forked from eric-ai-lab/MiniGPT-5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
430 lines (391 loc) · 19.8 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from torch.utils.data import Dataset
from typing import Optional, Dict, Sequence
import transformers
from tqdm import tqdm
from dataclasses import dataclass
import pandas as pd
import re
import os
import numpy as np
from PIL import Image
import random
from pathlib import Path
import json
import copy
from constants import *
class CC3MDataset(Dataset):
def __init__(self, data_path: str, input_processor=None, output_vis_processor=None, test=False):
self.test = test
self.input_processor = input_processor
self.output_vis_processor = output_vis_processor
self.output_img_id = input_processor.tokenizer.convert_tokens_to_ids(ALL_IMG_TOKENS[0])
self.load_preprocessed_image_features = not test
saved_data_path = data_path.replace('.tsv', '_8-token_stage1.pkl')
if os.path.exists(saved_data_path):
print("Loading saved data...")
self.recover_data(saved_data_path)
print("Loaded saved data for CC3M")
else:
list_data_table = pd.read_csv(data_path, delimiter='\t')
self.sources, self.targets, self.input_image_path, self.output_image_path = [], [], [], []
self.caption, self.task_names = [], []
system_prompt="You will be able to generate image according to command."
generation_prompts = [
"generate image with caption:",
"can you give me the image with caption:",
"help me to generate this image:",
"generate image with according to caption:",
"according to caption, generate image:",
"an image with caption:",
"can you visualize this caption:",
]
for i in tqdm(range(len(list_data_table))):
data = list_data_table.iloc[i]
step_image = data['image_path']
step_caption = data['caption']
path = Path(step_image)
step_image = Path(DATAFOLDER).joinpath(path)
step_image = str(step_image)
step_caption = self.pre_caption(step_caption)
caption_source = f"{step_caption}"
caption_target = f'{ALL_IMG_TOKENS_STR} ###'
self.sources.append(caption_source)
self.targets.append(caption_target)
self.caption.append(step_caption)
self.task_names.append(f'cc3m_{i}')
self.input_image_path.append([None])
self.output_image_path.append(step_image)
if i%100 == 0 and not test:
caption_source = f"###Human: {random.choice(generation_prompts)} {step_caption} ###Assistant:"
caption_source = system_prompt + caption_source
caption_target = f'{ALL_IMG_TOKENS_STR} ###'
self.sources.append(caption_source)
self.targets.append(caption_target)
self.caption.append(step_caption)
self.task_names.append(f'cc3m_{i}_instruction')
self.input_image_path.append([None])
self.output_image_path.append(step_image)
self.valid_idx = list(range(len(self.sources)))
print("Saving data...")
self.save_process_data(saved_data_path)
print("Saved data for cc3m!")
if test:
self.targets = self.caption
def recover_data(self, saved_file):
all_data = torch.load(saved_file)
self.sources = all_data['sources']
self.targets = all_data['targets']
self.input_image_path = all_data['input_image_path']
self.output_image_path = all_data['output_image_path']
self.caption = all_data['caption']
self.task_names = all_data['task_names']
del all_data
if self.test:
self.valid_idx = []
for i in range(len(self.targets)):
if self.output_image_path[i] is not None:
self.valid_idx.append(i)
def save_process_data(self, saved_file):
all_data = {'sources': self.sources,
'targets': self.targets,
'input_image_path': self.input_image_path,
'output_image_path': self.output_image_path,
'caption': self.caption,
'task_names': self.task_names,
}
torch.save(all_data, saved_file)
def __len__(self):
if self.test:
return len(self.valid_idx)
return len(self.sources)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if self.test:
i = self.valid_idx[i]
input_image_path = self.input_image_path[i]
output_image_path = self.output_image_path[i]
input_text = self.sources[i]
output_text = self.targets[i]
if self.load_preprocessed_image_features and PREPROCESS_FEATURE_FOLDER is not None and os.path.isdir(PREPROCESS_FEATURE_FOLDER):
if output_image_path is not None:
output_feature_name = Path(output_image_path).name
output_feature_name = output_feature_name.replace('.jpg', '_output.pt')
if 'val' in output_image_path:
output_feature_path = Path(PREPROCESS_FEATURE_FOLDER).joinpath('val', output_feature_name)
elif 'train' in output_image_path:
output_feature_path = Path(PREPROCESS_FEATURE_FOLDER).joinpath('train', output_feature_name)
output_image_feature = torch.load(output_feature_path).unsqueeze(0)
else:
output_image_path = 'none'
output_image_feature = torch.zeros((1, 8, 64, 64))
input_images_feature = []
for in_img_path in input_image_path:
if in_img_path is not None:
input_feature_name = Path(in_img_path).name
input_feature_name = input_feature_name.replace('.jpg', '_input.pt')
if 'val' in in_img_path:
input_feature_path = Path(PREPROCESS_FEATURE_FOLDER).joinpath('val', input_feature_name)
elif 'train' in in_img_path:
input_feature_path = Path(PREPROCESS_FEATURE_FOLDER).joinpath('train', input_feature_name)
input_image_feature = torch.load(input_feature_path).unsqueeze(0)
else:
input_image_feature = torch.zeros((1, 32, 4096))
input_images_feature.append(input_image_feature)
input_images_feature = torch.cat(input_images_feature, dim=0)
input_dict = self.input_processor(text = input_text, add_special_tokens=False)
input_dict['input_images_feature'] = input_images_feature
input_dict['output_image_feature'] = output_image_feature
