 loc) · 14.7 KB
/
GetASEStats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from __future__ import print_function
import numpy as np
import pandas as pd
from collections import Counter
from numpy import isfinite, int64, int32, int16, int8, sign, abs, nan
import Utils as ut
import PlotUtils as pu
from Utils import startswith, fbgns, pd_kwargs
from matplotlib import cm, pyplot
from warnings import filterwarnings
filterwarnings('ignore', category=FutureWarning)
filterwarnings('ignore', category=DeprecationWarning)
def slices_per_embryo(ase):
return Counter(i.split('_sl')[0] for i in ase.columns)
def create_latex_command(name, value, numeric=False, frac=False):
name = name.upper().replace('_', '')
if frac:
if 0 < abs(value) < .1e-2:
return '\\newcommand{{\\{}}}[0]{{{:%}}} \n'.format(name, value).replace('%', '\\%')
return '\\newcommand{{\\{}}}[0]{{{:.1%}}} \n'.format(name, value).replace('%', '\\%').replace('.0', '')
if numeric:
return '\\newcommand{{\\{}}}[0]{{{:6,g}}} \n'.format(name, value)
return '\\newcommand{{\\{}}}[0]{{{}}} \n'.format(name, value)
def get_class(gene, ase, subset='', slices_with_expr=None, expr=None):
sample = ase.ix[gene]
sample = sample.select(startswith(subset))
if slices_with_expr is not None and gene in slices_with_expr.index:
slices_with_expr = slices_with_expr.ix[gene]
elif slices_with_expr is None and expr is not None and gene in expr.index:
slices_with_expr = (expr.ix[gene].select(startswith(subset)) > EXPR_MIN).sum()
else:
return nan
ase_vals = (abs(sample) > ASE_MIN) * sign(sample)
slices_with_ase = isfinite(sample).sum()
if slices_with_expr < len(sample) * .90:
return 99
if slices_with_ase < .5 * slices_with_expr:
return 999
if sum(ase_vals == 1) > slices_with_ase * FRAC_FOR_MATERNAL:
return 1
if sum(ase_vals == -1) > slices_with_ase * FRAC_FOR_MATERNAL:
return -1
return 0
lott_sort = lambda x: (int(x[1:3]), x[3:])
EXPR_MIN = 10
FRAC_FOR_ASE = 2/3
ASE_MIN = (FRAC_FOR_ASE - (1-FRAC_FOR_ASE))/1
FRAC_FOR_MATERNAL = 0.65
plot_kwargs = {'box_height': 25,
'col_sep': '_sl',
'convert': True,
'draw_box': True,
'draw_name': True,
'draw_row_labels': True,
'make_hyperlinks': True,
'progress_bar': True,
'split_columns': True,
'total_width': 200}
if __name__ == "__main__":
if 'ase' not in locals() or ('reload_ase' in locals() and locals()['reload_ase']):
print("Reloading data")
ase = (pd.read_table('analysis_godot/wasp_summary_by_read.tsv', **pd_kwargs)
.dropna(how='all', axis=1)
.select(**ut.sel_startswith(('melXsim', 'simXmel')))
)
all_ase = ase.copy()
expr = (pd.read_table('analysis_godot/summary.tsv', **pd_kwargs)
.drop('---', axis=1, errors='ignore')
#.dropna(how='all', axis=1)
)
lott = pd.read_table('prereqs/journal.pbio.1000590.s002', index_col=0, keep_default_na=False, na_values=[''])
lott_expr = (lott
.ix[:, sorted(lott.columns[5:29], key=lott_sort)]
.rename_axis(axis=1, mapper=lambda x: 'lott_sl'+x)
)
reload_ase = False
to_gn = pd.read_table('prereqs/gene_map_table_fb_2016_01.tsv', index_col=1, skiprows=4).ix[:,0]
to_fbgn = ut.get_synonyms()
