forked from eric-ai-lab/MiniGPT-5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
469 lines (403 loc) · 22.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import random
from typing import Any, Optional, Dict, List
import torch
from lightning.pytorch import LightningModule
from transformers import get_linear_schedule_with_warmup, CLIPTextModel, CLIPTokenizer, PreTrainedTokenizer
from torch.optim import AdamW
import torch.nn as nn
from minigpt4.models.mini_gpt5 import MiniGPT5
from minigpt4.common.config import Config
from diffusers import AutoencoderKL, UNet2DConditionModel
import wandb
import torch.nn.functional as F
from utils import plot_images_and_text
from constants import *
from diffusers import StableDiffusionPipeline
from diffusers.models.vae import DiagonalGaussianDistribution
class MiniGPT5_InputProcessor(object):
def __init__(self, tokenizer: PreTrainedTokenizer, image_processor: Any):
self.tokenizer = tokenizer
self.image_processor = image_processor
def __call__(self, text = None, images = None, **kwargs) -> Any:
output_dict = {}
if text is not None:
text_output = self.tokenizer(text,
return_tensors="pt",
padding=True,
max_length=self.tokenizer.model_max_length,
truncation=True,
**kwargs)
output_dict.update(text_output)
if images is not None:
all_images = []
if isinstance(images, list):
for img in images:
image_output = self.image_processor(img)
all_images.append(image_output)
input_images = torch.stack(all_images, dim=0)
else:
input_images = self.image_processor(images)
output_dict['input_images'] = input_images
return output_dict
class MiniGPT4Args:
cfg_path = "config/minigpt4.yaml"
options = []
# define the LightningModule
class MiniGPT5_Model(LightningModule):
def __init__(self,
encoder_model_config,
**kwargs,
):
super().__init__()
self.save_hyperparameters(ignore=['encoder_model_config'])
self.encoder_model_config = encoder_model_config
self.input_vis_processor = None
if encoder_model_config.model_type == 'multimodal_encoder':
minigpt4_config = Config(MiniGPT4Args)
self.model = MiniGPT5.from_config(minigpt4_config.model_cfg)
self.tokenizer = self.model.llama_tokenizer
hidden_size = self.model.llama_model.config.hidden_size
sd_model_name = "stabilityai/stable-diffusion-2-1-base"
self.sd_text_encoder = CLIPTextModel.from_pretrained(sd_model_name, subfolder="text_encoder")
self.sd_tokenizer = CLIPTokenizer.from_pretrained(sd_model_name, subfolder="tokenizer")
self.vae = AutoencoderKL.from_pretrained(sd_model_name, subfolder="vae").to(PRECISION)
self.unet = UNet2DConditionModel.from_pretrained(sd_model_name, subfolder="unet").to(PRECISION)
# Freeze vae and text_encoder
self.vae.requires_grad_(False)
self.sd_text_encoder.requires_grad_(False)
self.unet.requires_grad_(False)
sd_hidden_size = self.sd_text_encoder.config.hidden_size
self.t2i_decoder_prompt = torch.nn.Parameter(torch.randn((1,77, sd_hidden_size), dtype=TRAINABLE_PRECISION))
self.llm_to_t2i_mapping = nn.Transformer(batch_first=True, norm_first=True, d_model = sd_hidden_size, num_encoder_layers=4, num_decoder_layers=4, dim_feedforward=sd_hidden_size*4, dropout=0.0, dtype=TRAINABLE_PRECISION)
if len(ALL_IMG_TOKENS):
self.output_img_id = self.tokenizer.convert_tokens_to_ids(ALL_IMG_TOKENS[0])
self.img_token_num = IMG_TOKEN_NUM
self.image_pipeline = StableDiffusionPipeline.from_pretrained(
sd_model_name,
vae = self.vae,
unet = self.unet,
safety_checker = None,
)
self.noise_scheduler = self.image_pipeline.scheduler
self.fc = nn.Sequential(
nn.Linear(hidden_size, sd_hidden_size),
nn.GELU(),
nn.Linear(sd_hidden_size, sd_hidden_size),
).to(TRAINABLE_PRECISION)
empty_text_feature = self.encode_caption('', self.sd_tokenizer.model_max_length, inference=True)
self.register_buffer('empty_text_feature', empty_text_feature, persistent=False)
zero_img_feature = torch.zeros((1, self.img_token_num, hidden_size), dtype=TRAINABLE_PRECISION)
self.register_buffer('zero_img_feature', zero_img_feature, persistent=False)
self.sd_text_encoder.to(PRECISION)
if IS_STAGE2:
for n, p in self.fc.named_parameters():
p.requires_grad = False