else:
input_images = []
for in_img_path in input_image_path:
if in_img_path is not None:
input_image = Image.open(in_img_path).convert("RGB")
else:
input_image = Image.fromarray(np.zeros((224, 224, 3), dtype=np.uint8))
input_images.append(input_image)
input_dict = self.input_processor(text = input_text, images = input_images, add_special_tokens=False)
input_dict['original_images'] = input_images
if output_image_path is not None:
output_image = Image.open(output_image_path).convert("RGB")
output_image = self.expand2square(output_image, (255, 255, 255))
output_image = self.output_vis_processor(output_image)
output_image = output_image.unsqueeze(0)
else:
output_image_path = 'none'
output_image = torch.zeros((1, 3, 512, 512))
input_dict["output_image"] = output_image
input_dict["caption"] = self.caption[i]
input_dict["task_name"] = self.task_names[i]
target_ids = self.input_processor(text = output_text, add_special_tokens=False)['input_ids']
label = torch.ones_like(input_dict["input_ids"])*-100
label = torch.cat((label, target_ids), dim=1)
index = torch.nonzero(label == self.output_img_id)
if len(index):
index = index[0,1]
label[:, index+1:index+IMG_TOKEN_NUM-1] = -100
input_dict["labels"] = label
input_dict["input_ids"] = torch.cat((input_dict["input_ids"], target_ids), dim=1)
input_dict["attention_mask"] = torch.cat((input_dict["attention_mask"], torch.ones_like(target_ids)), dim=1)
input_dict["source"] = input_text
input_dict["target"] = output_text
return input_dict
def pre_caption(self, caption):
caption = re.sub(
r"([.!\"()*#:;~])",
" ",
caption.lower(),
)
caption = re.sub(
r"\s{2,}",
" ",
caption,
)
caption = caption.rstrip("\n")
caption = caption.strip(" ")
# truncate caption
# max_words = 100
# caption_words = caption.split(" ")
# if len(caption_words) > max_words:
# caption = " ".join(caption_words[: max_words])
return caption
@staticmethod
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
class VISTDataset(CC3MDataset):
def __init__(self, data_path: str, input_processor=None, output_vis_processor=None, test=False):
self.test = test
self.input_processor = input_processor
self.output_vis_processor = output_vis_processor
self.output_img_id = input_processor.tokenizer.convert_tokens_to_ids(ALL_IMG_TOKENS[0])
eos_token = input_processor.tokenizer.eos_token
self.load_preprocessed_image_features = False
self.sources, self.targets, self.input_image_path, self.output_image_path = [], [], [], []
self.caption, self.task_names = [], []
all_tasks = json.load(open(data_path, 'r'))
image_id_mapping = json.load(open(data_path.replace('cleaned', 'image_mapping'), 'r'))
system_prompt1="Give the following images in <Img>ImageContent</Img> format. "\
"You will be able to see the images once I provide it to you. Please understanding images and generate story."
human_prompts1 = [
"###Human:{prompt} Generate an image with the scene description: {step_text} ###Assistant:",
"###Human:{prompt} the scene description: {step_text} ###Assistant:",
]
human_prompts2 = [
"###Human:{prompt} Tell me the next scene with image. ###Assistant:",
"###Human:{prompt} Generate the next scene with image. ###Assistant:",
"###Human:{prompt} What should happen then? ###Assistant:"
]
human_prompts3 = [
"###Human:{prompt} Tell me the next scene description by this image: <Img><ImageHere></Img> ###Assistant:",
"###Human:{prompt} What happen in the next scene image: <Img><ImageHere></Img> ###Assistant:"
]
for task_name, task in tqdm(all_tasks.items()):
task_prompts = []
task_input_image_path = []
for step in task:
step_text = step['caption']
step_image = step['image_id']
sequence_index = step['sequence_index']
step_image = os.path.join(DATAFOLDER, image_id_mapping[step_image])
prompt = "<Img><ImageHere></Img>".join(task_prompts)
if len(task_prompts):
prompt = f"{prompt}<Img><ImageHere></Img>\n"
step_input_image = copy.deepcopy(task_input_image_path)
step_name = f"{task_name}_{sequence_index}"
#image generation
step_source = random.choice(human_prompts1).format(prompt=prompt, step_text=step_text)
step_source = system_prompt1 + step_source
step_target = f"{ALL_IMG_TOKENS_STR} ###"
self.sources.append(step_source)
self.caption.append(None)
self.targets.append(step_target)
self.task_names.append(step_name+"-gen")
if len(step_input_image):
self.input_image_path.append(step_input_image)
else:
self.input_image_path.append([None])
self.output_image_path.append(step_image)
if len(task_prompts) and not test:
#image and text generation
step_source = random.choice(human_prompts2).format(prompt=prompt)
step_source = system_prompt1 + step_source
step_target = f"{step_text} {ALL_IMG_TOKENS_STR} ###"
self.sources.append(step_source)
self.targets.append(step_target)
self.caption.append(None)
self.task_names.append(step_name+"-multimodal")
self.input_image_path.append(step_input_image)
self.output_image_path.append(step_image)
#image understanding
step_source = random.choice(human_prompts3).format(prompt=prompt)
step_source = system_prompt1 + step_source
step_target = f"{step_text} ###"
self.sources.append(step_source)
self.targets.append(step_target)
self.caption.append(None)
self.task_names.append(step_name+"-understanding")
self.input_image_path.append(step_input_image+[step_image])
self.output_image_path.append(None)
task_prompts.append(step_text)
task_input_image_path.append(step_image)
self.valid_idx = list(range(len(self.sources)))
print('Load data done!')