in_both = ase.index.intersection(expr.index)
ase = ase.ix[in_both]
expr = expr.ix[in_both]
rn = lambda x: 'parental_' + x.split('_')[2]
mel_parental = expr.select(**ut.sel_startswith('melXmel')).rename_axis(rn,
axis="columns")
sim_parental = expr.select(**ut.sel_startswith('simXsim')).rename_axis(rn,
axis="columns")
if 'syns' not in locals() or (locals().get('reload_syns', False)):
syns = ut.get_synonyms()
chrom_of = ut.get_chroms(syns)
reload_syns = False
males = ('melXsim_cyc14C_rep3', 'simXmel_cyc14C_rep2')
on_x = [chrom_of[gene] == 'X' for gene in ase.index]
is_male = [col.startswith(males) for col in ase.columns]
ase_nomaleX = ase.copy()
ase_nomaleX.ix[on_x, is_male] = pd.np.nan
ase = ase_nomaleX
# Mutliplying your ASE values by parent of origin should make it so that
# maternal alleles are positive and paternal allels are negative
parent_of_origin = pd.Series(
index=ase.columns,
data=[-1 if c.startswith('m') else 1 for c in ase.columns]
)
ase_rectified = ase.multiply(parent_of_origin)
data = {}
data['frac_for_ase'] = FRAC_FOR_ASE
data['frac_for_maternal'] = FRAC_FOR_MATERNAL
data['expr_min'] = EXPR_MIN
n_slices = slices_per_embryo(ase)
data['most_slices'] = max(n_slices.values())
data['least_slices'] = min(n_slices.values())
slices_with_expr = (expr > EXPR_MIN).sum(axis=1)
slices_with_ase = (ase > ASE_MIN).sum(axis=1)
slices_with_aseval = ase.count(axis=1)
#slices_with_aseval = slices_with_aseval.where(slices_with_aseval>slices_with_expr, slices_with_expr)
#slices_with_aseval = slices_with_aseval.where(slices_with_aseval>5, 5)
print("Species dominance data...")
deseq_mel = pd.read_table('analysis/mel_deseq.tsv', index_col=0,
keep_default_na=False, na_values=['NA', '---'])
deseq_sim = pd.read_table('analysis/sim_deseq.tsv', index_col=0,
keep_default_na=False, na_values=['NA', '---'])
deseq_mat_pvals = pd.DataFrame(index=deseq_mel.index.union(deseq_sim.index),
columns=['mel', 'sim'],
data=np.nan)
deseq_mat_pvals.ix[deseq_mel.index, 'mel'] = (
deseq_mel.padj * (deseq_mel.log2FoldChange > 0) +
(1-deseq_mel.padj) * (deseq_mel.log2FoldChange < 0)
)
deseq_mat_pvals.ix[deseq_sim.index, 'sim'] = (
deseq_sim.padj * (deseq_sim.log2FoldChange > 0) +
(1-deseq_sim.padj) * (deseq_sim.log2FoldChange < 0)
)
deseq_mat_lfcs = pd.DataFrame(index=deseq_mel.index.union(deseq_sim.index),
columns=['mel', 'sim'],
data=np.nan)
deseq_mat_lfcs.ix[deseq_mel.index, 'mel'] = deseq_mel.log2FoldChange
deseq_mat_lfcs.ix[deseq_sim.index, 'sim'] = -deseq_sim.log2FoldChange
min_lfc = deseq_mat_lfcs.T.mean()
has_ase = ut.true_index(ase.T.count() > ase.shape[1]/2)
lott_mat = ut.true_index(lott.CLASS == 'mat')
lott_matzyg = ut.true_index(lott.CLASS == 'matzyg')
lott_zyg = ut.true_index(lott.CLASS == 'zyg')
pyplot.violinplot([min_lfc[lott_mat.intersection(has_ase)].dropna(),
min_lfc[lott_matzyg.intersection(has_ase)].dropna(),
min_lfc[lott_zyg.intersection(has_ase)].dropna()],
showmedians=True,showextrema=False,
bw_method='silverman',
)
for i, genes in enumerate([lott_mat, lott_matzyg, lott_zyg]):