# for n, p in self.llm_to_t2i_mapping.named_parameters():
# p.requires_grad = False
self.t2i_decoder_prompt.requires_grad = False
def training_step(self, batch, batch_idx):
for key in batch.keys():
if type(batch[key]) == list:
batch[key] = batch[key]
else:
batch[key] = batch[key].to(self.device)
input_ids = batch['input_ids']
labels = batch['labels']
attention_mask = batch['attention_mask']
source_text = batch['source']
target_text = batch['target']
captions = batch['caption']
input_images = batch.get('input_images', None)
output_image = batch.get('output_image', None)
input_images_feature = batch.get('input_images_feature', None)
output_image_feature = batch.get('output_image_feature', None)
bs = len(source_text)
loss_dict = self(input_ids, attention_mask, input_images, output_image, labels, captions, input_images_feature, output_image_feature)
loss = loss_dict['loss']
log_dict = {f'train_{k}': v for k, v in loss_dict.items()}
self.log_dict(log_dict, on_step=True, on_epoch=True, prog_bar=True, sync_dist=True, batch_size=bs)
# check image generation for every 1000 steps
if (self.global_step+1) % 500 == 0 and self.global_rank == 0:
with torch.no_grad():
self.eval()
# utterance = "generate image with caption: a man on the sofa."
utterance = source_text[0]
gt_text = target_text[0]
i_image = None
if "<ImageHere>" in utterance:
i_image = input_images[0]
text_out, image_out = self.generate(utterance, i_image)
if image_out is not None:
if os.path.exists("train_eval") == False:
os.makedirs("train_eval")
if IS_STAGE2:
data = [[self.global_step, utterance, text_out, wandb.Image(image_out), gt_text]]
columns = ["step", "input_utterance", "text_out", "img_out", "gt_text"]
else:
if captions[0] is not None:
predicted_images_nl = self.image_pipeline(prompt= captions[0]).images[0]
data = [[self.global_step, utterance, text_out, wandb.Image(image_out), captions[0], wandb.Image(predicted_images_nl)]]
columns = ["step", "input_utterance", "text_out", "img_out", "caption", "caption_out"]
predicted_images_nl.save(os.path.join("train_eval", f'{self.global_step}_nl.png'))
else:
data = [[self.global_step, utterance, text_out, wandb.Image(image_out), gt_text]]
columns = ["step", "input_utterance", "text_out", "img_out", "gt_text"]
self.logger.log_table(key="sample", data=data, columns=columns)
image_out.save(os.path.join("train_eval", f'{self.global_step}.png'))
else:
data = [[self.global_step, utterance, text_out, None, gt_text]]
columns = ["step", "input_utterance", "text_out", "img_out", "gt_text"]
self.logger.log_table(key="sample", data=data, columns=columns)
self.train()
return loss
def on_before_optimizer_step(self, optimizer) -> None:
self.model.reset_embeddings()
def validation_step(self, batch, batch_idx):
for key in batch.keys():
if type(batch[key]) == list:
batch[key] = batch[key]
else:
batch[key] = batch[key].to(self.device)
input_ids = batch['input_ids']
labels = batch['labels']
attention_mask = batch['attention_mask']
source_text = batch['source']
target_text = batch['target']
captions = batch['caption']
input_images = batch.get('input_images', None)
output_image = batch.get('output_image', None)
input_images_feature = batch.get('input_images_feature', None)
output_image_feature = batch.get('output_image_feature', None)
bs = len(source_text)
loss_dict = self(input_ids, attention_mask, input_images, output_image, labels, captions, input_images_feature, output_image_feature)
log_dict = {f'val_{k}': v for k, v in loss_dict.items()}
self.log_dict(log_dict, batch_size=bs, logger=True, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
# no_decay = ["bias", "LayerNorm.weight"]
if IS_STAGE2:
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if p.requires_grad],
},
{
"params": [p for n, p in self.llm_to_t2i_mapping.named_parameters() if p.requires_grad],
}
]
else:
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if p.requires_grad],
},
{
"params": [p for n, p in self.fc.named_parameters() if p.requires_grad],
"lr": self.hparams.learning_rate * 10,
},
{
"params": [p for n, p in self.llm_to_t2i_mapping.named_parameters() if p.requires_grad],
"lr": self.hparams.learning_rate * 10,
},
{
