-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy path4_evaluate.py
64 lines (43 loc) · 2.39 KB
/
4_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#-*- coding: utf-8 -*-
# Todo : keras model 에서 predict_probs() 할 때 message off 하는 방법
# evaluator.run(img_files, do_nms=False) 에서 do_nms option 을 사용하지 않도록 detector 자체의 class 에서 nms 객체를 갖고 있도록 하자.
import cv2
import numpy as np
import digit_detector.region_proposal as rp
import digit_detector.detect as detect
import digit_detector.file_io as file_io
import digit_detector.preprocess as preproc
import digit_detector.annotation as ann
import digit_detector.evaluate as eval
import digit_detector.classify as cls
model_filename = "detector_model.hdf5"
model_input_shape = (32,32,1)
DIR = '../datasets/svhn/train'
ANNOTATION_FILE = "../datasets/svhn/train/digitStruct.json"
detect_model = "detector_model.hdf5"
recognize_model = "recognize_model.hdf5"
mean_value_for_detector = 107.524
mean_value_for_recognizer = 112.833
if __name__ == "__main__":
# 1. load test image files, annotation file
img_files = file_io.list_files(directory=DIR, pattern="*.png", recursive_option=False, n_files_to_sample=1000, random_order=False)
annotator = ann.SvhnAnnotation(ANNOTATION_FILE)
preprocessor_for_detector = preproc.GrayImgPreprocessor(mean_value_for_detector)
preprocessor_for_recognizer = preproc.GrayImgPreprocessor(mean_value_for_recognizer)
detector = cls.CnnClassifier(detect_model, preprocessor_for_detector, model_input_shape)
recognizer = cls.CnnClassifier(recognize_model, preprocessor_for_recognizer, model_input_shape)
proposer = rp.MserRegionProposer()
# 2. create detector
det = detect.DigitSpotter(detector, recognizer, proposer)
# 3. Evaluate average precision
evaluator = eval.Evaluator(det, annotator, rp.OverlapCalculator())
recall, precision, f1_score = evaluator.run(img_files)
# recall value : 0.513115508514, precision value : 0.714285714286, f1_score : 0.597214783074
# 4. Evaluate MSER
detector = cls.TrueBinaryClassifier(input_shape=model_input_shape)
preprocessor = preproc.NonePreprocessor()
# Todo : detector, recognizer 를 none type 으로
det = detect.DigitSpotter(detector, recognizer, proposer)
evaluator = eval.Evaluator(det, annotator, rp.OverlapCalculator())
recall, precision, f1_score = evaluator.run(img_files, do_nms=False)
#recall value : 0.630004601933, precision value : 0.0452547023239, f1_score : 0.0844436220084