genes = genes.intersection(has_ase)
pyplot.hlines(min_lfc[genes].dropna(), i+0.98, i+1.02, 'k', alpha=0.1)
pyplot.xticks([1,2,3],
[
'{}\n{}'.format(c, len(ut.true_index(lott.CLASS==c).intersection(has_ase)))
for c in ['mat', 'matzyg', 'zyg']
]
)
pyplot.hlines(0, 0.5, 3.5)
pyplot.xlim(0.5, 3.5)
ax=pyplot.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_bounds(min_lfc[has_ase].min(), min_lfc[has_ase].max())
pyplot.ylabel('Maternal Log 2 Fold Change')
pyplot.savefig('analysis/results/lott_lfcs.png', dpi=300)
# Species dominance
mel_mel_bias = ut.true_index((deseq_mel.padj < .05) & (deseq_mel.log2FoldChange > 0))
sim_mel_bias = ut.true_index((deseq_sim.padj < .05) & (deseq_sim.log2FoldChange > 0))
mel_sim_bias = ut.true_index((deseq_mel.padj < .05) & (deseq_mel.log2FoldChange < 0))
sim_sim_bias = ut.true_index((deseq_sim.padj < .05) & (deseq_sim.log2FoldChange < 0))
maternal = mel_mel_bias.intersection(sim_sim_bias)
paternal = mel_sim_bias.intersection(sim_mel_bias)
mel_dom = mel_mel_bias.intersection(sim_mel_bias)
sim_dom = mel_sim_bias.intersection(sim_sim_bias)
zygotic = ut.true_index((deseq_mel.padj > .05) & (deseq_sim.padj > .05))
semi_maternal_mel = ut.true_index((deseq_mel.padj < .05)
& (deseq_mel.log2FoldChange > 0)
& (deseq_sim.padj > .05))
semi_maternal_sim = ut.true_index((deseq_sim.padj < .05)
& (deseq_sim.log2FoldChange < 0)
& (deseq_mel.padj > .05))
semi_maternal = semi_maternal_mel.append(semi_maternal_sim)
print(*maternal, sep='\n', file=open('analysis/results/maternal.txt', 'w'))
print(*paternal, sep='\n', file=open('analysis/results/paternal.txt', 'w'))
print(*mel_dom, sep='\n', file=open('analysis/results/mel_dom.txt', 'w'))
print(*sim_dom, sep='\n', file=open('analysis/results/sim_dom.txt', 'w'))
data['num_maternal'] = len(maternal)
data['num_paternal'] = len(paternal)
data['mel_dominant'] = len(mel_dom)
data['sim_dominant'] = len(sim_dom)
data['num_semimat'] = len(semi_maternal)
expected = (sim_parental - mel_parental)/(sim_parental + mel_parental)
mel_dom = expected.ix[mel_dom].T.mean().sort_values().index
sim_dom = expected.ix[sim_dom].T.mean().sort_values().index
print("Making species bias figs")
pu.svg_heatmap((expr, expected, ase), 'analysis/results/mel_dom.svg',
index=mel_dom,
norm_rows_by=('maxall', 'center0pre', 'center0pre'),
cmap=(pu.ISH, cm.RdBu, cm.RdBu),
progress_bar=True,
row_labels=[(
'{:6.1f}'.format(
expr.ix[i].max() if i in expr.index else np.nan),
chrom_of.get(i, '???'),
i)
for i in mel_dom],
nan_replace='no',
**pu.kwargs_heatmap)
pu.svg_heatmap((expr, expected, ase), 'analysis/results/sim_dom.svg',
index=sim_dom,
norm_rows_by=('maxall', 'center0pre', 'center0pre'),
cmap=(pu.ISH, cm.RdBu, cm.RdBu),
progress_bar=True,
row_labels=[(
'{:6.1f}'.format(
expr.ix[i].max() if i in expr.index else np.nan),
chrom_of.get(i, '???'), i)
for i in sim_dom],
nan_replace='no',
**pu.kwargs_heatmap)
lott_mat = ut.true_index(lott.CLASS == 'mat')
data['lott_maternal'] = len(lott_mat)
low_expr_lott = ut.true_index(~(isfinite(deseq_mel.padj[lott_mat])