"params": self.t2i_decoder_prompt,
"lr": self.hparams.learning_rate * 10,
}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=self.hparams.warmup_steps,
num_training_steps=self.trainer.estimated_stepping_batches,
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return [optimizer], [scheduler]
def forward(self, input_ids, attention_mask, input_images, output_image, labels, captions=None, input_images_feature=None, output_image_feature=None):
if self.encoder_model_config.model_type=='multimodal_encoder':
outputs, special_token_index = self.model(input_ids=input_ids, labels=labels, attention_mask=attention_mask, input_images=input_images, input_img_features=input_images_feature ,output_hidden_states=True)
text_loss = outputs['loss']
last_hidden_state = outputs['hidden_states'][-1]
t2i_input_embedding = []
caption_feature = []
calculate_caption_loss = not any([c is None for c in captions])
for i in range(len(special_token_index)):
bs_id, seq_id = special_token_index[i]
# random set 10% data with empty text feature
if USE_CFG and random.random() < 0.1:
t2i_input_embedding.append(self.zero_img_feature)
if calculate_caption_loss:
caption_feature.append(self.empty_text_feature)
else:
t2i_input_embedding.append(last_hidden_state[bs_id:bs_id+1, seq_id:seq_id+self.img_token_num, :])
if calculate_caption_loss:
caption_feature.append(self.encode_caption(captions[bs_id], self.sd_tokenizer.model_max_length, inference=True))
if len(t2i_input_embedding) == 0:
loss = 0.01 * text_loss
if calculate_caption_loss:
return {'loss': loss, 'text_loss': text_loss, 'image_loss': 0.0, 'caption_loss': 0.0}
else:
return {'loss': loss, 'text_loss': text_loss, 'image_loss': 0.0}
else:
t2i_input_embedding = torch.cat(t2i_input_embedding, dim=0)
img_token_bs = t2i_input_embedding.shape[0]
t2i_input_embedding = self.fc(t2i_input_embedding)
mapping_feature = self.llm_to_t2i_mapping(src=t2i_input_embedding, tgt=self.t2i_decoder_prompt.repeat(img_token_bs, 1, 1))
if output_image_feature is None:
image_loss = self.compute_image_loss(mapping_feature, output_image[special_token_index[:, 0]])
else:
image_loss = self.compute_image_loss(mapping_feature, None, output_image_feature=output_image_feature[special_token_index[:, 0]])
if calculate_caption_loss:
caption_feature = torch.cat(caption_feature, dim=0)
caption_loss = F.mse_loss(mapping_feature, caption_feature)
loss = 0.01 * text_loss + image_loss + 0.1 * caption_loss
return {'loss': loss, 'text_loss': text_loss, 'image_loss': image_loss, 'caption_loss': caption_loss}
else:
loss = 0.01 * text_loss + image_loss
return {'loss': loss, 'text_loss': text_loss, 'image_loss': image_loss}
def generate(self, utterance, input_image=None, task_name=None, max_new_tokens=256, force_generation=False, guidance_scale=7.5) -> Any:
self.image_pipeline.to(self.device, PRECISION)
if input_image is None:
input_image = torch.zeros((1, 3, 224, 224), dtype=PRECISION).to(self.device)
if type(utterance) == str:
utterance = [utterance]
llm_sample_outputs = self.model.predict(utterance, input_image, max_new_tokens=max_new_tokens, temperature=1.0, repetition_penalty=2.0, task_name=task_name, force_generation=force_generation)
new_tokens = llm_sample_outputs['sequences'][0]
pred_out = self.tokenizer.decode(new_tokens)
print(f'Generated text: {pred_out}')
last_hidden_state = llm_sample_outputs['hidden_states']
special_token_index = (new_tokens == self.output_img_id).nonzero()
predicted_images_ft = None
if len(special_token_index):
idx = special_token_index[0,0]
t2i_input_embedding = last_hidden_state[idx][-1]
assert t2i_input_embedding.shape[1] == self.img_token_num
img0_output_feature = last_hidden_state[idx-1][-1][:, -1:]
t2i_input_embedding = torch.cat([img0_output_feature, t2i_input_embedding[:, :-1]], dim=1)
t2i_input_embedding = self.fc(t2i_input_embedding)
mapping_feature = self.llm_to_t2i_mapping(src=t2i_input_embedding, tgt=self.t2i_decoder_prompt)
if USE_CFG:
empty_feature = self.fc(self.zero_img_feature)
empty_feature = self.llm_to_t2i_mapping(src=empty_feature, tgt=self.t2i_decoder_prompt)