class MMDialogDataset(CC3MDataset):
def __init__(self, data_path: str, input_processor=None, output_vis_processor=None, test=False):
self.test = test
self.input_processor = input_processor
self.output_vis_processor = output_vis_processor
self.output_img_id = input_processor.tokenizer.convert_tokens_to_ids(ALL_IMG_TOKENS[0])
eos_token = input_processor.tokenizer.eos_token
self.load_preprocessed_image_features = False
system_prompt="Give the following images in <Img>ImageContent</Img> format. "\
"You will be able to see the images once I provide it to you. Please generate conversation with appropriate image."
self.sources, self.targets, self.input_image_path, self.output_image_path = [], [], [], []
self.caption, self.task_names = [], []
data_folder = os.path.dirname(data_path)
with open(data_path, 'r') as f:
all_data = f.readlines()
for data in tqdm(all_data):
data = json.loads(data)
data_num = data['conversation_id']
conversation = data['conversation']
if len(conversation)<2:
continue
history_prompt = system_prompt
history_images = []
for i, conv in enumerate(conversation):
turn = conv['turn']
turn_text = turn[0]['__TEXT__']
if len(turn)==1:
turn_image_path = None
else:
turn_image_path = os.path.join(data_folder, f"{turn[1]['__MEDIA__']}.jpg")
if not os.path.exists(turn_image_path):
# print(f'Cannot Find: {turn_image_path}')
break
if len(turn_text.split(' '))>20 and not test:
break
if i%2==0:
source = history_prompt + "###Human:"
else:
source = history_prompt + "###Assistant:"
if i>0:
self.sources.append(source)
if turn_image_path is not None:
target = f"{turn_text} {ALL_IMG_TOKENS_STR} ###"
else:
target = f"{turn_text} ###"
self.targets.append(target)
self.caption.append(None)
self.task_names.append(f'mmdialog{data_num}_{i}')
if len(history_images):
self.input_image_path.append(copy.deepcopy(history_images))
else:
self.input_image_path.append([None])
self.output_image_path.append(turn_image_path)
if turn_image_path is not None:
history_prompt = source + f" {turn_text} <Img><ImageHere></Img>\n"
history_images.append(turn_image_path)
else:
history_prompt = source + f" {turn_text}\n"
if (i%2==1 and i>2):
pattern = "###Human:(.*?)###Human:"
match = re.search(pattern, history_prompt, re.DOTALL)
match_text = match.group(0)
history_prompt = history_prompt.replace(match_text, "###Human:")
pattern2 = '<Img><ImageHere></Img>'
match_num = len(re.findall(pattern2, match_text))
if match_num>0:
history_images = history_images[match_num:]
self.valid_idx = list(range(len(self.sources)))
print('Load data done with {} samples!'.format(len(self.sources)))
def __getitem__(self, i):
for _ in range(10):
try:
item = super().__getitem__(i)
break
except:
i = random.choice(self.valid_idx)
return item
@dataclass
class DataCollator(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
sd_tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
key_list = instances[0].keys()
output_dict = {}
for key in key_list:
# Need to remove the batch dimension
if key in ['input_ids', 'attention_mask', 'labels']:
output_value = [instance[key][0] for instance in instances]
else:
output_value = [instance[key] for instance in instances]
if key == "input_ids":
output_value = torch.nn.utils.rnn.pad_sequence(output_value, batch_first=True, padding_value=self.tokenizer.pad_token_id)
elif key == "labels":
output_value = torch.nn.utils.rnn.pad_sequence(output_value, batch_first=True, padding_value=-100)
elif key == "attention_mask":
output_value = torch.nn.utils.rnn.pad_sequence(output_value, batch_first=True, padding_value=0)
elif key == 'input_images':
output_value = [v.to(PRECISION) for v in output_value]
elif key == 'output_image':
output_value = torch.concat(output_value).to(PRECISION)
elif key == 'output_image_feature':
output_value = torch.concat(output_value)
output_dict[key] = output_value
return output_dict
if 'CC3M' in DATAFOLDER:
SupervisedDataset = CC3MDataset
elif 'MMDialog' in DATAFOLDER:
SupervisedDataset = MMDialogDataset
else:
SupervisedDataset = VISTDataset