& isfinite(deseq_sim.padj[lott_mat])))
data['lott_maternal_low'] = len(low_expr_lott)
has_ase_lott = ut.true_index(
(isfinite(deseq_mel.padj[lott_mat])
& isfinite(deseq_sim.padj[lott_mat]))
)
data['lott_maternal_measured'] = len(has_ase_lott)
data['lott_maternal_agree'] = len(maternal.intersection(lott_mat))
me_mat_lott_zyg = ut.true_index(lott.CLASS == 'zyg').intersection(maternal)
me_zyg_lott_mat = lott_mat.intersection(zygotic)
me_zyg_lott_mat = ase_rectified.ix[me_zyg_lott_mat].T.mean().sort_values().index
data['lott_disagree_t_one'] = len(me_mat_lott_zyg)
data['lott_disagree_t_two'] = len(me_zyg_lott_mat)
#pu.svg_heatmap((ase.ix[me_mat_lott_zyg], lott_expr.ix[me_mat_lott_zyg]),
# 'analysis/results/me_mat_lott_zyg.svg',
# norm_rows_by=('center0pre', 'max'),
# cmap=(cm.RdBu, cm.viridis),
# **plot_kwargs)
small_heatmap_kwargs = plot_kwargs.copy()
small_heatmap_kwargs['box_height'] = 3
small_heatmap_kwargs['draw_row_labels'] = False
small_heatmap_kwargs['nan_replace'] = 'no'
pu.svg_heatmap((ase.ix[me_mat_lott_zyg], lott_expr.ix[me_mat_lott_zyg]),
'analysis/results/me_mat_lott_zyg.svg',
norm_rows_by=('center0pre', 'max'),
cmap=(cm.RdBu, cm.viridis),
**plot_kwargs)
pu.svg_heatmap((ase.ix[me_zyg_lott_mat], lott_expr.ix[me_zyg_lott_mat]),
'analysis/results/me_zyg_lott_mat.svg',
norm_rows_by=('center0pre', 'max'),
cmap=(cm.RdBu, cm.viridis),
**small_heatmap_kwargs)
pu.svg_heatmap((ase, lott_expr),
'analysis/results/semimaternal.svg',
index=semi_maternal,
norm_rows_by=('center0pre', 'max'),
cmap=(cm.RdBu, cm.viridis),
**small_heatmap_kwargs)
peak_genes = [line.strip() for line in open('analysis/results/asepeak_genes.txt')]
logist_genes = [line.strip() for line in open('analysis/results/aselogist_genes.txt')]
data['num_peak'] = len(peak_genes)
data['num_logist'] = len(logist_genes)
data['num_strong_svase'] = len(peak_genes) + len(logist_genes)
peak_fd = np.fromfile('analysis/results/fd_peak.numpy')
logist_fd = np.fromfile('analysis/results/fd_logist.numpy')
peak_r2s = pd.Series.from_csv('analysis/results/all_peak_r2s.csv')
logist_r2s = pd.Series.from_csv('analysis/results/all_logist_r2s.csv')
co = 0.45
data['fd_peak'] = sum(peak_fd > co)
data['frac_fdr_peak'] = (sum(peak_fd > co) / len(peak_fd)) / (sum(peak_r2s > co) / len(peak_r2s))
data['frac_max_fdr_peak'] = (1 / len(peak_fd)) / (sum(peak_r2s > co) / len(peak_r2s))
data['fd_logist'] = sum(logist_fd > co)
data['frac_fdr_logist'] = sum(logist_fd > co) / len(logist_fd) / (sum(peak_r2s > co) / len(peak_r2s))
data['frac_max_fdr_logist'] = 1 / len(logist_fd)/ (sum(peak_r2s > co) / len(peak_r2s))
print(data)
with open('analysis/results/stats.tex', 'w') as outf:
for var, val in data.items():
numeric = isinstance(val, (float, int, int64, int32, int16, int8))
frac = var.lower().startswith('frac')
outf.write(create_latex_command(var, val, numeric, frac))
if data['num_paternal']:
pu.svg_heatmap(ase.ix[paternal],
'analysis/results/paternal.svg',
norm_rows_by='center0pre', cmap=cm.RdBu,
hatch_nan=True,hatch_size=1,
row_labels=fbgns[paternal],
**plot_kwargs)