predicted_images_ft = self.image_pipeline(prompt_embeds = mapping_feature, negative_prompt_embeds=empty_feature, guidance_scale=guidance_scale).images[0]
else:
predicted_images_ft = self.image_pipeline(prompt_embeds = mapping_feature, guidance_scale=guidance_scale, use_original=True).images[0]
return pred_out, predicted_images_ft
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
self.image_pipeline.to(self.device, PRECISION)
input_images = batch['input_images'][0]
gt_image = batch['output_image'][0]
input_utterance = batch['source'][0]
gt_out = batch['target'][0]
captions = batch['caption'][0]
task_name = batch['task_name'][0]
predicted_images_ft = None
predicted_images_nl = None
current_step_prompt = None
save_dir_cpr = self.output_folder
if self.encoder_model_config.model_type=='multimodal_encoder':
pred_out, predicted_images_ft = self.generate(input_utterance, input_images)
if predicted_images_ft is not None:
if captions is not None:
predicted_images_nl = self.image_pipeline(prompt = captions).images[0]
try:
if "###Human" in input_utterance and "###Assistant" in input_utterance:
input_texts = input_utterance.split("###Human:")[1].split("###Assistant:")[0].replace("/n","")
if "<Img><ImageHere></Img>" in input_texts:
input_texts = input_texts.split("<Img><ImageHere></Img>")
else:
input_texts = [input_texts]
else:
input_texts = [input_utterance]
# convert input images to PIL images
plot_images_and_text(predicted_images_ft, predicted_images_nl, gt_image, pred_out, gt_out, save_dir_cpr, task_name, input_texts, batch['original_images'][0])
except:
print("Error in saving images")
results = [input_utterance, pred_out, gt_out, predicted_images_ft, predicted_images_nl, gt_image, current_step_prompt, task_name]
return results
def compute_snr(self,timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def compute_image_loss(self, mapping_feature, output_image, output_image_feature=None):
if output_image_feature is not None:
latents = DiagonalGaussianDistribution(output_image_feature).sample()
else:
if len(output_image.shape) == 3:
output_image = output_image.unsqueeze(0)
latents = self.vae.encode(output_image).latent_dist.sample()
latents = latents * self.vae.config.scaling_factor
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
target = noise
model_pred = self.unet(noisy_latents, timesteps, mapping_feature).sample
if self.encoder_model_config.snr_loss:
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, 5 * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
# We first calculate the original loss. Then we mean over the non-batch dimensions and
# rebalance the sample-wise losses with their respective loss weights.
# Finally, we take the mean of the rebalanced loss.
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
return loss
def encode_caption(self, caption, length, inference=False):
# add_special_tokens = False
# if len(caption) == 0:
add_special_tokens = True
text_inputs = self.sd_tokenizer(
caption,
padding="max_length",
max_length=length,
truncation=True,
return_tensors="pt",
add_special_tokens=add_special_tokens
).to(self.device)
# text_inputs = {k: v.to(self.device) for k, v in text_inputs.items()}
prompt_embeds = self.sd_text_encoder(**text_inputs)[0]
return prompt_embeds
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
trainable_param_names = [n for n, p in self.named_parameters() if p.requires_grad]
# remove untrainable params
for k in list(checkpoint["state_dict"].keys()):
if k not in trainable_param_names:
del checkpoint["state_dict"][k]
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
#use pretrained weights for unsaved params
current_state_dict = self.state_dict()
state_dict = checkpoint["state_dict"]
if self.model.using_lora:
# load lm_head and embed_tokens from pretrained model
for name in state_dict.keys():
if "lm_head" in name:
for key in current_state_dict.keys():
if "lm_head" in key and key != name:
current_state_dict[key] = state_dict[name]
elif "embed_tokens" in name:
for key in current_state_dict.keys():
if "embed_tokens" in key and key != name:
current_state_dict[key] = state_dict[name]
current_state_dict.update(state_dict)
checkpoint["state_dict"] = current_state_dict